Spaces:
Running
on
Zero
Running
on
Zero
Delete v2.py
Browse files
v2.py
DELETED
@@ -1,260 +0,0 @@
|
|
1 |
-
import time
|
2 |
-
import torch
|
3 |
-
from typing import Callable
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
-
from dartrs.v2 import (
|
7 |
-
V2Model,
|
8 |
-
MixtralModel,
|
9 |
-
MistralModel,
|
10 |
-
compose_prompt,
|
11 |
-
LengthTag,
|
12 |
-
AspectRatioTag,
|
13 |
-
RatingTag,
|
14 |
-
IdentityTag,
|
15 |
-
)
|
16 |
-
from dartrs.dartrs import DartTokenizer
|
17 |
-
from dartrs.utils import get_generation_config
|
18 |
-
|
19 |
-
|
20 |
-
import gradio as gr
|
21 |
-
from gradio.components import Component
|
22 |
-
|
23 |
-
|
24 |
-
try:
|
25 |
-
from output import UpsamplingOutput
|
26 |
-
except:
|
27 |
-
from .output import UpsamplingOutput
|
28 |
-
|
29 |
-
|
30 |
-
V2_ALL_MODELS = {
|
31 |
-
"dart-v2-moe-sft": {
|
32 |
-
"repo": "p1atdev/dart-v2-moe-sft",
|
33 |
-
"type": "sft",
|
34 |
-
"class": MixtralModel,
|
35 |
-
},
|
36 |
-
"dart-v2-sft": {
|
37 |
-
"repo": "p1atdev/dart-v2-sft",
|
38 |
-
"type": "sft",
|
39 |
-
"class": MistralModel,
|
40 |
-
},
|
41 |
-
}
|
42 |
-
|
43 |
-
|
44 |
-
def prepare_models(model_config: dict):
|
45 |
-
model_name = model_config["repo"]
|
46 |
-
tokenizer = DartTokenizer.from_pretrained(model_name)
|
47 |
-
model = model_config["class"].from_pretrained(model_name)
|
48 |
-
|
49 |
-
return {
|
50 |
-
"tokenizer": tokenizer,
|
51 |
-
"model": model,
|
52 |
-
}
|
53 |
-
|
54 |
-
|
55 |
-
def normalize_tags(tokenizer: DartTokenizer, tags: str):
|
56 |
-
"""Just remove unk tokens."""
|
57 |
-
return ", ".join([tag for tag in tokenizer.tokenize(tags) if tag != "<|unk|>"])
|
58 |
-
|
59 |
-
|
60 |
-
@torch.no_grad()
|
61 |
-
def generate_tags(
|
62 |
-
model: V2Model,
|
63 |
-
tokenizer: DartTokenizer,
|
64 |
-
prompt: str,
|
65 |
-
ban_token_ids: list[int],
|
66 |
-
):
|
67 |
-
output = model.generate(
|
68 |
-
get_generation_config(
|
69 |
-
prompt,
|
70 |
-
tokenizer=tokenizer,
|
71 |
-
temperature=1,
|
72 |
-
top_p=0.9,
|
73 |
-
top_k=100,
|
74 |
-
max_new_tokens=256,
|
75 |
-
ban_token_ids=ban_token_ids,
|
76 |
-
),
|
77 |
-
)
|
78 |
-
|
79 |
-
return output
|
80 |
-
|
81 |
-
|
82 |
-
def _people_tag(noun: str, minimum: int = 1, maximum: int = 5):
|
83 |
-
return (
|
84 |
-
[f"1{noun}"]
|
85 |
-
+ [f"{num}{noun}s" for num in range(minimum + 1, maximum + 1)]
|
86 |
-
+ [f"{maximum+1}+{noun}s"]
|
87 |
-
)
|
88 |
-
|
89 |
-
|
90 |
-
PEOPLE_TAGS = (
|
91 |
-
_people_tag("girl") + _people_tag("boy") + _people_tag("other") + ["no humans"]
|
92 |
-
)
|
93 |
-
|
94 |
-
|
95 |
-
def gen_prompt_text(output: UpsamplingOutput):
|
96 |
-
# separate people tags (e.g. 1girl)
|
97 |
-
people_tags = []
|
98 |
-
other_general_tags = []
|
99 |
-
|
100 |
-
for tag in output.general_tags.split(","):
|
101 |
-
tag = tag.strip()
|
102 |
-
