Spaces:
Running
on
Zero
Running
on
Zero
Ryouko
commited on
title and theme
Browse files
app.py
CHANGED
|
@@ -1,422 +1,423 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import numpy as np
|
| 4 |
-
|
| 5 |
-
# DiffuseCraft
|
| 6 |
-
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
|
| 7 |
-
get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail,
|
| 8 |
-
get_t2i_model_info, get_all_lora_tupled_list, update_loras,
|
| 9 |
-
apply_lora_prompt, download_my_lora, search_civitai_lora,
|
| 10 |
-
select_civitai_lora, search_civitai_lora_json, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
|
| 11 |
-
preset_quality, preset_styles, process_style_prompt)
|
| 12 |
-
# Translator
|
| 13 |
-
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
|
| 14 |
-
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
|
| 15 |
-
get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt)
|
| 16 |
-
# Tagger
|
| 17 |
-
from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS
|
| 18 |
-
from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS,
|
| 19 |
-
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
| 20 |
-
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
|
| 21 |
-
remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy,
|
| 22 |
-
translate_prompt, select_random_character)
|
| 23 |
-
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
| 24 |
-
def description_ui():
|
| 25 |
-
gr.Markdown(
|
| 26 |
-
"""
|
| 27 |
-
## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner
|
| 28 |
-
(Image =>) Prompt => Upsampled longer prompt
|
| 29 |
-
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
|
| 30 |
-
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\
|
| 31 |
-
, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner)
|
| 32 |
-
"""
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 37 |
-
MAX_IMAGE_SIZE = 1216
|
| 38 |
-
|
| 39 |
-
css = """
|
| 40 |
-
#container { margin: 0 auto; !important; }
|
| 41 |
-
#col-container { margin: 0 auto; !important; }
|
| 42 |
-
#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
|
| 43 |
-
.lora { min-width: 480px; !important; }
|
| 44 |
-
#model-info { text-align: center; !important; }
|
| 45 |
-
"""
|
| 46 |
-
|
| 47 |
-
with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
["
|
| 178 |
-
["
|
| 179 |
-
["1girl"],
|
| 180 |
-
["
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
.success(
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
.
|
| 290 |
-
|
| 291 |
-
.
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
translate_input_prompt_button.click(translate_prompt, [
|
| 345 |
-
translate_input_prompt_button.click(translate_prompt, [
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
[
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
gr.
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
demo.
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# DiffuseCraft
|
| 6 |
+
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers,
|
| 7 |
+
get_vaes, enable_model_recom_prompt, enable_diffusers_model_detail,
|
| 8 |
+
get_t2i_model_info, get_all_lora_tupled_list, update_loras,
|
| 9 |
+
apply_lora_prompt, download_my_lora, search_civitai_lora,
|
| 10 |
+
select_civitai_lora, search_civitai_lora_json, extract_exif_data, esrgan_upscale, UPSCALER_KEYS,
|
| 11 |
+
preset_quality, preset_styles, process_style_prompt)
|
| 12 |
+
# Translator
|
| 13 |
+
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
|
| 14 |
+
get_llm_formats, get_dolphin_model_format, get_dolphin_models,
|
| 15 |
+
get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt)
|
| 16 |
+
# Tagger
|
| 17 |
+
from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS
|
| 18 |
+
from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS,
|
| 19 |
+
V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
| 20 |
+
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
|
| 21 |
+
remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy,
|
| 22 |
+
translate_prompt, select_random_character)
|
| 23 |
+
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
| 24 |
+
def description_ui():
|
| 25 |
+
gr.Markdown(
|
| 26 |
+
"""
|
| 27 |
+
## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner
|
| 28 |
+
(Image =>) Prompt => Upsampled longer prompt
|
| 29 |
+
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
|
| 30 |
+
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\
|
| 31 |
+
, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner)
|
| 32 |
+
"""
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 37 |
+
MAX_IMAGE_SIZE = 1216
|
| 38 |
+
|
| 39 |
+
css = """
|
| 40 |
+
#container { margin: 0 auto; !important; }
|
| 41 |
+
#col-container { margin: 0 auto; !important; }
|
| 42 |
+
