Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from transformers import AutoTokenizer | |
from transformers import AutoModelForSeq2SeqLM | |
tokenizer = AutoTokenizer.from_pretrained("kriton/greek-text-summarization") | |
model = AutoModelForSeq2SeqLM.from_pretrained("kriton/greek-text-summarization") | |
generator = pipeline("summarization", model="kriton/greek-text-summarization") | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("kriton/greek-text-summarization") | |
model = AutoModelForSeq2SeqLM.from_pretrained("kriton/greek-text-summarization") | |
# Define the summary generation function | |
def genarate_summary(article): | |
inputs = tokenizer( | |
'summarize: ' + article, | |
return_tensors="pt", | |
max_length=1024, | |
truncation=True, | |
padding="max_length", | |
) | |
outputs = model.generate( | |
inputs["input_ids"], | |
max_length=512, | |
min_length=130, | |
length_penalty=3.0, | |
num_beams=8, | |
early_stopping=True, | |
repetition_penalty=3.0, | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Set up Gradio Interface | |
iface = gr.Interface( | |
fn=genarate_summary, | |
inputs="text", | |
outputs="text", | |
title="Greek Text Summarizer", | |
description="Enter an article in Greek, and this tool will generate a summary." | |
) | |
# Launch the Gradio Interface | |
iface.launch() | |