from keras.models import load_model import cv2 import gradio as gr import numpy as np loaded_model = load_model('model.h5') def predict(img): img = img['composite'][:,:,3]/255.0 img = cv2.resize(img, (28, 28)) prediction = np.argmax(loaded_model.predict(np.array([img]) ,verbose=0)) return prediction input = [gr.Sketchpad(label="Sketchpad", canvas_size= (600,600) , image_mode = "RGBA")] interface = gr.Interface( fn=predict, inputs=input, outputs="textbox", title="MNIST Handwritten Digit Recognition by Johnson Manuel", description="Draw digits from 0 to 9 to see real-time recognition by a neural network trained on the MNIST dataset." ,live=True ) interface.launch()