Spaces:
Build error
Build error
| """model.py - Model and module class for EfficientNet. | |
| They are built to mirror those in the official TensorFlow implementation. | |
| """ | |
| # Author: lukemelas (github username) | |
| # Github repo: https://github.com/lukemelas/EfficientNet-PyTorch | |
| # With adjustments and added comments by workingcoder (github username). | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from .utils import ( | |
| round_filters, | |
| round_repeats, | |
| drop_connect, | |
| get_same_padding_conv2d, | |
| get_model_params, | |
| efficientnet_params, | |
| load_pretrained_weights, | |
| Swish, | |
| MemoryEfficientSwish, | |
| calculate_output_image_size | |
| ) | |
| VALID_MODELS = ( | |
| 'efficientnet-b0', 'efficientnet-b1', 'efficientnet-b2', 'efficientnet-b3', | |
| 'efficientnet-b4', 'efficientnet-b5', 'efficientnet-b6', 'efficientnet-b7', | |
| 'efficientnet-b8', | |
| # Support the construction of 'efficientnet-l2' without pretrained weights | |
| 'efficientnet-l2' | |
| ) | |
| class MBConvBlock(nn.Module): | |
| """Mobile Inverted Residual Bottleneck Block. | |
| Args: | |
| block_args (namedtuple): BlockArgs, defined in utils.py. | |
| global_params (namedtuple): GlobalParam, defined in utils.py. | |
| image_size (tuple or list): [image_height, image_width]. | |
| References: | |
| [1] https://arxiv.org/abs/1704.04861 (MobileNet v1) | |
| [2] https://arxiv.org/abs/1801.04381 (MobileNet v2) | |
| [3] https://arxiv.org/abs/1905.02244 (MobileNet v3) | |
| """ | |
| def __init__(self, block_args, global_params, image_size=None): | |
| super().__init__() | |
| self._block_args = block_args | |
| self._bn_mom = 1 - global_params.batch_norm_momentum # pytorch's difference from tensorflow | |
| self._bn_eps = global_params.batch_norm_epsilon | |
| self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) | |
| self.id_skip = block_args.id_skip # whether to use skip connection and drop connect | |
| # Expansion phase (Inverted Bottleneck) | |
| inp = self._block_args.input_filters # number of input channels | |
| oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels | |
| if self._block_args.expand_ratio != 1: | |
| Conv2d = get_same_padding_conv2d(image_size=image_size) | |
| self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) | |
| self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) | |
| # image_size = calculate_output_image_size(image_size, 1) <-- this wouldn't modify image_size | |
| # Depthwise convolution phase | |
| k = self._block_args.kernel_size | |
| s = self._block_args.stride | |
| Conv2d = get_same_padding_conv2d(image_size=image_size) | |
| self._depthwise_conv = Conv2d( | |
| in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise | |
| kernel_size=k, stride=s, bias=False) | |
| self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) | |
| image_size = calculate_output_image_size(image_size, s) | |
| # Squeeze and Excitation layer, if desired | |
| if self.has_se: | |
| Conv2d = get_same_padding_conv2d(image_size=(1, 1)) | |
| num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio)) | |
| self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) | |
| self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) | |
| # Pointwise convolution phase | |
| final_oup = self._block_args.output_filters | |
| Conv2d = get_same_padding_conv2d(image_size=image_size) | |
| self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) | |
| self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) | |
| self._swish = MemoryEfficientSwish() | |
| def forward(self, inputs, drop_connect_rate=None): | |
| """MBConvBlock's forward function. | |
| Args: | |
| inputs (tensor): Input tensor. | |
| drop_connect_rate (bool): Drop connect rate (float, between 0 and 1). | |
| Returns: | |
| Output of this block after processing. | |
| """ | |
