Spaces:
Runtime error
Runtime error
sobel
Browse files- app.py +3 -7
- canny_gpu.py +117 -0
app.py
CHANGED
|
@@ -8,12 +8,11 @@ from diffusers import (
|
|
| 8 |
StableDiffusionXLControlNetImg2ImgPipeline,
|
| 9 |
DDIMScheduler,
|
| 10 |
)
|
| 11 |
-
|
| 12 |
from compel import Compel, ReturnedEmbeddingsType
|
| 13 |
from PIL import Image
|
| 14 |
import os
|
| 15 |
import time
|
| 16 |
-
import cv2
|
| 17 |
import numpy as np
|
| 18 |
|
| 19 |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
|
@@ -64,6 +63,7 @@ if not IS_SPACES_ZERO:
|
|
| 64 |
# pipe.enable_xformers_memory_efficient_attention()
|
| 65 |
pipe.enable_model_cpu_offload()
|
| 66 |
pipe.enable_vae_tiling()
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
def pad_image(image):
|
|
@@ -106,11 +106,7 @@ def predict(
|
|
| 106 |
conditioning, pooled = compel([prompt, negative_prompt])
|
| 107 |
generator = torch.manual_seed(seed)
|
| 108 |
last_time = time.time()
|
| 109 |
-
canny_image =
|
| 110 |
-
canny_image = cv2.Canny(canny_image, 100, 200)
|
| 111 |
-
canny_image = canny_image[:, :, None]
|
| 112 |
-
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
|
| 113 |
-
canny_image = Image.fromarray(canny_image)
|
| 114 |
images = pipe(
|
| 115 |
image=padded_image,
|
| 116 |
control_image=canny_image,
|
|
|
|
| 8 |
StableDiffusionXLControlNetImg2ImgPipeline,
|
| 9 |
DDIMScheduler,
|
| 10 |
)
|
| 11 |
+
from canny_gpu import SobelOperator
|
| 12 |
from compel import Compel, ReturnedEmbeddingsType
|
| 13 |
from PIL import Image
|
| 14 |
import os
|
| 15 |
import time
|
|
|
|
| 16 |
import numpy as np
|
| 17 |
|
| 18 |
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
|
|
|
| 63 |
# pipe.enable_xformers_memory_efficient_attention()
|
| 64 |
pipe.enable_model_cpu_offload()
|
| 65 |
pipe.enable_vae_tiling()
|
| 66 |
+
canny_torch = SobelOperator(device=device)
|
| 67 |
|
| 68 |
|
| 69 |
def pad_image(image):
|
|
|
|
| 106 |
conditioning, pooled = compel([prompt, negative_prompt])
|
| 107 |
generator = torch.manual_seed(seed)
|
| 108 |
last_time = time.time()
|
| 109 |
+
canny_image = canny_torch(padded_image, 0.01, 0.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
images = pipe(
|
| 111 |
image=padded_image,
|
| 112 |
control_image=canny_image,
|
canny_gpu.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torchvision.transforms import ToTensor, ToPILImage
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SobelOperator(nn.Module):
|
| 8 |
+
SOBEL_KERNEL_X = torch.tensor(
|
| 9 |
+
[[-1.0, 0.0, 1.0], [-2.0, 0.0, 2.0], [-1.0, 0.0, 1.0]]
|
| 10 |
+
)
|
| 11 |
+
SOBEL_KERNEL_Y = torch.tensor(
|
| 12 |
+
[[-1.0, -2.0, -1.0], [0.0, 0.0, 0.0], [1.0, 2.0, 1.0]]
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
def __init__(self, device="cuda"):
|
| 16 |
+
super(SobelOperator, self).__init__()
|
| 17 |
+
self.device = device
|
| 18 |
+
self.edge_conv_x = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to(
|
| 19 |
+
self.device
|
| 20 |
+
)
|
| 21 |
+
self.edge_conv_y = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to(
|
| 22 |
+
self.device
|
| 23 |
+
)
|
| 24 |
+
self.edge_conv_x.weight = nn.Parameter(
|
| 25 |
+
self.SOBEL_KERNEL_X.view((1, 1, 3, 3)).to(self.device)
|
| 26 |
+
)
|
| 27 |
+
self.edge_conv_y.weight = nn.Parameter(
|
| 28 |
+
self.SOBEL_KERNEL_Y.view((1, 1, 3, 3)).to(self.device)
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
@torch.no_grad()
|
| 32 |
+
def forward(
|
| 33 |
