Spaces:
Build error
Build error
File size: 4,770 Bytes
51da11a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import math
import torch
from typing import List
def butter(fc, fs: float = 2.0):
"""
Recall Butterworth polynomials
N = 1 s + 1
N = 2 s^2 + sqrt(2s) + 1
N = 3 (s^2 + s + 1)(s + 1)
N = 4 (s^2 + 0.76536s + 1)(s^2 + 1.84776s + 1)
Scaling
LP to LP: s -> s/w_c
LP to HP: s -> w_c/s
Bilinear transform:
s = 2/T_d * (1 - z^-1)/(1 + z^-1)
For 1-pole butterworth lowpass
1 / (s + 1) 1-pole prototype
1 / (s/w_c + 1) LP to LP
1 / (2/T_d * (1 - z^-1)/(1 + z^-1))/w_c + 1) Bilinear transform
"""
# apply pre-warping to the cutoff
T_d = 1 / fs
w_d = (2 * math.pi * fc) / fs
# sys.exit()
w_c = (2 / T_d) * torch.tan(w_d / 2)
a0 = 2 + (T_d * w_c)
a1 = (T_d * w_c) - 2
b0 = T_d * w_c
b1 = T_d * w_c
b = torch.stack([b0, b1], dim=0).view(-1)
a = torch.stack([a0, a1], dim=0).view(-1)
# normalize
b = b.type_as(fc) / a0
a = a.type_as(fc) / a0
return b, a
def biqaud(
gain_dB: torch.Tensor,
cutoff_freq: torch.Tensor,
q_factor: torch.Tensor,
sample_rate: float,
filter_type: str = "peaking",
):
# convert inputs to Tensors if needed
# gain_dB = torch.tensor([gain_dB])
# cutoff_freq = torch.tensor([cutoff_freq])
# q_factor = torch.tensor([q_factor])
A = 10 ** (gain_dB / 40.0)
w0 = 2 * math.pi * (cutoff_freq / sample_rate)
alpha = torch.sin(w0) / (2 * q_factor)
cos_w0 = torch.cos(w0)
sqrt_A = torch.sqrt(A)
if filter_type == "high_shelf":
b0 = A * ((A + 1) + (A - 1) * cos_w0 + 2 * sqrt_A * alpha)
b1 = -2 * A * ((A - 1) + (A + 1) * cos_w0)
b2 = A * ((A + 1) + (A - 1) * cos_w0 - 2 * sqrt_A * alpha)
a0 = (A + 1) - (A - 1) * cos_w0 + 2 * sqrt_A * alpha
a1 = 2 * ((A - 1) - (A + 1) * cos_w0)
a2 = (A + 1) - (A - 1) * cos_w0 - 2 * sqrt_A * alpha
elif filter_type == "low_shelf":
b0 = A * ((A + 1) - (A - 1) * cos_w0 + 2 * sqrt_A * alpha)
b1 = 2 * A * ((A - 1) - (A + 1) * cos_w0)
b2 = A * ((A + 1) - (A - 1) * cos_w0 - 2 * sqrt_A * alpha)
a0 = (A + 1) + (A - 1) * cos_w0 + 2 * sqrt_A * alpha
a1 = -2 * ((A - 1) + (A + 1) * cos_w0)
a2 = (A + 1) + (A - 1) * cos_w0 - 2 * sqrt_A * alpha
elif filter_type == "peaking":
b0 = 1 + alpha * A
b1 = -2 * cos_w0
b2 = 1 - alpha * A
a0 = 1 + (alpha / A)
a1 = -2 * cos_w0
a2 = 1 - (alpha / A)
else:
raise ValueError(f"Invalid filter_type: {filter_type}.")
b = torch.stack([b0, b1, b2], dim=0).view(-1)
a = torch.stack([a0, a1, a2], dim=0).view(-1)
# normalize
b = b.type_as(gain_dB) / a0
a = a.type_as(gain_dB) / a0
return b, a
def freqz(b, a, n_fft: int = 512):
B = torch.fft.rfft(b, n_fft)
A = torch.fft.rfft(a, n_fft)
H = B / A
return H
def freq_domain_filter(x, H, n_fft):
X = torch.fft.rfft(x, n_fft)
# move H to same device as input x
H = H.type_as(X)
Y = X * H
y = torch.fft.irfft(Y, n_fft)
return y
def approx_iir_filter(b, a, x):
"""Approimxate the application of an IIR filter.
Args:
b (Tensor): The numerator coefficients.
"""
# round up to nearest power of 2 for FFT
# n_fft = 2 ** math.ceil(math.log2(x.shape[-1] + x.shape[-1] - 1))
n_fft = 2 ** torch.ceil(torch.log2(torch.tensor(x.shape[-1] + x.shape[-1] - 1)))
n_fft = n_fft.int()
# move coefficients to same device as x
b = b.type_as(x).view(-1)
a = a.type_as(x).view(-1)
# compute complex response
H = freqz(b, a, n_fft=n_fft).view(-1)
# apply filter
y = freq_domain_filter(x, H, n_fft)
# crop
y = y[: x.shape[-1]]
return y
def approx_iir_filter_cascade(
b_s: List[torch.Tensor],
a_s: List[torch.Tensor],
x: torch.Tensor,
):
"""Apply a cascade of IIR filters.
Args:
b (list[Tensor]): List of tensors of shape (3)
a (list[Tensor]): List of tensors of (3)
x (torch.Tensor): 1d Tensor.
"""
if len(b_s) != len(a_s):
raise RuntimeError(
f"Must have same number of coefficients. Got b: {len(b_s)} and a: {len(a_s)}."
)
# round up to nearest power of 2 for FFT
# n_fft = 2 ** math.ceil(math.log2(x.shape[-1] + x.shape[-1] - 1))
n_fft = 2 ** torch.ceil(torch.log2(torch.tensor(x.shape[-1] + x.shape[-1] - 1)))
n_fft = n_fft.int()
# this could be done in parallel
b = torch.stack(b_s, dim=0).type_as(x)
a = torch.stack(a_s, dim=0).type_as(x)
H = freqz(b, a, n_fft=n_fft)
H = torch.prod(H, dim=0).view(-1)
# apply filter
y = freq_domain_filter(x, H, n_fft)
# crop
y = y[: x.shape[-1]]
return y
|