|
import gradio as gr
|
|
import numpy as np
|
|
import PIL.Image
|
|
from PIL import Image
|
|
import random
|
|
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL
|
|
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
|
|
import cv2
|
|
import torch
|
|
import spaces
|
|
from hf import upload_image
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
"votepurchase/AnythingXL_xl",
|
|
torch_dtype=torch.float16,
|
|
)
|
|
|
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(device)
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max
|
|
MAX_IMAGE_SIZE = 1216
|
|
|
|
|
|
@spaces.GPU
|
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, filename=""):
|
|
|
|
if randomize_seed:
|
|
seed = random.randint(0, MAX_SEED)
|
|
|
|
generator = torch.Generator().manual_seed(seed)
|
|
|
|
output_image = pipe(
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=num_inference_steps,
|
|
width=width,
|
|
height=height,
|
|
generator=generator
|
|
).images[0]
|
|
|
|
if filename: upload_image(output_image, filename)
|
|
|
|
return output_image
|
|
|
|
|
|
css = """
|
|
#col-container {
|
|
margin: 0 auto;
|
|
max-width: 520px;
|
|
}
|
|
"""
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
|
|
with gr.Column(elem_id="col-container"):
|
|
|
|
with gr.Row():
|
|
prompt = gr.Text(
|
|
label="Prompt",
|
|
show_label=False,
|
|
max_lines=1,
|
|
placeholder="Enter your prompt",
|
|
container=False,
|
|
)
|
|
|
|
run_button = gr.Button("Run", scale=0)
|
|
|
|
result = gr.Image(label="Result", show_label=False)
|
|
|
|
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
negative_prompt = gr.Text(
|
|
label="Negative prompt",
|
|
max_lines=1,
|
|
placeholder="Enter a negative prompt",
|
|
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn"
|
|
)
|
|
|
|
seed = gr.Slider(
|
|
label="Seed",
|
|
minimum=0,
|
|
maximum=MAX_SEED,
|
|
step=1,
|
|
value=0,
|
|
)
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
with gr.Row():
|
|
width = gr.Slider(
|
|
label="Width",
|
|
minimum=256,
|
|
maximum=MAX_IMAGE_SIZE,
|
|
step=32,
|
|
value=1024,
|
|
)
|
|
|
|
height = gr.Slider(
|
|
label="Height",
|
|
minimum=256,
|
|
maximum=MAX_IMAGE_SIZE,
|
|
step=32,
|
|
value=1024,
|
|
)
|
|
|
|
with gr.Row():
|
|
guidance_scale = gr.Slider(
|
|
label="Guidance scale",
|
|
minimum=0.0,
|
|
maximum=20.0,
|
|
step=0.1,
|
|
value=7,
|
|
)
|
|
|
|
num_inference_steps = gr.Slider(
|
|
label="Number of inference steps",
|
|
minimum=1,
|
|
maximum=28,
|
|
step=1,
|
|
value=28,
|
|
)
|
|
|
|
filename = gr.Textbox(value="", visible=False)
|
|
|
|
run_button.click(
|
|
fn=infer,
|
|
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, filename],
|
|
outputs=[result]
|
|
)
|
|
|
|
demo.queue().launch() |