|
|
|
|
|
|
|
|
|
import argparse
|
|
import os.path as osp
|
|
import re
|
|
|
|
import torch
|
|
from safetensors.torch import load_file, save_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unet_conversion_map = [
|
|
|
|
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
|
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
|
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
|
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
|
("input_blocks.0.0.weight", "conv_in.weight"),
|
|
("input_blocks.0.0.bias", "conv_in.bias"),
|
|
("out.0.weight", "conv_norm_out.weight"),
|
|
("out.0.bias", "conv_norm_out.bias"),
|
|
("out.2.weight", "conv_out.weight"),
|
|
("out.2.bias", "conv_out.bias"),
|
|
|
|
("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
|
|
("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
|
|
("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
|
|
("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
|
|
]
|
|
|
|
unet_conversion_map_resnet = [
|
|
|
|
("in_layers.0", "norm1"),
|
|
("in_layers.2", "conv1"),
|
|
("out_layers.0", "norm2"),
|
|
("out_layers.3", "conv2"),
|
|
("emb_layers.1", "time_emb_proj"),
|
|
("skip_connection", "conv_shortcut"),
|
|
]
|
|
|
|
unet_conversion_map_layer = []
|
|
|
|
|
|
for i in range(3):
|
|
|
|
|
|
for j in range(2):
|
|
|
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
|
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
|
|
|
if i > 0:
|
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
|
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
|
|
|
for j in range(4):
|
|
|
|
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
|
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
|
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
|
|
|
if i < 2:
|
|
|
|
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
|
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
|
|
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
|
|
|
if i < 3:
|
|
|
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
|
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
|
|
|
|
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
|
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
|
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
|
unet_conversion_map_layer.append(("output_blocks.2.2.conv.", "output_blocks.2.1.conv."))
|
|
|
|
hf_mid_atn_prefix = "mid_block.attentions.0."
|
|
sd_mid_atn_prefix = "middle_block.1."
|
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
|
for j in range(2):
|
|
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
|
sd_mid_res_prefix = f"middle_block.{2*j}."
|
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
|
|
|
|
|
def convert_unet_state_dict(unet_state_dict):
|
|
|
|
|
|
|
|
mapping = {k: k for k in unet_state_dict.keys()}
|
|
for sd_name, hf_name in unet_conversion_map:
|
|
mapping[hf_name] = sd_name
|
|
for k, v in mapping.items():
|
|
if "resnets" in k:
|
|
for sd_part, hf_part in unet_conversion_map_resnet:
|
|
v = v.replace(hf_part, sd_part)
|
|
mapping[k] = v
|
|
for k, v in mapping.items():
|
|
for sd_part, hf_part in unet_conversion_map_layer:
|
|
v = v.replace(hf_part, sd_part)
|
|
mapping[k] = v
|
|
new_state_dict = {sd_name: unet_state_dict[hf_name] for hf_name, sd_name in mapping.items()}
|
|
return new_state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vae_conversion_map = [
|
|
|
|
("nin_shortcut", "conv_shortcut"),
|
|
("norm_out", "conv_norm_out"),
|
|
("mid.attn_1.", "mid_block.attentions.0."),
|
|
]
|
|
|
|
for i in range(4):
|
|
|
|
for j in range(2):
|
|
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
|
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
|
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
|
|
|
if i < 3:
|
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
|
sd_downsample_prefix = f"down.{i}.downsample."
|
|
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
|
|
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
|
sd_upsample_prefix = f"up.{3-i}.upsample."
|
|
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
|
|
|
|
|
|
|
for j in range(3):
|
|
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
|
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
|
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
|
|
|
|
|
for i in range(2):
|
|
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
|
sd_mid_res_prefix = f"mid.block_{i+1}."
|
|
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
|
|
|
|
|
vae_conversion_map_attn = [
|
|
|
|
("norm.", "group_norm."),
|
|
|
|
("q.", "to_q."),
|
|
("k.", "to_k."),
|
|
("v.", "to_v."),
|
|
("proj_out.", "to_out.0."),
|
|
]
|
|
|
|
|
|
def reshape_weight_for_sd(w):
|
|
|
|
if not w.ndim == 1:
|
|
return w.reshape(*w.shape, 1, 1)
|
|
else:
|
|
return w
|
|
|
|
|
|
def convert_vae_state_dict(vae_state_dict):
|
|
mapping = {k: k for k in vae_state_dict.keys()}
|
|
for k, v in mapping.items():
|
|
for sd_part, hf_part in vae_conversion_map:
|
|
v = v.replace(hf_part, sd_part)
|
|
mapping[k] = v
|
|
for k, v in mapping.items():
|
|
if "attentions" in k:
|
|
for sd_part, hf_part in vae_conversion_map_attn:
|
|
v = v.replace(hf_part, sd_part)
|
|
mapping[k] = v
|
|
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
|
weights_to_convert = ["q", "k", "v", "proj_out"]
|
|
for k, v in new_state_dict.items():
|
|
for weight_name in weights_to_convert:
|
|
if f"mid.attn_1.{weight_name}.weight" in k:
|
|
print(f"Reshaping {k} for SD format")
|
|
new_state_dict[k] = reshape_weight_for_sd(v)
