Spaces:
Runtime error
Runtime error
| from typing import * | |
| import numpy as np | |
| import torch | |
| import utils3d | |
| import nvdiffrast.torch as dr | |
| from tqdm import tqdm | |
| import trimesh | |
| import trimesh.visual | |
| import xatlas | |
| import cv2 | |
| from PIL import Image | |
| import fast_simplification | |
| def parametrize_mesh(vertices: np.array, faces: np.array): | |
| """ | |
| Parametrize a mesh to a texture space, using xatlas. | |
| Args: | |
| vertices (np.array): Vertices of the mesh. Shape (V, 3). | |
| faces (np.array): Faces of the mesh. Shape (F, 3). | |
| """ | |
| vmapping, indices, uvs = xatlas.parametrize(vertices, faces) | |
| vertices = vertices[vmapping] | |
| faces = indices | |
| return vertices, faces, uvs | |
| def bake_texture( | |
| vertices: np.array, | |
| faces: np.array, | |
| uvs: np.array, | |
| observations: List[np.array], | |
| masks: List[np.array], | |
| extrinsics: List[np.array], | |
| intrinsics: List[np.array], | |
| texture_size: int = 2048, | |
| near: float = 0.1, | |
| far: float = 10.0, | |
| mode: Literal['fast', 'opt'] = 'opt', | |
| lambda_tv: float = 1e-2, | |
| verbose: bool = False, | |
| ): | |
| """ | |
| Bake texture to a mesh from multiple observations. | |
| Args: | |
| vertices (np.array): Vertices of the mesh. Shape (V, 3). | |
| faces (np.array): Faces of the mesh. Shape (F, 3). | |
| uvs (np.array): UV coordinates of the mesh. Shape (V, 2). | |
| observations (List[np.array]): List of observations. Each observation is a 2D image. Shape (H, W, 3). | |
| masks (List[np.array]): List of masks. Each mask is a 2D image. Shape (H, W). | |
| extrinsics (List[np.array]): List of extrinsics. Shape (4, 4). | |
| intrinsics (List[np.array]): List of intrinsics. Shape (3, 3). | |
| texture_size (int): Size of the texture. | |
| near (float): Near plane of the camera. | |
| far (float): Far plane of the camera. | |
| mode (Literal['fast', 'opt']): Mode of texture baking. | |
| lambda_tv (float): Weight of total variation loss in optimization. | |
| verbose (bool): Whether to print progress. | |
| """ | |
| vertices = torch.tensor(vertices).float().cuda() | |
| faces = torch.tensor(faces.astype(np.int32)).cuda() | |
| uvs = torch.tensor(uvs).float().cuda() | |
| observations = [torch.tensor(obs).float().cuda() for obs in observations] | |
| masks = [torch.tensor(m>1e-2).bool().cuda() for m in masks] | |
| views = [utils3d.torch.extrinsics_to_view(torch.tensor(extr).float().cuda()) for extr in extrinsics] | |
| projections = [utils3d.torch.intrinsics_to_perspective(torch.tensor(intr).float().cuda(), near, far) for intr in intrinsics] | |
| if mode == 'fast': | |
| texture = torch.zeros((texture_size * texture_size, 3), dtype=torch.float32).cuda() | |
| texture_weights = torch.zeros((texture_size * texture_size), dtype=torch.float32).cuda() | |
| rastctx = utils3d.torch.RastContext(backend='cuda') | |
| for observation, view, projection in tqdm(zip(observations, views, projections), total=len(observations), disable=not verbose, desc='Texture baking (fast)'): | |
| with torch.no_grad(): | |
| rast = utils3d.torch.rasterize_triangle_faces( | |
| rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection | |
| ) | |
| uv_map = rast['uv'][0].detach().flip(0) | |
| mask = rast['mask'][0].detach().bool() & masks[0] | |
| # nearest neighbor interpolation | |
| uv_map = (uv_map * texture_size).floor().long() | |
| obs = observation[mask] | |
| uv_map = uv_map[mask] | |
| idx = uv_map[:, 0] + (texture_size - uv_map[:, 1] - 1) * texture_size | |
| texture = texture.scatter_add(0, idx.view(-1, 1).expand(-1, 3), obs) | |
| texture_weights = texture_weights.scatter_add(0, idx, torch.ones((obs.shape[0]), dtype=torch.float32, device=texture.device)) | |
| mask = texture_weights > 0 | |
| texture[mask] /= texture_weights[mask][:, None] | |
| texture = np.clip(texture.reshape(texture_size, texture_size, 3).cpu().numpy() * 255, 0, 255).astype(np.uint8) | |
| # inpaint | |
| mask = (texture_weights == 0).cpu().numpy().astype(np.uint8).reshape(texture_size, texture_size) | |
| texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA) | |
| elif mode == 'opt': | |
| rastctx = utils3d.torch.RastContext(backend='cuda') | |