| # Expansion and Depthwise Convolution | |
| x = inputs | |
| if self._block_args.expand_ratio != 1: | |
| x = self._expand_conv(inputs) | |
| x = self._bn0(x) | |
| x = self._swish(x) | |
| x = self._depthwise_conv(x) | |
| x = self._bn1(x) | |
| x = self._swish(x) | |
| # Squeeze and Excitation | |
| if self.has_se: | |
| x_squeezed = F.adaptive_avg_pool2d(x, 1) | |
| x_squeezed = self._se_reduce(x_squeezed) | |
| x_squeezed = self._swish(x_squeezed) | |
| x_squeezed = self._se_expand(x_squeezed) | |
| x = torch.sigmoid(x_squeezed) * x | |
| # Pointwise Convolution | |
| x = self._project_conv(x) | |
| x = self._bn2(x) | |
| # Skip connection and drop connect | |
| input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters | |
| if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters: | |
| # The combination of skip connection and drop connect brings about stochastic depth. | |
| if drop_connect_rate: | |
| x = drop_connect(x, p=drop_connect_rate, training=self.training) | |
| x = x + inputs # skip connection | |
| return x | |
| def set_swish(self, memory_efficient=True): | |
| """Sets swish function as memory efficient (for training) or standard (for export). | |
| Args: | |
| memory_efficient (bool): Whether to use memory-efficient version of swish. | |
| """ | |
| self._swish = MemoryEfficientSwish() if memory_efficient else Swish() | |
| class EfficientNet(nn.Module): | |
| """EfficientNet model. | |
| Most easily loaded with the .from_name or .from_pretrained methods. | |
| Args: | |
| blocks_args (list[namedtuple]): A list of BlockArgs to construct blocks. | |
| global_params (namedtuple): A set of GlobalParams shared between blocks. | |
| References: | |
| [1] https://arxiv.org/abs/1905.11946 (EfficientNet) | |
| Example: | |
| >>> import torch | |
| >>> from efficientnet.model import EfficientNet | |
| >>> inputs = torch.rand(1, 3, 224, 224) | |
| >>> model = EfficientNet.from_pretrained('efficientnet-b0') | |
| >>> model.eval() | |
| >>> outputs = model(inputs) | |
| """ | |
| def __init__(self, blocks_args=None, global_params=None): | |
| super().__init__() | |
| assert isinstance(blocks_args, list), 'blocks_args should be a list' | |
| assert len(blocks_args) > 0, 'block args must be greater than 0' | |
| self._global_params = global_params | |
| self._blocks_args = blocks_args | |
| # Batch norm parameters | |
| bn_mom = 1 - self._global_params.batch_norm_momentum | |
| bn_eps = self._global_params.batch_norm_epsilon | |
| # Get stem static or dynamic convolution depending on image size | |
| image_size = global_params.image_size | |
| Conv2d = get_same_padding_conv2d(image_size=image_size) | |
| # Stem | |
| in_channels = 3 # rgb | |
| out_channels = round_filters(32, self._global_params) # number of output channels | |
| self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) | |
| self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) | |
| image_size = calculate_output_image_size(image_size, 2) | |
| # Build blocks | |
| self._blocks = nn.ModuleList([]) | |
| for block_args in self._blocks_args: | |
| # Update block input and output filters based on depth multiplier. | |
| block_args = block_args._replace( | |
| input_filters=round_filters(block_args.input_filters, self._global_params), | |
| output_filters=round_filters(block_args.output_filters, self._global_params), | |
| num_repeat=round_repeats(block_args.num_repeat, self._global_params) | |
| ) | |
| # The first block needs to take care of stride and filter size increase. | |
| self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size)) | |
| image_size = calculate_output_image_size(image_size, block_args.stride) | |
| if block_args.num_repeat > 1: # modify block_args to keep same output size | |
| block_args = block_args._replace(input_filters=block_args.output_filters, stride=1) | |
| for _ in range(block_args.num_repeat - 1): | |