#result { max-width: 520px; max-height: 520px; margin: 0px auto; !important; }
|
| 43 |
+
.lora { min-width: 480px; !important; }
|
| 44 |
+
#model-info { text-align: center; !important; }
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600), theme="hev832/Applio") as demo:
|
| 48 |
+
gr.Markdown("# Votepurchase Multiple Model")
|
| 49 |
+
with gr.Tab("Image Generator"):
|
| 50 |
+
with gr.Column(elem_id="col-container"):
|
| 51 |
+
with gr.Row():
|
| 52 |
+
prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False)
|
| 53 |
+
|
| 54 |
+
with gr.Row():
|
| 55 |
+
run_button = gr.Button("Run", variant="primary", scale=5)
|
| 56 |
+
run_translate_button = gr.Button("Run with LLM Enhance", variant="secondary", scale=3)
|
| 57 |
+
auto_trans = gr.Checkbox(label="Auto translate to English", value=False, scale=2)
|
| 58 |
+
|
| 59 |
+
result = gr.Image(label="Result", elem_id="result", format="png", show_label=False, interactive=False,
|
| 60 |
+
show_download_button=True, show_share_button=False, container=True)
|
| 61 |
+
|
| 62 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 63 |
+
with gr.Row():
|
| 64 |
+
negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt",
|
| 65 |
+
value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly")
|
| 66 |
+
|
| 67 |
+
with gr.Row():
|
| 68 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 69 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 70 |
+
|
| 71 |
+
with gr.Row():
|
| 72 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
|
| 73 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
|
| 74 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
|
| 75 |
+
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
|
| 76 |
+
|
| 77 |
+
with gr.Row():
|
| 78 |
+
with gr.Column(scale=4):
|
| 79 |
+
model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
|
| 80 |
+
choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
|
| 81 |
+
allow_custom_value=True, interactive=True, min_width=320)
|
| 82 |
+
model_info = gr.Markdown(elem_id="model-info")
|
| 83 |
+
with gr.Column(scale=1):
|
| 84 |
+
model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
|
| 85 |
+
|
| 86 |
+
with gr.Row():
|
| 87 |
+
sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler a")
|
| 88 |
+
vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
|
| 89 |
+
|
| 90 |
+
with gr.Accordion("LoRA", open=True, visible=True):
|
| 91 |
+
def lora_dropdown(label):
|
| 92 |
+
return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320)
|
| 93 |
+
|
| 94 |
+
def lora_scale_slider(label):
|
| 95 |
+
return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label)
|
| 96 |
+
|
| 97 |
+
def lora_textbox():
|
| 98 |
+
return gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
|
| 99 |
+
|
| 100 |
+
with gr.Row():
|
| 101 |
+
with gr.Column():
|
| 102 |
+
with gr.Row():
|
| 103 |
+
lora1 = lora_dropdown("LoRA 1")
|
| 104 |
+
lora1_wt = lora_scale_slider("LoRA 1: weight")
|
| 105 |
+
with gr.Row():
|
| 106 |
+
lora1_info = lora_textbox()
|
| 107 |
+
lora1_copy = gr.Button(value="Copy example to prompt", visible=False)
|
| 108 |
+
lora1_md = gr.Markdown(value="", visible=False)
|
| 109 |
+
with gr.Column():
|
| 110 |
+
with gr.Row():
|
| 111 |
+
lora2 = lora_dropdown("LoRA 2")
|
| 112 |
+
lora2_wt = lora_scale_slider("LoRA 2: weight")
|
| 113 |
+
with gr.Row():
|
| 114 |
+
lora2_info = lora_textbox()
|
| 115 |
+
lora2_copy = gr.Button(value="Copy example to prompt", visible=False)
|
| 116 |
+
lora2_md = gr.Markdown(value="", visible=False)
|
| 117 |
+
with gr.Column():
|
| 118 |
+
with gr.Row():
|
| 119 |
+
lora3 = lora_dropdown("LoRA 3")
|
| 120 |
+
lora3_wt = lora_scale_slider("LoRA 3: weight")
|
| 121 |
+
with gr.Row():
|
| 122 |
+
lora3_info = lora_textbox()
|
| 123 |
+
lora3_copy = gr.Button(value="Copy example to prompt", visible=False)
|
| 124 |
+
lora3_md = gr.Markdown(value="", visible=False)
|
| 125 |
+
with gr.Column():
|
| 126 |
+
with gr.Row():
|
| 127 |
+
lora4 = lora_dropdown("LoRA 4")
|
| 128 |
+
lora4_wt = lora_scale_slider("LoRA 4: weight")
|
| 129 |
+
with gr.Row():
|
| 130 |
+
lora4_info = lora_textbox()
|
| 131 |
+
lora4_copy = gr.Button(value="Copy example to prompt", visible=False)
|
| 132 |
+
lora4_md = gr.Markdown(value="", visible=False)
|
| 133 |
+
with gr.Column():
|
| 134 |
+
with gr.Row():
|
| 135 |
+
lora5 = lora_dropdown("LoRA 5")
|
| 136 |
+
lora5_wt = lora_scale_slider("LoRA 5: weight")
|
| 137 |
+
with gr.Row():
|
| 138 |
+
lora5_info = lora_textbox()
|
| 139 |
+
lora5_copy = gr.Button(value="Copy example to prompt", visible=False)
|
| 140 |
+
lora5_md = gr.Markdown(value="", visible=False)
|
| 141 |
+
with gr.Accordion("From URL", open=True, visible=True):
|
| 142 |
+
with gr.Row():