if tag in PEOPLE_TAGS:
|
103 |
-
people_tags.append(tag)
|
104 |
-
else:
|
105 |
-
other_general_tags.append(tag)
|
106 |
-
|
107 |
-
return ", ".join(
|
108 |
-
[
|
109 |
-
part.strip()
|
110 |
-
for part in [
|
111 |
-
*people_tags,
|
112 |
-
output.character_tags,
|
113 |
-
output.copyright_tags,
|
114 |
-
*other_general_tags,
|
115 |
-
output.upsampled_tags,
|
116 |
-
output.rating_tag,
|
117 |
-
]
|
118 |
-
if part.strip() != ""
|
119 |
-
]
|
120 |
-
)
|
121 |
-
|
122 |
-
|
123 |
-
def elapsed_time_format(elapsed_time: float) -> str:
|
124 |
-
return f"Elapsed: {elapsed_time:.2f} seconds"
|
125 |
-
|
126 |
-
|
127 |
-
def parse_upsampling_output(
|
128 |
-
upsampler: Callable[..., UpsamplingOutput],
|
129 |
-
):
|
130 |
-
def _parse_upsampling_output(*args) -> tuple[str, str, dict]:
|
131 |
-
output = upsampler(*args)
|
132 |
-
|
133 |
-
return (
|
134 |
-
gen_prompt_text(output),
|
135 |
-
elapsed_time_format(output.elapsed_time),
|
136 |
-
gr.update(interactive=True),
|
137 |
-
gr.update(interactive=True),
|
138 |
-
)
|
139 |
-
|
140 |
-
return _parse_upsampling_output
|
141 |
-
|
142 |
-
|
143 |
-
class V2UI:
|
144 |
-
model_name: str | None = None
|
145 |
-
model: V2Model
|
146 |
-
tokenizer: DartTokenizer
|
147 |
-
|
148 |
-
input_components: list[Component] = []
|
149 |
-
generate_btn: gr.Button
|
150 |
-
|
151 |
-
def on_generate(
|
152 |
-
self,
|
153 |
-
model_name: str,
|
154 |
-
copyright_tags: str,
|
155 |
-
character_tags: str,
|
156 |
-
general_tags: str,
|
157 |
-
rating_tag: RatingTag,
|
158 |
-
aspect_ratio_tag: AspectRatioTag,
|
159 |
-
length_tag: LengthTag,
|
160 |
-
identity_tag: IdentityTag,
|
161 |
-
ban_tags: str,
|
162 |
-
*args,
|
163 |
-
) -> UpsamplingOutput:
|
164 |
-
if self.model_name is None or self.model_name != model_name:
|
165 |
-
models = prepare_models(V2_ALL_MODELS[model_name])
|
166 |
-
self.model = models["model"]
|
167 |
-
self.tokenizer = models["tokenizer"]
|
168 |
-
self.model_name = model_name
|
169 |
-
|
170 |
-
# normalize tags
|
171 |
-
# copyright_tags = normalize_tags(self.tokenizer, copyright_tags)
|
172 |
-
# character_tags = normalize_tags(self.tokenizer, character_tags)
|
173 |
-
# general_tags = normalize_tags(self.tokenizer, general_tags)
|
174 |
-
|
175 |
-
ban_token_ids = self.tokenizer.encode(ban_tags.strip())
|
176 |
-
|
177 |
-
prompt = compose_prompt(
|
178 |
-
prompt=general_tags,
|
179 |
-
copyright=copyright_tags,
|
180 |
-
character=character_tags,
|
181 |
-
rating=rating_tag,
|
182 |
-
aspect_ratio=aspect_ratio_tag,
|
183 |
-
length=length_tag,
|
184 |
-
identity=identity_tag,
|
185 |
-
)
|
186 |
-
|
187 |
-
start = time.time()
|
188 |
-
upsampled_tags = generate_tags(
|
189 |
-
self.model,
|
190 |
-
self.tokenizer,
|
191 |
-
prompt,
|
192 |
-
ban_token_ids,
|
193 |
-
)
|
194 |
-
elapsed_time = time.time() - start
|
195 |