| self._blocks.append(MBConvBlock(block_args, self._global_params, image_size=image_size)) | |
| # image_size = calculate_output_image_size(image_size, block_args.stride) # stride = 1 | |
| # Head | |
| in_channels = block_args.output_filters # output of final block | |
| out_channels = round_filters(1280, self._global_params) | |
| Conv2d = get_same_padding_conv2d(image_size=image_size) | |
| self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) | |
| self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) | |
| # Final linear layer | |
| self._avg_pooling = nn.AdaptiveAvgPool2d(1) | |
| if self._global_params.include_top: | |
| self._dropout = nn.Dropout(self._global_params.dropout_rate) | |
| self._fc = nn.Linear(out_channels, self._global_params.num_classes) | |
| # set activation to memory efficient swish by default | |
| self._swish = MemoryEfficientSwish() | |
| def set_swish(self, memory_efficient=True): | |
| """Sets swish function as memory efficient (for training) or standard (for export). | |
| Args: | |
| memory_efficient (bool): Whether to use memory-efficient version of swish. | |
| """ | |
| self._swish = MemoryEfficientSwish() if memory_efficient else Swish() | |
| for block in self._blocks: | |
| block.set_swish(memory_efficient) | |
| def extract_endpoints(self, inputs): | |
| """Use convolution layer to extract features | |
| from reduction levels i in [1, 2, 3, 4, 5]. | |
| Args: | |
| inputs (tensor): Input tensor. | |
| Returns: | |
| Dictionary of last intermediate features | |
| with reduction levels i in [1, 2, 3, 4, 5]. | |
| Example: | |
| >>> import torch | |
| >>> from efficientnet.model import EfficientNet | |
| >>> inputs = torch.rand(1, 3, 224, 224) | |
| >>> model = EfficientNet.from_pretrained('efficientnet-b0') | |
| >>> endpoints = model.extract_endpoints(inputs) | |
| >>> print(endpoints['reduction_1'].shape) # torch.Size([1, 16, 112, 112]) | |
| >>> print(endpoints['reduction_2'].shape) # torch.Size([1, 24, 56, 56]) | |
| >>> print(endpoints['reduction_3'].shape) # torch.Size([1, 40, 28, 28]) | |
| >>> print(endpoints['reduction_4'].shape) # torch.Size([1, 112, 14, 14]) | |
| >>> print(endpoints['reduction_5'].shape) # torch.Size([1, 320, 7, 7]) | |
| >>> print(endpoints['reduction_6'].shape) # torch.Size([1, 1280, 7, 7]) | |
| """ | |
| endpoints = dict() | |
| # Stem | |
| x = self._swish(self._bn0(self._conv_stem(inputs))) | |
| prev_x = x | |
| # Blocks | |
| for idx, block in enumerate(self._blocks): | |
| drop_connect_rate = self._global_params.drop_connect_rate | |
| if drop_connect_rate: | |
| drop_connect_rate *= float(idx) / len(self._blocks) # scale drop connect_rate | |
| x = block(x, drop_connect_rate=drop_connect_rate) | |
| if prev_x.size(2) > x.size(2): | |
| endpoints['reduction_{}'.format(len(endpoints) + 1)] = prev_x | |
| elif idx == len(self._blocks) - 1: | |
| endpoints['reduction_{}'.format(len(endpoints) + 1)] = x | |
| prev_x = x | |
| # Head | |
| x = self._swish(self._bn1(self._conv_head(x))) | |
| endpoints['reduction_{}'.format(len(endpoints) + 1)] = x | |
| return endpoints | |
| def extract_features(self, inputs): | |
| """use convolution layer to extract feature . | |
| Args: | |
| inputs (tensor): Input tensor. | |
| Returns: | |
| Output of the final convolution | |
| layer in the efficientnet model. | |
| """ | |
| # Stem | |
| x = self._swish(self._bn0(self._conv_stem(inputs))) | |
| # Blocks | |
| for idx, block in enumerate(self._blocks): | |
| drop_connect_rate = self._global_params.drop_connect_rate | |
| if drop_connect_rate: | |
| drop_connect_rate *= float(idx) / len(self._blocks) # scale drop connect_rate | |
| x = block(x, drop_connect_rate=drop_connect_rate) | |
| # Head | |
| x = self._swish(self._bn1(self._conv_head(x))) | |
| return x | |
| def forward(self, inputs): | |
| """EfficientNet's forward function. | |