|
| 143 |
+
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"], value=["Pony", "SDXL 1.0"])
|
| 144 |
+
lora_search_civitai_sort = gr.Radio(label="Sort", choices=["Highest Rated", "Most Downloaded", "Newest"], value="Highest Rated")
|
| 145 |
+
lora_search_civitai_period = gr.Radio(label="Period", choices=["AllTime", "Year", "Month", "Week", "Day"], value="AllTime")
|
| 146 |
+
with gr.Row():
|
| 147 |
+
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
|
| 148 |
+
lora_search_civitai_tag = gr.Textbox(label="Tag", lines=1)
|
| 149 |
+
lora_search_civitai_submit = gr.Button("Search on Civitai")
|
| 150 |
+
with gr.Row():
|
| 151 |
+
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
|
| 152 |
+
lora_search_civitai_json = gr.JSON(value={}, visible=False)
|
| 153 |
+
lora_search_civitai_desc = gr.Markdown(value="", visible=False)
|
| 154 |
+
lora_download_url = gr.Textbox(label="LoRA URL", placeholder="https://civitai.com/api/download/models/28907", lines=1)
|
| 155 |
+
lora_download = gr.Button("Get and set LoRA and apply to prompt")
|
| 156 |
+
|
| 157 |
+
with gr.Row():
|
| 158 |
+
quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3)
|
| 159 |
+
style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3)
|
| 160 |
+
recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1)
|
| 161 |
+
|
| 162 |
+
with gr.Accordion("Translation Settings", open=False):
|
| 163 |
+
chatbot = gr.Chatbot(render_markdown=False, visible=False) # component for auto-translation
|
| 164 |
+
chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
|
| 165 |
+
chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
|
| 166 |
+
chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
|
| 167 |
+
with gr.Row():
|
| 168 |
+
chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
| 169 |
+
chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
| 170 |
+
chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 171 |
+
chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
|
| 172 |
+
chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
| 173 |
+
chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
|
| 174 |
+
|
| 175 |
+
examples = gr.Examples(
|
| 176 |
+
examples = [
|
| 177 |
+
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
|
| 178 |
+
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
|
| 179 |
+
["kafuu chino, 1girl, solo"],
|
| 180 |
+
["1girl"],
|
| 181 |
+
["beautiful sunset"],
|
| 182 |
+
],
|
| 183 |
+
inputs=[prompt],
|
| 184 |
+
cache_examples=False,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
gr.on( #lambda x: None, inputs=None, outputs=result).then(
|
| 188 |
+
triggers=[run_button.click, prompt.submit],
|
| 189 |
+
fn=infer,
|
| 190 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
| 191 |
+
guidance_scale, num_inference_steps, model_name,
|
| 192 |
+
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
| 193 |
+
sampler, vae_model, auto_trans],
|
| 194 |
+
outputs=[result],
|
| 195 |
+
queue=True,
|
| 196 |
+
show_progress="full",
|
| 197 |
+
show_api=True,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
gr.on( #lambda x: None, inputs=None, outputs=result).then(
|
| 201 |
+
triggers=[run_translate_button.click],
|
| 202 |
+
fn=_infer, # dummy fn for api
|
| 203 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
| 204 |
+
guidance_scale, num_inference_steps, model_name,
|
| 205 |
+
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
| 206 |
+
sampler, vae_model, auto_trans],
|
| 207 |
+
outputs=[result],
|
| 208 |
+
queue=False,
|
| 209 |
+
show_api=True,
|
| 210 |
+
api_name="infer_translate",
|
| 211 |
+
).success(
|
| 212 |
+
fn=dolphin_respond_auto,
|
| 213 |
+
inputs=[prompt, chatbot],
|
| 214 |
+
outputs=[chatbot],
|
| 215 |
+
queue=True,
|
| 216 |
+
show_progress="full",
|
| 217 |
+
show_api=False,
|
| 218 |
+
).success(
|
| 219 |
+
fn=dolphin_parse_simple,
|
| 220 |
+
inputs=[prompt, chatbot],
|
| 221 |
+
outputs=[prompt],
|
| 222 |
+
queue=False,
|
| 223 |
+
show_api=False,
|
| 224 |
+
).success(
|
| 225 |
+
fn=infer,
|
| 226 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
| 227 |
+
guidance_scale, num_inference_steps, model_name,
|
| 228 |
+
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
| 229 |
+
sampler, vae_model],
|
| 230 |
+
outputs=[result],
|
| 231 |
+
queue=True,
|
| 232 |
+
show_progress="full",
|
| 233 |
+
show_api=False,
|
| 234 |
+
).success(lambda: None, None, chatbot, queue=False, show_api=False)\
|
| 235 |
+
.success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api
|
| 236 |
+
|
| 237 |
+
gr.on(
|
| 238 |
+
triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change,
|
| 239 |
+
lora4.change, lora4_wt.change, lora5.change, lora5_wt.change],
|
| 240 |