| observations = [observations.flip(0) for observations in observations] | |
| masks = [m.flip(0) for m in masks] | |
| _uv = [] | |
| _uv_dr = [] | |
| for observation, view, projection in tqdm(zip(observations, views, projections), total=len(views), disable=not verbose, desc='Texture baking (opt): UV'): | |
| with torch.no_grad(): | |
| rast = utils3d.torch.rasterize_triangle_faces( | |
| rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection | |
| ) | |
| _uv.append(rast['uv'].detach()) | |
| _uv_dr.append(rast['uv_dr'].detach()) | |
| texture = torch.nn.Parameter(torch.zeros((1, texture_size, texture_size, 3), dtype=torch.float32).cuda()) | |
| optimizer = torch.optim.Adam([texture], betas=(0.5, 0.9), lr=1e-2) | |
| def exp_anealing(optimizer, step, total_steps, start_lr, end_lr): | |
| return start_lr * (end_lr / start_lr) ** (step / total_steps) | |
| def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr): | |
| return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps)) | |
| def tv_loss(texture): | |
| return torch.nn.functional.l1_loss(texture[:, :-1, :, :], texture[:, 1:, :, :]) + \ | |
| torch.nn.functional.l1_loss(texture[:, :, :-1, :], texture[:, :, 1:, :]) | |
| total_steps = 2500 | |
| with tqdm(total=total_steps, disable=not verbose, desc='Texture baking (opt): optimizing') as pbar: | |
| for step in range(total_steps): | |
| optimizer.zero_grad() | |
| selected = np.random.randint(0, len(views)) | |
| uv, uv_dr, observation, mask = _uv[selected], _uv_dr[selected], observations[selected], masks[selected] | |
| render = dr.texture(texture, uv, uv_dr)[0] | |
| loss = torch.nn.functional.l1_loss(render[mask], observation[mask]) | |
| if lambda_tv > 0: | |
| loss += lambda_tv * tv_loss(texture) | |
| loss.backward() | |
| optimizer.step() | |
| # annealing | |
| optimizer.param_groups[0]['lr'] = cosine_anealing(optimizer, step, total_steps, 1e-2, 1e-5) | |
| pbar.set_postfix({'loss': loss.item()}) | |
| pbar.update() | |
| texture = np.clip(texture[0].flip(0).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8) | |
| mask = 1 - utils3d.torch.rasterize_triangle_faces( | |
| rastctx, (uvs * 2 - 1)[None], faces, texture_size, texture_size | |
| )['mask'][0].detach().cpu().numpy().astype(np.uint8) | |
| texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA) | |
| else: | |
| raise ValueError(f'Unknown mode: {mode}') | |
| return texture | |
| def optimize_mesh( | |
| mesh, | |
| images: torch.Tensor, | |
| masks: torch.Tensor, | |
| extrinsics: torch.Tensor, | |
| intrinsics: torch.Tensor, | |
| simplify: float = 0.95, | |
| texture_size: int = 1024, | |
| verbose: bool = False, | |
| ) -> trimesh.Trimesh: | |
| """ | |
| Convert a generated asset to a glb file. | |
| Args: | |
| mesh (trimesh.Trimesh): Extracted mesh. | |
| simplify (float): Ratio of faces to remove in simplification. | |
| texture_size (int): Size of the texture. | |
| verbose (bool): Whether to print progress. | |
| """ | |
| vertices = np.array(mesh.vertices).astype(float) | |
| faces = np.array(mesh.faces).astype(int) | |
| # mesh simplification | |
| max_faces = 30000 | |
| mesh_reduction = max(1 - max_faces / faces.shape[0], simplify) | |
| vertices, faces = fast_simplification.simplify( | |
| vertices, faces, target_reduction=mesh_reduction) | |
| # parametrize mesh | |
| vertices, faces, uvs = parametrize_mesh(vertices, faces) | |
| # bake texture | |
| images = [images[i].cpu().numpy() for i in range(len(images))] | |
| masks = [masks[i].cpu().numpy() for i in range(len(masks))] | |
| extrinsics = [extrinsics[i].cpu().numpy() for i in range(len(extrinsics))] | |
| intrinsics = [intrinsics[i].cpu().numpy() for i in range(len(intrinsics))] | |
| texture = bake_texture( | |
| vertices.astype(float), faces.astype(float), uvs, | |
| images, masks, extrinsics, intrinsics, | |
| texture_size=texture_size, | |
| mode='opt', | |
| lambda_tv=0.01, | |
| verbose=verbose | |
| ) | |
| texture = Image.fromarray(texture) | |
| # rotate mesh | |
| vertices = vertices.astype(float) @ np.array([[-1, 0, 0], [0, 0, 1], [0, 1, 0]]).astype(float) | |
| mesh = trimesh.Trimesh(vertices, faces, visual=trimesh.visual.TextureVisuals(uv=uvs, image=texture)) | |
| return mesh |