| Calls extract_features to extract features, applies final linear layer, and returns logits. | |
| Args: | |
| inputs (tensor): Input tensor. | |
| Returns: | |
| Output of this model after processing. | |
| """ | |
| # Convolution layers | |
| x = self.extract_features(inputs) | |
| # Pooling and final linear layer | |
| x = self._avg_pooling(x) | |
| if self._global_params.include_top: | |
| x = x.flatten(start_dim=1) | |
| x = self._dropout(x) | |
| x = self._fc(x) | |
| return x | |
| def from_name(cls, model_name, in_channels=3, **override_params): | |
| """Create an efficientnet model according to name. | |
| Args: | |
| model_name (str): Name for efficientnet. | |
| in_channels (int): Input data's channel number. | |
| override_params (other key word params): | |
| Params to override model's global_params. | |
| Optional key: | |
| 'width_coefficient', 'depth_coefficient', | |
| 'image_size', 'dropout_rate', | |
| 'num_classes', 'batch_norm_momentum', | |
| 'batch_norm_epsilon', 'drop_connect_rate', | |
| 'depth_divisor', 'min_depth' | |
| Returns: | |
| An efficientnet model. | |
| """ | |
| cls._check_model_name_is_valid(model_name) | |
| blocks_args, global_params = get_model_params(model_name, override_params) | |
| model = cls(blocks_args, global_params) | |
| model._change_in_channels(in_channels) | |
| return model | |
| def from_pretrained(cls, model_name, weights_path=None, advprop=False, | |
| in_channels=3, num_classes=1000, **override_params): | |
| """Create an efficientnet model according to name. | |
| Args: | |
| model_name (str): Name for efficientnet. | |
| weights_path (None or str): | |
| str: path to pretrained weights file on the local disk. | |
| None: use pretrained weights downloaded from the Internet. | |
| advprop (bool): | |
| Whether to load pretrained weights | |
| trained with advprop (valid when weights_path is None). | |
| in_channels (int): Input data's channel number. | |
| num_classes (int): | |
| Number of categories for classification. | |
| It controls the output size for final linear layer. | |
| override_params (other key word params): | |
| Params to override model's global_params. | |
| Optional key: | |
| 'width_coefficient', 'depth_coefficient', | |
| 'image_size', 'dropout_rate', | |
| 'batch_norm_momentum', | |
| 'batch_norm_epsilon', 'drop_connect_rate', | |
| 'depth_divisor', 'min_depth' | |
| Returns: | |
| A pretrained efficientnet model. | |
| """ | |
| model = cls.from_name(model_name, num_classes=num_classes, **override_params) | |
| load_pretrained_weights(model, model_name, weights_path=weights_path, | |
| load_fc=(num_classes == 1000), advprop=advprop) | |
| model._change_in_channels(in_channels) | |
| return model | |
| def get_image_size(cls, model_name): | |
| """Get the input image size for a given efficientnet model. | |
| Args: | |
| model_name (str): Name for efficientnet. | |
| Returns: | |
| Input image size (resolution). | |
| """ | |
| cls._check_model_name_is_valid(model_name) | |
| _, _, res, _ = efficientnet_params(model_name) | |
| return res | |
| def _check_model_name_is_valid(cls, model_name): | |
| """Validates model name. | |
| Args: | |
| model_name (str): Name for efficientnet. | |
| Returns: | |
| bool: Is a valid name or not. | |
| """ | |
| if model_name not in VALID_MODELS: | |
| raise ValueError('model_name should be one of: ' + ', '.join(VALID_MODELS)) | |
| def _change_in_channels(self, in_channels): | |
| """Adjust model's first convolution layer to in_channels, if in_channels not equals 3. | |
| Args: | |
| in_channels (int): Input data's channel number. | |
| """ | |
| if in_channels != 3: | |
| Conv2d = get_same_padding_conv2d(image_size=self._global_params.image_size) | |
| out_channels = round_filters(32, self._global_params) | |
| self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) | |