Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,107 Bytes
80e6c51 c7e5216 80e6c51 c7e5216 1a22f37 80e6c51 f71b71d 80e6c51 e2dcb7f f71b71d 80e6c51 f71b71d 80e6c51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import spaces
def load_pipeline():
from diffusers import StableDiffusionXLPipeline
import torch
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_pretrained(
"John6666/rae-diffusion-xl-v2-sdxl-spo-pcm",
torch_dtype=torch.float16,
)
pipe.to(device)
return pipe
def save_image(image, metadata, output_dir):
import os
import uuid
import json
from PIL import PngImagePlugin
filename = str(uuid.uuid4()) + ".png"
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
metadata_str = json.dumps(metadata)
info = PngImagePlugin.PngInfo()
info.add_text("metadata", metadata_str)
image.save(filepath, "PNG", pnginfo=info)
return filepath
pipe = load_pipeline()
@spaces.GPU
def generate_image(prompt, neg_prompt):
metadata = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"resolution": f"{1024} x {1024}",
"guidance_scale": 7.5,
"num_inference_steps": 24,
"sampler": "Euler",
}
try:
images = pipe(
prompt=prompt + ", masterpiece, best quality, very aesthetic, absurdres",
negative_prompt=neg_prompt + ", bad hands, bad foots, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract], photo, deformed, disfigured, low contrast, photo, deformed, disfigured, low contrast",
width=1024,
height=1024,
guidance_scale=7.5,
num_inference_steps=24,
output_type="pil",
clip_skip=1,
).images
if images:
image_paths = [
save_image(image, metadata, "./outputs")
for image in images
]
return image_paths
except Exception as e:
return []
|