Spaces:
Runtime error
Runtime error
Update Similarity.py
Browse files- Similarity.py +3 -47
Similarity.py
CHANGED
|
@@ -1,15 +1,8 @@
|
|
| 1 |
-
import
|
| 2 |
-
nltk.data.path.append("./nltk_data")
|
| 3 |
-
from sentence_transformers import SentenceTransformer, util
|
| 4 |
|
| 5 |
class Similarity:
|
| 6 |
def __init__(self):
|
| 7 |
self.model = None
|
| 8 |
-
# Download punkt tokenizer once, suppress if already present
|
| 9 |
-
try:
|
| 10 |
-
nltk.data.find('tokenizers/punkt')
|
| 11 |
-
except LookupError:
|
| 12 |
-
nltk.download('punkt', download_dir='./nltk_data')
|
| 13 |
|
| 14 |
def load_model(self):
|
| 15 |
if self.model is None:
|
|
@@ -17,43 +10,6 @@ class Similarity:
|
|
| 17 |
self.model = SentenceTransformer("lighteternal/stsb-xlm-r-greek-transfer")
|
| 18 |
print("Model loaded.")
|
| 19 |
|
| 20 |
-
def
|
| 21 |
-
sentences = nltk.sent_tokenize(text)
|
| 22 |
-
chunks = []
|
| 23 |
-
current_chunk = ""
|
| 24 |
-
for sentence in sentences:
|
| 25 |
-
if len(current_chunk) + len(sentence) <= chunk_size:
|
| 26 |
-
current_chunk += " " + sentence if current_chunk else sentence
|
| 27 |
-
else:
|
| 28 |
-
chunks.append(current_chunk)
|
| 29 |
-
# Start the next chunk with overlap
|
| 30 |
-
current_chunk = sentence[:overlap_size] + sentence[overlap_size:]
|
| 31 |
-
if current_chunk:
|
| 32 |
-
chunks.append(current_chunk)
|
| 33 |
-
return chunks
|
| 34 |
-
|
| 35 |
-
def get_sim_text(self, text, claim_embedding, min_threshold=0.4, chunk_size=1500):
|
| 36 |
self.load_model()
|
| 37 |
-
|
| 38 |
-
if not text:
|
| 39 |
-
return []
|
| 40 |
-
|
| 41 |
-
filtered_results = []
|
| 42 |
-
chunks = self.chunk_text(text, chunk_size)
|
| 43 |
-
if not chunks:
|
| 44 |
-
return []
|
| 45 |
-
|
| 46 |
-
chunk_embeddings = self.model.encode(
|
| 47 |
-
chunks, convert_to_tensor=True, show_progress_bar=False
|
| 48 |
-
)
|
| 49 |
-
chunk_similarities = util.cos_sim(claim_embedding, chunk_embeddings)
|
| 50 |
-
|
| 51 |
-
for chunk, similarity in zip(chunks, chunk_similarities[0]):
|
| 52 |
-
if similarity >= min_threshold:
|
| 53 |
-
print(chunk)
|
| 54 |
-
print()
|
| 55 |
-
print(similarity)
|
| 56 |
-
print("--------------------------------------------------")
|
| 57 |
-
filtered_results.append(chunk)
|
| 58 |
-
|
| 59 |
-
return filtered_results
|
|
|
|
| 1 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
| 2 |
|
| 3 |
class Similarity:
|
| 4 |
def __init__(self):
|
| 5 |
self.model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def load_model(self):
|
| 8 |
if self.model is None:
|
|
|
|
| 10 |
self.model = SentenceTransformer("lighteternal/stsb-xlm-r-greek-transfer")
|
| 11 |
print("Model loaded.")
|
| 12 |
|
| 13 |
+
def embed_text(self, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
self.load_model()
|
| 15 |
+
return self.model.encode(text, convert_to_tensor=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|