File size: 9,681 Bytes
0bc8459
 
 
 
 
 
 
 
1a975b3
 
 
0bc8459
 
 
 
 
 
 
 
 
1a975b3
 
 
 
0bc8459
1a975b3
 
 
 
0bc8459
 
 
 
 
 
1a975b3
0bc8459
1a975b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc8459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a975b3
 
0bc8459
 
 
1a975b3
 
 
0bc8459
 
 
1a975b3
0bc8459
 
 
 
 
 
1a975b3
0bc8459
 
 
 
1a975b3
 
0bc8459
 
 
 
 
1a975b3
 
0bc8459
 
 
 
 
1a975b3
 
0bc8459
 
 
 
1a975b3
0bc8459
 
 
 
 
 
 
 
 
1a975b3
0bc8459
 
 
 
 
1a975b3
0bc8459
 
 
 
 
 
 
 
 
 
1a975b3
0bc8459
 
 
 
 
 
1a975b3
0bc8459
 
 
1a975b3
 
0bc8459
 
 
 
 
 
 
 
 
1a975b3
0bc8459
1a975b3
 
0bc8459
 
1a975b3
0bc8459
 
 
 
 
1a975b3
0bc8459
 
 
 
 
1a975b3
 
0bc8459
1a975b3
0bc8459
1a975b3
0bc8459
 
1a975b3
0bc8459
1a975b3
 
0bc8459
1a975b3
 
 
 
 
 
 
0bc8459
 
 
1a975b3
 
 
 
0bc8459
 
1a975b3
0bc8459
1a975b3
 
0bc8459
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python3

import os
import sys
import platform
import signal
import shutil
import argparse
import warnings
from typing import List

import torch
import onnxruntime
import tensorflow

import roop.globals
import roop.metadata
import roop.ui as ui
from roop.predicter import predict_image, predict_video
from roop.processors.frame.core import get_frame_processors_modules
from roop.utilities import (
    has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames,
    get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path
)

# Reduce TensorFlow log level and configure threading for torch
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
if any(arg.startswith('--execution-provider') for arg in sys.argv):
    os.environ['OMP_NUM_THREADS'] = '1'

warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')


def parse_args() -> None:
    """Parse command-line arguments and configure global settings."""
    signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
    
    parser = argparse.ArgumentParser(
        formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100)
    )
    parser.add_argument('-s', '--source', help='Path to the source image', dest='source_path')
    parser.add_argument('-t', '--target', help='Path to the target image or video', dest='target_path')
    parser.add_argument('-o', '--output', help='Path to the output file or directory', dest='output_path')
    parser.add_argument('--frame-processor', help='Frame processors (choices: face_swapper, face_enhancer, ...)', dest='frame_processor', default=['face_swapper'], nargs='+')
    parser.add_argument('--keep-fps', help='Keep original FPS', dest='keep_fps', action='store_true', default=False)
    parser.add_argument('--keep-audio', help='Keep original audio', dest='keep_audio', action='store_true', default=True)
    parser.add_argument('--keep-frames', help='Keep temporary frames', dest='keep_frames', action='store_true', default=False)
    parser.add_argument('--many-faces', help='Process every face', dest='many_faces', action='store_true', default=False)
    parser.add_argument('--video-encoder', help='Output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
    parser.add_argument('--video-quality', help='Output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
    parser.add_argument('--max-memory', help='Maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
    parser.add_argument('--execution-provider', help='Available execution provider (choices: cpu, ...)', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+')
    parser.add_argument('--execution-threads', help='Number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
    parser.add_argument('-v', '--version', action='version', version=f'{roop.metadata.name} {roop.metadata.version}')
    
    args = parser.parse_args()

    roop.globals.source_path = args.source_path
    roop.globals.target_path = args.target_path
    roop.globals.output_path = normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path)
    roop.globals.frame_processors = args.frame_processor
    roop.globals.headless = args.source_path or args.target_path or args.output_path
    roop.globals.keep_fps = args.keep_fps
    roop.globals.keep_audio = args.keep_audio
    roop.globals.keep_frames = args.keep_frames
    roop.globals.many_faces = args.many_faces
    roop.globals.video_encoder = args.video_encoder
    roop.globals.video_quality = args.video_quality
    roop.globals.max_memory = args.max_memory
    roop.globals.execution_providers = decode_execution_providers(args.execution_provider)
    roop.globals.execution_threads = args.execution_threads


def encode_execution_providers(execution_providers: List[str]) -> List[str]:
    """Convert execution providers to their encoded form."""
    return [provider.replace('ExecutionProvider', '').lower() for provider in execution_providers]


