Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,7 +17,9 @@ from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
|
| 17 |
def predict_depth(model, image):
|
| 18 |
return model(image)
|
| 19 |
|
| 20 |
-
def make_video(video_path, outdir='./vis_video_depth',encoder='
|
|
|
|
|
|
|
| 21 |
# Define path for temporary processed frames
|
| 22 |
temp_frame_dir = tempfile.mkdtemp()
|
| 23 |
|
|
@@ -115,8 +117,7 @@ css = """
|
|
| 115 |
max-height: 80vh;
|
| 116 |
}
|
| 117 |
"""
|
| 118 |
-
|
| 119 |
-
model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
|
| 120 |
|
| 121 |
title = "# Depth Anything Video Demo"
|
| 122 |
description = """Depth Anything on full video files.
|
|
@@ -137,9 +138,9 @@ transform = Compose([
|
|
| 137 |
PrepareForNet(),
|
| 138 |
])
|
| 139 |
|
| 140 |
-
@torch.no_grad()
|
| 141 |
-
def predict_depth(model, image):
|
| 142 |
-
|
| 143 |
|
| 144 |
with gr.Blocks(css=css) as demo:
|
| 145 |
gr.Markdown(title)
|
|
@@ -163,7 +164,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 163 |
example_files = os.listdir('assets/examples_video')
|
| 164 |
example_files.sort()
|
| 165 |
example_files = [os.path.join('assets/examples_video', filename) for filename in example_files]
|
| 166 |
-
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=processed_video, fn=on_submit, cache_examples=
|
| 167 |
|
| 168 |
|
| 169 |
if __name__ == '__main__':
|
|
|
|
| 17 |
def predict_depth(model, image):
|
| 18 |
return model(image)
|
| 19 |
|
| 20 |
+
def make_video(video_path, outdir='./vis_video_depth',encoder='vits'):
|
| 21 |
+
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 22 |
+
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
|
| 23 |
# Define path for temporary processed frames
|
| 24 |
temp_frame_dir = tempfile.mkdtemp()
|
| 25 |
|
|
|
|
| 117 |
max-height: 80vh;
|
| 118 |
}
|
| 119 |
"""
|
| 120 |
+
|
|
|
|
| 121 |
|
| 122 |
title = "# Depth Anything Video Demo"
|
| 123 |
description = """Depth Anything on full video files.
|
|
|
|
| 138 |
PrepareForNet(),
|
| 139 |
])
|
| 140 |
|
| 141 |
+
# @torch.no_grad()
|
| 142 |
+
# def predict_depth(model, image):
|
| 143 |
+
# return model(image)
|
| 144 |
|
| 145 |
with gr.Blocks(css=css) as demo:
|
| 146 |
gr.Markdown(title)
|
|
|
|
| 164 |
example_files = os.listdir('assets/examples_video')
|
| 165 |
example_files.sort()
|
| 166 |
example_files = [os.path.join('assets/examples_video', filename) for filename in example_files]
|
| 167 |
+
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=processed_video, fn=on_submit, cache_examples=True)
|
| 168 |
|
| 169 |
|
| 170 |
if __name__ == '__main__':
|