|
|
return new_state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
textenc_conversion_lst = [
|
|
|
|
("transformer.resblocks.", "text_model.encoder.layers."),
|
|
("ln_1", "layer_norm1"),
|
|
("ln_2", "layer_norm2"),
|
|
(".c_fc.", ".fc1."),
|
|
(".c_proj.", ".fc2."),
|
|
(".attn", ".self_attn"),
|
|
("ln_final.", "text_model.final_layer_norm."),
|
|
("token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
|
|
("positional_embedding", "text_model.embeddings.position_embedding.weight"),
|
|
]
|
|
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
|
textenc_pattern = re.compile("|".join(protected.keys()))
|
|
|
|
|
|
code2idx = {"q": 0, "k": 1, "v": 2}
|
|
|
|
|
|
def convert_openclip_text_enc_state_dict(text_enc_dict):
|
|
new_state_dict = {}
|
|
capture_qkv_weight = {}
|
|
capture_qkv_bias = {}
|
|
for k, v in text_enc_dict.items():
|
|
if (
|
|
k.endswith(".self_attn.q_proj.weight")
|
|
or k.endswith(".self_attn.k_proj.weight")
|
|
or k.endswith(".self_attn.v_proj.weight")
|
|
):
|
|
k_pre = k[: -len(".q_proj.weight")]
|
|
k_code = k[-len("q_proj.weight")]
|
|
if k_pre not in capture_qkv_weight:
|
|
capture_qkv_weight[k_pre] = [None, None, None]
|
|
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
|
continue
|
|
|
|
if (
|
|
k.endswith(".self_attn.q_proj.bias")
|
|
or k.endswith(".self_attn.k_proj.bias")
|
|
or k.endswith(".self_attn.v_proj.bias")
|
|
):
|
|
k_pre = k[: -len(".q_proj.bias")]
|
|
k_code = k[-len("q_proj.bias")]
|
|
if k_pre not in capture_qkv_bias:
|
|
capture_qkv_bias[k_pre] = [None, None, None]
|
|
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
|
continue
|
|
|
|
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
|
new_state_dict[relabelled_key] = v
|
|
|
|
for k_pre, tensors in capture_qkv_weight.items():
|
|
if None in tensors:
|
|
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
|
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
|
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
|
|
|
for k_pre, tensors in capture_qkv_bias.items():
|
|
if None in tensors:
|
|
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
|
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
|
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
|
|
|
return new_state_dict
|
|
|
|
|
|
def convert_openai_text_enc_state_dict(text_enc_dict):
|
|
return text_enc_dict
|
|
|
|
|
|
def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True, use_safetensors = True):
|
|
|
|
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
|
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
|
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
|
text_enc_2_path = osp.join(model_path, "text_encoder_2", "model.safetensors")
|
|
|
|
|
|
if osp.exists(unet_path):
|
|
unet_state_dict = load_file(unet_path, device="cpu")
|
|
else:
|
|
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
|
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
|
|
|
if osp.exists(vae_path):
|
|
vae_state_dict = load_file(vae_path, device="cpu")
|
|
else:
|
|
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
|
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
|
|
|
if osp.exists(text_enc_path):
|
|
text_enc_dict = load_file(text_enc_path, device="cpu")
|
|
else:
|
|
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
|
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
|
|
|
if osp.exists(text_enc_2_path):
|
|
text_enc_2_dict = load_file(text_enc_2_path, device="cpu")
|
|
else:
|
|
text_enc_2_path = osp.join(model_path, "text_encoder_2", "pytorch_model.bin")
|
|
text_enc_2_dict = torch.load(text_enc_2_path, map_location="cpu")
|
|
|
|
|
|
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
|
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
|
|
|
|
|
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
|
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
|
|
|
|
|
text_enc_dict = convert_openai_text_enc_state_dict(text_enc_dict)
|
|
text_enc_dict = {"conditioner.embedders.0.transformer." + k: v for k, v in text_enc_dict.items()}
|
|
|
|
|
|
text_enc_2_dict = convert_openclip_text_enc_state_dict(text_enc_2_dict)
|
|
text_enc_2_dict = {"conditioner.embedders.1.model." + k: v for k, v in text_enc_2_dict.items()}
|
|
|
|
|
|
text_enc_2_dict["conditioner.embedders.1.model.text_projection"] = text_enc_2_dict.pop(
|
|
"conditioner.embedders.1.model.text_projection.weight"
|
|
).T.contiguous()
|
|
|
|
|
|
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict, **text_enc_2_dict}
|
|
|
|
if half:
|
|
state_dict = {k: v.half() for k, v in state_dict.items()}
|
|
|
|
if use_safetensors:
|
|
save_file(state_dict, checkpoint_path)
|
|
else:
|
|
state_dict = {"state_dict": state_dict}
|
|
torch.save(state_dict, checkpoint_path)
|
|
|
|
|
|
def download_repo(repo_id, dir_path):
|
|
from huggingface_hub import snapshot_download
|
|
try:
|
|
snapshot_download(repo_id=repo_id, local_dir=dir_path)
|
|
except Exception as e:
|
|
print(f"Error: Failed to download {repo_id}. ")
|
|
return
|
|
|
|
|
|
def convert_repo_to_safetensors(repo_id):
|
|
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
|
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
|
download_repo(repo_id, download_dir)
|
|
convert_diffusers_to_safetensors(download_dir, output_filename)
|
|
return output_filename
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
|
|
|
args = parser.parse_args()
|
|
assert args.repo_id is not None, "Must provide a Repo ID!"
|
|
|
|
convert_repo_to_safetensors(args.repo_id)
|
|
|
|
|
|
|
|
|