def decode_execution_providers(execution_providers: List[str]) -> List[str]:
    """Decode execution providers from their encoded form."""
    return [provider for provider, encoded_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
            if any(execution_provider in encoded_provider for execution_provider in execution_providers)]


def suggest_max_memory() -> int:
    """Suggest maximum memory in GB based on the operating system."""
    if platform.system().lower() == 'darwin':
        return 10
    return 14


def suggest_execution_providers() -> List[str]:
    """Suggest available execution providers based on ONNX Runtime."""
    return encode_execution_providers(onnxruntime.get_available_providers())


def suggest_execution_threads() -> int:
    """Suggest the number of execution threads based on execution providers."""
    if 'DmlExecutionProvider' in roop.globals.execution_providers or 'ROCMExecutionProvider' in roop.globals.execution_providers:
        return 1
    return 8


def limit_resources() -> None:
    """Limit GPU and RAM resources based on configuration."""
    # Prevent TensorFlow memory leak
    gpus = tensorflow.config.experimental.list_physical_devices('GPU')
    for gpu in gpus:
        tensorflow.config.experimental.set_virtual_device_configuration(gpu, [
            tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)
        ])
    
    # Limit memory usage
    if roop.globals.max_memory:
        memory = roop.globals.max_memory * 1024 ** 3
        if platform.system().lower() == 'darwin':
            memory = roop.globals.max_memory * 1024 ** 6
        elif platform.system().lower() == 'windows':
            import ctypes
            kernel32 = ctypes.windll.kernel32
            kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
        else:
            import resource
            resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))


def release_resources() -> None:
    """Release resources such as GPU cache."""
    if 'CUDAExecutionProvider' in roop.globals.execution_providers:
        torch.cuda.empty_cache()


def pre_check() -> bool:
    """Perform preliminary checks before starting the processing."""
    if sys.version_info < (3, 9):
        update_status('Python version is not supported - please upgrade to 3.9 or higher.')
        return False
    if not shutil.which('ffmpeg'):
        update_status('ffmpeg is not installed.')
        return False
    return True


def update_status(message: str, scope: str = 'ROOP.CORE') -> None:
    """Update status message to the console or UI."""
    print(f'[{scope}] {message}')
    if not roop.globals.headless:
        ui.update_status(message)


def start() -> None:
    """Start the processing based on the configuration and input."""
    for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
        if not frame_processor.pre_start():
            return

    # Process image to image
    if has_image_extension(roop.globals.target_path):
        if predict_image(roop.globals.target_path):
            destroy()
        shutil.copy2(roop.globals.target_path, roop.globals.output_path)
        for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
            update_status('Progressing...', frame_processor.NAME)
            frame_processor.process_image(roop.globals.source_path, roop.globals.output_path, roop.globals.output_path)
            frame_processor.post_process()
            release_resources()
        update_status('Processing to image succeeded!' if is_image(roop.globals.target_path) else 'Processing to image failed!')
        return

    # Process image to video
    if predict_video(roop.globals.target_path):
        destroy()

    update_status('Creating temp resources...')
    create_temp(roop.globals.target_path)
    update_status('Extracting frames...')
    extract_frames(roop.globals.target_path)
    temp_frame_paths = get_temp_frame_paths(roop.globals.target_path)

    for frame_processor in get_frame_processors_modules(roop.globals.frame_processors):
        update_status('Progressing...', frame_processor.NAME)
        frame_processor.process_video(roop.globals.source_path, temp_frame_paths)
        frame_processor.post_process()
        release_resources()

    # Handle FPS
    if roop.globals.keep_fps:
        update_status('Detecting FPS...')
        fps = detect_fps(roop.globals.target_path)
        update_status(f'Creating video with {fps} FPS...')
        create_video(roop.globals.target_path, fps)
    else:
        update_status('Creating video with 30.0 FPS...')
        create_video(roop.globals.target_path)

    # Handle audio
    if roop.globals.keep_audio:
        update_status('Restoring audio...' if roop.globals.keep_fps else 'Restoring audio and creating final video...')
        restore_audio(roop.globals.target_path)

    move_temp(roop.globals.target_path)
    clean_temp()
    update_status('Processing succeeded!')
    release_resources()


def destroy() -> None:
    """Cleanup and exit the program."""
    update_status('Cleaning up and exiting...')
    clean_temp()
    sys.exit()


if __name__ == '__main__':
    parse_args()
    if pre_check():
        limit_resources()
        start()