Spaces:
Build error
Build error
File size: 6,807 Bytes
51da11a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Copyright 2022 Christian J. Steinmetz
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TCN implementation adapted from:
# https://github.com/csteinmetz1/micro-tcn/blob/main/microtcn/tcn.py
import torch
from argparse import ArgumentParser
from deepafx_st.utils import center_crop, causal_crop
class FiLM(torch.nn.Module):
def __init__(self, num_features, cond_dim):
super().__init__()
self.num_features = num_features
self.bn = torch.nn.BatchNorm1d(num_features, affine=False)
self.adaptor = torch.nn.Linear(cond_dim, num_features * 2)
def forward(self, x, cond):
# project conditioning to 2 x num. conv channels
cond = self.adaptor(cond)
# split the projection into gain and bias
g, b = torch.chunk(cond, 2, dim=-1)
# add virtual channel dim if needed
if g.ndim == 2:
g = g.unsqueeze(1)
b = b.unsqueeze(1)
# reshape for application
g = g.permute(0, 2, 1)
b = b.permute(0, 2, 1)
x = self.bn(x) # apply BatchNorm without affine
x = (x * g) + b # then apply conditional affine
return x
class ConditionalTCNBlock(torch.nn.Module):
def __init__(
self, in_ch, out_ch, cond_dim, kernel_size=3, dilation=1, causal=False, **kwargs
):
super().__init__()
self.in_ch = in_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.dilation = dilation
self.causal = causal
self.conv1 = torch.nn.Conv1d(
in_ch,
out_ch,
kernel_size=kernel_size,
padding=0,
dilation=dilation,
bias=True,
)
self.film = FiLM(out_ch, cond_dim)
self.relu = torch.nn.PReLU(out_ch)
self.res = torch.nn.Conv1d(
in_ch, out_ch, kernel_size=1, groups=in_ch, bias=False
)
def forward(self, x, p):
x_in = x
x = self.conv1(x)
x = self.film(x, p) # apply FiLM conditioning
x = self.relu(x)
x_res = self.res(x_in)
if self.causal:
x = x + causal_crop(x_res, x.shape[-1])
else:
x = x + center_crop(x_res, x.shape[-1])
return x
class ConditionalTCN(torch.nn.Module):
"""Temporal convolutional network with conditioning module.
Args:
sample_rate (float): Audio sample rate.
num_control_params (int, optional): Dimensionality of the conditioning signal. Default: 24
ninputs (int, optional): Number of input channels (mono = 1, stereo 2). Default: 1
noutputs (int, optional): Number of output channels (mono = 1, stereo 2). Default: 1
nblocks (int, optional): Number of total TCN blocks. Default: 10
kernel_size (int, optional: Width of the convolutional kernels. Default: 3
dialation_growth (int, optional): Compute the dilation factor at each block as dilation_growth ** (n % stack_size). Default: 1
channel_growth (int, optional): Compute the output channels at each black as in_ch * channel_growth. Default: 2
channel_width (int, optional): When channel_growth = 1 all blocks use convolutions with this many channels. Default: 64
stack_size (int, optional): Number of blocks that constitute a single stack of blocks. Default: 10
causal (bool, optional): Causal TCN configuration does not consider future input values. Default: False
"""
def __init__(
self,
sample_rate,
num_control_params=24,
ninputs=1,
noutputs=1,
nblocks=10,
kernel_size=15,
dilation_growth=2,
channel_growth=1,
channel_width=64,
stack_size=10,
causal=False,
skip_connections=False,
**kwargs,
):
super().__init__()
self.num_control_params = num_control_params
self.ninputs = ninputs
self.noutputs = noutputs
self.nblocks = nblocks
self.kernel_size = kernel_size
self.dilation_growth = dilation_growth
self.channel_growth = channel_growth
self.channel_width = channel_width
self.stack_size = stack_size
self.causal = causal
self.skip_connections = skip_connections
self.sample_rate = sample_rate
self.blocks = torch.nn.ModuleList()
for n in range(nblocks):
in_ch = out_ch if n > 0 else ninputs
if self.channel_growth > 1:
out_ch = in_ch * self.channel_growth
else:
out_ch = self.channel_width
dilation = self.dilation_growth ** (n % self.stack_size)
self.blocks.append(
ConditionalTCNBlock(
in_ch,
out_ch,
self.num_control_params,
kernel_size=self.kernel_size,
dilation=dilation,
padding="same" if self.causal else "valid",
causal=self.causal,
)
)
self.output = torch.nn.Conv1d(out_ch, noutputs, kernel_size=1)
self.receptive_field = self.compute_receptive_field()
# print(
# f"TCN receptive field: {self.receptive_field} samples",
# f" or {(self.receptive_field/self.sample_rate)*1e3:0.3f} ms",
# )
def forward(self, x, p, **kwargs):
# causally pad input signal
x = torch.nn.functional.pad(x, (self.receptive_field - 1, 0))
# iterate over blocks passing conditioning
for idx, block in enumerate(self.blocks):
x = block(x, p)
if self.skip_connections:
if idx == 0:
skips = x
else:
skips = center_crop(skips, x[-1]) + x
else:
skips = 0
# final 1x1 convolution to collapse channels
out = self.output(x + skips)
return out
def compute_receptive_field(self):
"""Compute the receptive field in samples."""
rf = self.kernel_size
for n in range(1, self.nblocks):
dilation = self.dilation_growth ** (n % self.stack_size)
rf = rf + ((self.kernel_size - 1) * dilation)
return rf
|