from transformers import AutoTokenizer, AutoModel import torch class SimpleEmbedder: def __init__(self): print("Loading tokenizer and model...") self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') self.model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') print("Loaded.") def embed_text(self, text): inputs = self.tokenizer(text, return_tensors='pt') outputs = self.model(**inputs) # Mean pooling embeddings = outputs.last_hidden_state.mean(dim=1) return embeddings embedder = SimpleEmbedder() print(embedder.embed_text("Hello world"))