-
|
196 |
-
return UpsamplingOutput(
|
197 |
-
upsampled_tags=upsampled_tags,
|
198 |
-
copyright_tags=copyright_tags,
|
199 |
-
character_tags=character_tags,
|
200 |
-
general_tags=general_tags,
|
201 |
-
rating_tag=rating_tag,
|
202 |
-
aspect_ratio_tag=aspect_ratio_tag,
|
203 |
-
length_tag=length_tag,
|
204 |
-
identity_tag=identity_tag,
|
205 |
-
elapsed_time=elapsed_time,
|
206 |
-
)
|
207 |
-
|
208 |
-
|
209 |
-
def parse_upsampling_output_simple(upsampler: UpsamplingOutput):
|
210 |
-
return gen_prompt_text(upsampler)
|
211 |
-
|
212 |
-
|
213 |
-
v2 = V2UI()
|
214 |
-
|
215 |
-
|
216 |
-
def v2_upsampling_prompt(model: str = "dart-v2-moe-sft", copyright: str = "", character: str = "",
|
217 |
-
general_tags: str = "", rating: str = "nsfw", aspect_ratio: str = "square",
|
218 |
-
length: str = "very_long", identity: str = "lax", ban_tags: str = "censored"):
|
219 |
-
raw_prompt = parse_upsampling_output_simple(v2.on_generate(model, copyright, character, general_tags,
|
220 |
-
rating, aspect_ratio, length, identity, ban_tags))
|
221 |
-
return raw_prompt
|
222 |
-
|
223 |
-
|
224 |
-
def load_dict_from_csv(filename):
|
225 |
-
dict = {}
|
226 |
-
if not Path(filename).exists():
|
227 |
-
if Path('./tagger/', filename).exists(): filename = str(Path('./tagger/', filename))
|
228 |
-
else: return dict
|
229 |
-
try:
|
230 |
-
with open(filename, 'r', encoding="utf-8") as f:
|
231 |
-
lines = f.readlines()
|
232 |
-
except Exception:
|
233 |
-
print(f"Failed to open dictionary file: {filename}")
|
234 |
-
return dict
|
235 |
-
for line in lines:
|
236 |
-
parts = line.strip().split(',')
|
237 |
-
dict[parts[0]] = parts[1]
|
238 |
-
return dict
|
239 |
-
|
240 |
-
|
241 |
-
anime_series_dict = load_dict_from_csv('character_series_dict.csv')
|
242 |
-
|
243 |
-
|
244 |
-
def select_random_character(series: str, character: str):
|
245 |
-
from random import seed, randrange
|
246 |
-
seed()
|
247 |
-
character_list = list(anime_series_dict.keys())
|
248 |
-
character = character_list[randrange(len(character_list) - 1)]
|
249 |
-
series = anime_series_dict.get(character.split(",")[0].strip(), "")
|
250 |
-
return series, character
|
251 |
-
|
252 |
-
|
253 |
-
def v2_random_prompt(general_tags: str = "", copyright: str = "", character: str = "", rating: str = "nsfw",
|
254 |
-
aspect_ratio: str = "square", length: str = "very_long", identity: str = "lax",
|
255 |
-
ban_tags: str = "censored", model: str = "dart-v2-moe-sft"):
|
256 |
-
if copyright == "" and character == "":
|
257 |
-
copyright, character = select_random_character("", "")
|
258 |
-
raw_prompt = v2_upsampling_prompt(model, copyright, character, general_tags, rating,
|
259 |
-
aspect_ratio, length, identity, ban_tags)
|
260 |
-
return raw_prompt, copyright, character
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|