JohnBoot commited on
Commit
98ae291
·
verified ·
1 Parent(s): 84b50bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -22
app.py CHANGED
@@ -1,29 +1,61 @@
1
- !pip install transformers
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
 
4
- device = "cuda" # or "cpu"
5
- model_path = "ibm-granite/granite-3b-code-base" # pick anyone from above list
 
 
6
 
7
- tokenizer = AutoTokenizer.from_pretrained(model_path)
8
 
9
- # drop device_map if running on CPU
10
- model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
11
- model.eval()
 
 
 
 
 
 
12
 
13
- # change input text as desired
14
- input_text = "def generate():"
15
- # tokenize the text
16
- input_tokens = tokenizer(input_text, return_tensors="pt")
 
17
 
18
- # transfer tokenized inputs to the device
19
- for i in input_tokens:
20
- input_tokens[i] = input_tokens[i].to(device)
21
 
22
- # generate output tokens
23
- output = model.generate(**input_tokens)
24
- # decode output tokens into text
25
- output = tokenizer.batch_decode(output)
26
 
27
- # loop over the batch to print, in this example the batch size is 1
28
- for i in output:
29
- print(i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
 
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
 
26
+ messages.append({"role": "user", "content": message})
 
 
27
 
28
+ response = ""
 
 
 
29
 
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+ """
43
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
+ """
45
+ demo = gr.ChatInterface(
46
+ respond,
47
+ additional_inputs=[
48
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
+ gr.Slider(
52
+ minimum=0.1,
53
+ maximum=1.0,
54
+ value=0.95,
55
+ step=0.05,
56
+ label="Top-p (nucleus sampling)",
57
+ ),
58
+ ],
59
+ )
60
+ if __name__ == "__main__":
61
+ demo.launch()