+
self,
|
| 34 |
+
image: Image.Image,
|
| 35 |
+
low_threshold: float,
|
| 36 |
+
high_threshold: float,
|
| 37 |
+
output_type="pil",
|
| 38 |
+
) -> Image.Image | torch.Tensor | tuple[Image.Image, torch.Tensor]:
|
| 39 |
+
# Convert PIL image to PyTorch tensor
|
| 40 |
+
image_gray = image.convert("L")
|
| 41 |
+
image_tensor = ToTensor()(image_gray).unsqueeze(0).to(self.device)
|
| 42 |
+
|
| 43 |
+
# Compute gradients
|
| 44 |
+
edge_x = self.edge_conv_x(image_tensor)
|
| 45 |
+
edge_y = self.edge_conv_y(image_tensor)
|
| 46 |
+
edge = torch.sqrt(torch.square(edge_x) + torch.square(edge_y))
|
| 47 |
+
|
| 48 |
+
# Apply thresholding
|
| 49 |
+
edge.div_(edge.max()) # Normalize to 0-1 (in-place operation)
|
| 50 |
+
edge[edge >= high_threshold] = 1.0
|
| 51 |
+
edge[edge <= low_threshold] = 0.0
|
| 52 |
+
|
| 53 |
+
# Convert the result back to a PIL image
|
| 54 |
+
if output_type == "pil":
|
| 55 |
+
return ToPILImage()(edge.squeeze(0).cpu())
|
| 56 |
+
elif output_type == "tensor":
|
| 57 |
+
return edge
|
| 58 |
+
elif output_type == "pil,tensor":
|
| 59 |
+
return ToPILImage()(edge.squeeze(0).cpu()), edge
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class ScharrOperator(nn.Module):
|
| 63 |
+
SCHARR_KERNEL_X = torch.tensor(
|
| 64 |
+
[[-3.0, 0.0, 3.0], [-10.0, 0.0, 10.0], [-3.0, 0.0, 3.0]]
|
| 65 |
+
)
|
| 66 |
+
SCHARR_KERNEL_Y = torch.tensor(
|
| 67 |
+
[[-3.0, -10.0, -3.0], [0.0, 0.0, 0.0], [3.0, 10.0, 3.0]]
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
def __init__(self, device="cuda"):
|
| 71 |
+
super(ScharrOperator, self).__init__()
|
| 72 |
+
self.device = device
|
| 73 |
+
self.edge_conv_x = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to(
|
| 74 |
+
self.device
|
| 75 |
+
)
|
| 76 |
+
self.edge_conv_y = nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False).to(
|
| 77 |
+
self.device
|
| 78 |
+
)
|
| 79 |
+
self.edge_conv_x.weight = nn.Parameter(
|
| 80 |
+
self.SCHARR_KERNEL_X.view((1, 1, 3, 3)).to(self.device)
|
| 81 |
+
)
|
| 82 |
+
self.edge_conv_y.weight = nn.Parameter(
|
| 83 |
+
self.SCHARR_KERNEL_Y.view((1, 1, 3, 3)).to(self.device)
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
@torch.no_grad()
|
| 87 |
+
def forward(
|
| 88 |
+
self,
|
| 89 |
+
image: Image.Image,
|
| 90 |
+
low_threshold: float,
|
| 91 |
+
high_threshold: float,
|
| 92 |
+
output_type="pil",
|
| 93 |
+
invert: bool = False,
|
| 94 |
+
) -> Image.Image | torch.Tensor | tuple[Image.Image, torch.Tensor]:
|
| 95 |
+
# Convert PIL image to PyTorch tensor
|
| 96 |
+
image_gray = image.convert("L")
|
| 97 |
+
image_tensor = ToTensor()(image_gray).unsqueeze(0).to(self.device)
|
| 98 |
+
|
| 99 |
+
# Compute gradients
|
| 100 |
+
edge_x = self.edge_conv_x(image_tensor)
|
| 101 |
+
edge_y = self.edge_conv_y(image_tensor)
|
| 102 |
+
edge = torch.abs(edge_x) + torch.abs(edge_y)
|
| 103 |
+
|
| 104 |
+
# Apply thresholding
|
| 105 |
+
edge.div_(edge.max()) # Normalize to 0-1 (in-place operation)
|
| 106 |
+
edge[edge >= high_threshold] = 1.0
|
| 107 |
+
edge[edge <= low_threshold] = 0.0
|
| 108 |
+
if invert:
|
| 109 |
+
edge = 1 - edge
|
| 110 |
+
|
| 111 |
+
# Convert the result back to a PIL image
|
| 112 |
+
if output_type == "pil":
|
| 113 |
+
return ToPILImage()(edge.squeeze(0).cpu())
|
| 114 |
+
elif output_type == "tensor":
|
| 115 |
+
return edge
|
| 116 |
+
elif output_type == "pil,tensor":
|
| 117 |
+
return ToPILImage()(edge.squeeze(0).cpu()), edge
|