+
fn=update_loras,
|
| 241 |
+
inputs=[prompt, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt],
|
| 242 |
+
outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md,
|
| 243 |
+
lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md,
|
| 244 |
+
lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md],
|
| 245 |
+
queue=False,
|
| 246 |
+
trigger_mode="once",
|
| 247 |
+
show_api=False,
|
| 248 |
+
)
|
| 249 |
+
lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False)
|
| 250 |
+
lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False)
|
| 251 |
+
lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False)
|
| 252 |
+
lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False)
|
| 253 |
+
lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
|
| 254 |
+
|
| 255 |
+
gr.on(
|
| 256 |
+
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit, lora_search_civitai_tag.submit],
|
| 257 |
+
fn=search_civitai_lora,
|
| 258 |
+
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag],
|
| 259 |
+
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
|
| 260 |
+
scroll_to_output=True,
|
| 261 |
+
queue=True,
|
| 262 |
+
show_api=False,
|
| 263 |
+
)
|
| 264 |
+
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
|
| 265 |
+
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
| 266 |
+
gr.on(
|
| 267 |
+
triggers=[lora_download.click, lora_download_url.submit],
|
| 268 |
+
fn=download_my_lora,
|
| 269 |
+
inputs=[lora_download_url,lora1, lora2, lora3, lora4, lora5],
|
| 270 |
+
outputs=[lora1, lora2, lora3, lora4, lora5],
|
| 271 |
+
scroll_to_output=True,
|
| 272 |
+
queue=True,
|
| 273 |
+
show_api=False,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
|
| 277 |
+
gr.on(
|
| 278 |
+
triggers=[quality_selector.change, style_selector.change],
|
| 279 |
+
fn=process_style_prompt,
|
| 280 |
+
inputs=[prompt, negative_prompt, style_selector, quality_selector],
|
| 281 |
+
outputs=[prompt, negative_prompt],
|
| 282 |
+
queue=False,
|
| 283 |
+
trigger_mode="once",
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
model_detail.change(enable_diffusers_model_detail, [model_detail, model_name], [model_detail, model_name], queue=False, show_api=False)
|
| 287 |
+
model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)
|
| 288 |
+
|
| 289 |
+
chat_model.change(select_dolphin_model, [chat_model], [chat_model, chat_format, chat_model_info], queue=True, show_progress="full", show_api=False)\
|
| 290 |
+
.success(lambda: None, None, chatbot, queue=False, show_api=False)
|
| 291 |
+
chat_format.change(select_dolphin_format, [chat_format], [chat_format], queue=False, show_api=False)\
|
| 292 |
+
.success(lambda: None, None, chatbot, queue=False, show_api=False)
|
| 293 |
+
|
| 294 |
+
# Tagger
|
| 295 |
+
with gr.Tab("Tags Transformer with Tagger"):
|
| 296 |
+
with gr.Column():
|
| 297 |
+
with gr.Group():
|
| 298 |
+
input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
|
| 299 |
+
with gr.Accordion(label="Advanced options", open=False):
|
| 300 |
+
general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
| 301 |
+
character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
| 302 |
+
input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
| 303 |
+
recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
| 304 |
+
image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
| 305 |
+
keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
| 306 |
+
generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
|
| 307 |
+
with gr.Group():
|
| 308 |
+
with gr.Row():
|
| 309 |
+
input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
|
| 310 |
+
input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
|
| 311 |
+
random_character = gr.Button(value="Random character 🎲", size="sm")
|
| 312 |
+
input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
|
| 313 |
+
input_tags_to_copy = gr.Textbox(value="", visible=False)
|
| 314 |
+
with gr.Row():
|
| 315 |
+
copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
|
| 316 |
+
copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
|
| 317 |
+
translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
|
| 318 |
+
tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
|
| 319 |
+
input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
|
| 320 |
+
with gr.Accordion(label="Advanced options", open=False):
|
| 321 |
+
input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
|
| 322 |
+
input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
|
| 323 |
+
input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
| 324 |
+
input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
| 325 |
+
model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
| 326 |
+
dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
|
| 327 |
+
recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
|
| 328 |
+
recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
|
| 329 |
+
generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
|
| 330 |
+
with gr.Row():
|
| 331 |
+
with gr.Group():
|
| 332 |
+
output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
|
| 333 |
+
with gr.Row():
|
| 334 |
+
copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
|
| 335 |
+
copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
|
| 336 |
+
with gr.Group():
|
| 337 |
+
output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
|
| 338 |
+
with gr.Row():
|
| 339 |
+
copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
|
| 340 |
+
copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
|
| 341 |
+
|
| 342 |
+
random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False)
|
| 343 |
+
|
| 344 |
+
translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False)
|
| 345 |
+
translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False)
|
| 346 |
+
translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False)
|
| 347 |
+
|
| 348 |
+
generate_from_image_btn.click(
|
| 349 |
+
lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False,
|
| 350 |
+
).success(
|
| 351 |
+
predict_tags_wd,
|
| 352 |
+
[input_image, input_general, image_algorithms, general_threshold, character_threshold],
|
| 353 |
+
[input_copyright, input_character, input_general, copy_input_btn],
|
| 354 |
+
show_api=False,
|
| 355 |
+
).success(
|
| 356 |
+
predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False,
|
| 357 |
+
).success(
|
| 358 |
+
remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False,
|
| 359 |
+
).success(
|
| 360 |
+
convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False,
|
| 361 |
+
).success(
|
| 362 |
+
insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False,
|
| 363 |
+
).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False)
|
| 364 |
+
copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\
|
| 365 |
+
.success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False)
|
| 366 |
+
copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\
|
| 367 |
+
.success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False)
|
| 368 |
+
|
| 369 |
+
generate_btn.click(
|
| 370 |
+
v2_upsampling_prompt,
|
| 371 |
+
[model_name, input_copyright, input_character, input_general,
|
| 372 |
+
input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
|
| 373 |
+
[output_text],
|
| 374 |
+
show_api=False,
|
| 375 |
+
).success(
|
| 376 |
+
convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False,
|
| 377 |
+
).success(
|
| 378 |
+
insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False,
|
| 379 |
+
).success(
|
| 380 |
+
insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False,
|
| 381 |
+
).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
|
| 382 |
+
None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False)
|
| 383 |
+
copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False)
|
| 384 |
+
copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False)
|
| 385 |
+
copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False)
|
| 386 |
+
copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False)
|
| 387 |
+
|
| 388 |
+
with gr.Tab("PNG Info"):
|
| 389 |
+
with gr.Row():
|
| 390 |
+
with gr.Column():
|
| 391 |
+
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
|
| 392 |
+
|
| 393 |
+
with gr.Column():
|
| 394 |
+
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
|
| 395 |
+
|
| 396 |
+
image_metadata.change(
|
| 397 |
+
fn=extract_exif_data,
|
| 398 |
+
inputs=[image_metadata],
|
| 399 |
+
outputs=[result_metadata],
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
with gr.Tab("Upscaler"):
|
| 403 |
+
with gr.Row():
|
| 404 |
+
with gr.Column():
|
| 405 |
+
image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
|
| 406 |
+
upscaler_tab = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS[9:], value=UPSCALER_KEYS[11])
|
| 407 |
+
upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
|
| 408 |
+
generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")
|
| 409 |
+
|
| 410 |
+
with gr.Column():
|
| 411 |
+
result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")
|
| 412 |
+
|
| 413 |
+
generate_button_up_tab.click(
|
| 414 |
+
fn=esrgan_upscale,
|
| 415 |
+
inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
|
| 416 |
+
outputs=[result_up_tab],
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
gr.LoginButton()
|
| 420 |
+
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")
|
| 421 |
+
|
| 422 |
+
demo.queue()
|
| 423 |
+
demo.launch()
|