import gradio as gr from transformers import pipeline from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("kriton/greek-text-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("kriton/greek-text-summarization") generator = pipeline("summarization", model="kriton/greek-text-summarization") import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained("kriton/greek-text-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("kriton/greek-text-summarization") # Define the summary generation function def genarate_summary(article): inputs = tokenizer( 'summarize: ' + article, return_tensors="pt", max_length=1024, truncation=True, padding="max_length", ) outputs = model.generate( inputs["input_ids"], max_length=1024, min_length=130, length_penalty=3.0, num_beams=8, early_stopping=True, repetition_penalty=3.0, ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Set up Gradio Interface iface = gr.Interface( fn=genarate_summary, inputs="text", outputs="text", title="Greek Text Summarizer", description="Enter an article in Greek, and this tool will generate a summary." ) # Launch the Gradio Interface iface.launch()