Spaces:
Running
Running
Update agents.py
Browse files
agents.py
CHANGED
|
@@ -3,31 +3,26 @@ import json
|
|
| 3 |
import asyncio
|
| 4 |
import random
|
| 5 |
|
| 6 |
-
|
| 7 |
-
import os
|
| 8 |
-
import json
|
| 9 |
-
import asyncio
|
| 10 |
-
import random
|
| 11 |
-
|
| 12 |
# --- OpenAI ---
|
| 13 |
-
from openai import AsyncOpenAI, APIError
|
| 14 |
|
| 15 |
# --- Google Gemini ---
|
| 16 |
from google import genai
|
| 17 |
from google.genai import types
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
# --- Mistral AI ---
|
| 22 |
-
from mistralai.async_client import MistralAsyncClient
|
|
|
|
| 23 |
|
| 24 |
# --- Poke-Env ---
|
| 25 |
from poke_env.player import Player
|
| 26 |
from poke_env.environment.battle import Battle
|
| 27 |
from poke_env.environment.move import Move
|
| 28 |
from poke_env.environment.pokemon import Pokemon
|
|
|
|
| 29 |
|
| 30 |
-
# --- Helper Function & Base Class
|
| 31 |
def normalize_name(name: str) -> str:
|
| 32 |
"""Lowercase and remove non-alphanumeric characters."""
|
| 33 |
return "".join(filter(str.isalnum, name)).lower()
|
|
@@ -64,14 +59,13 @@ STANDARD_TOOL_SCHEMA = {
|
|
| 64 |
}
|
| 65 |
|
| 66 |
|
| 67 |
-
class LLMAgentBase(Player):
|
| 68 |
def __init__(self, *args, **kwargs):
|
| 69 |
super().__init__(*args, **kwargs)
|
| 70 |
self.standard_tools = STANDARD_TOOL_SCHEMA
|
| 71 |
-
self.battle_history = []
|
| 72 |
|
| 73 |
def _format_battle_state(self, battle: Battle) -> str:
|
| 74 |
-
# (Implementation as provided in the question)
|
| 75 |
active_pkmn = battle.active_pokemon
|
| 76 |
active_pkmn_info = f"Your active Pokemon: {active_pkmn.species} " \
|
| 77 |
f"(Type: {'/'.join(map(str, active_pkmn.types))}) " \
|
|
@@ -117,9 +111,7 @@ class LLMAgentBase(Player): # Make sure this base class exists
|
|
| 117 |
f"Opponent Side Conditions: {battle.opponent_side_conditions}"
|
| 118 |
return state_str.strip()
|
| 119 |
|
| 120 |
-
|
| 121 |
-
def _find_move_by_name(self, battle: Battle, move_name: str) -> Move | None:
|
| 122 |
-
# (Implementation as provided in the question)
|
| 123 |
normalized_name = normalize_name(move_name)
|
| 124 |
# Prioritize exact ID match
|
| 125 |
for move in battle.available_moves:
|
|
@@ -132,8 +124,7 @@ class LLMAgentBase(Player): # Make sure this base class exists
|
|
| 132 |
return move
|
| 133 |
return None
|
| 134 |
|
| 135 |
-
def _find_pokemon_by_name(self, battle: Battle, pokemon_name: str) -> Pokemon
|
| 136 |
-
# (Implementation as provided in the question)
|
| 137 |
normalized_name = normalize_name(pokemon_name)
|
| 138 |
for pkmn in battle.available_switches:
|
| 139 |
# Normalize the species name for comparison
|
|
@@ -142,7 +133,6 @@ class LLMAgentBase(Player): # Make sure this base class exists
|
|
| 142 |
return None
|
| 143 |
|
| 144 |
async def choose_move(self, battle: Battle) -> str:
|
| 145 |
-
# (Implementation as provided in the question - relies on _get_llm_decision)
|
| 146 |
battle_state_str = self._format_battle_state(battle)
|
| 147 |
decision_result = await self._get_llm_decision(battle_state_str)
|
| 148 |
decision = decision_result.get("decision")
|
|
@@ -160,8 +150,7 @@ class LLMAgentBase(Player): # Make sure this base class exists
|
|
| 160 |
if chosen_move and chosen_move in battle.available_moves:
|
| 161 |
action_taken = True
|
| 162 |
chat_msg = f"AI Decision: Using move '{chosen_move.id}'."
|
| 163 |
-
print(chat_msg)
|
| 164 |
-
# await self.send_message(chat_msg, battle=battle) # Uncomment if send_message exists
|
| 165 |
return self.create_order(chosen_move)
|
| 166 |
else:
|
| 167 |
fallback_reason = f"LLM chose unavailable/invalid move '{move_name}'."
|
|
@@ -174,8 +163,7 @@ class LLMAgentBase(Player): # Make sure this base class exists
|
|
| 174 |
if chosen_switch and chosen_switch in battle.available_switches:
|
| 175 |
action_taken = True
|
| 176 |
chat_msg = f"AI Decision: Switching to '{chosen_switch.species}'."
|
| 177 |
-
print(chat_msg)
|
| 178 |
-
# await self.send_message(chat_msg, battle=battle) # Uncomment if send_message exists
|
| 179 |
return self.create_order(chosen_switch)
|
| 180 |
else:
|
| 181 |
fallback_reason = f"LLM chose unavailable/invalid switch '{pokemon_name}'."
|
|
@@ -185,55 +173,53 @@ class LLMAgentBase(Player): # Make sure this base class exists
|
|
| 185 |
fallback_reason = f"LLM called unknown function '{function_name}'."
|
| 186 |
|
| 187 |
if not action_taken:
|
| 188 |
-
if not fallback_reason:
|
| 189 |
if error_message:
|
| 190 |
fallback_reason = f"API Error: {error_message}"
|
| 191 |
-
elif decision is None:
|
| 192 |
fallback_reason = "LLM did not provide a valid function call."
|
| 193 |
-
else:
|
| 194 |
fallback_reason = "Unknown error processing LLM decision."
|
| 195 |
|
| 196 |
print(f"Warning: {fallback_reason} Choosing random action.")
|
| 197 |
-
# await self.send_message(f"AI Fallback: {fallback_reason} Choosing random action.", battle=battle) # Uncomment
|
| 198 |
|
| 199 |
-
# Use poke-env's built-in random choice
|
| 200 |
if battle.available_moves or battle.available_switches:
|
| 201 |
return self.choose_random_move(battle)
|
| 202 |
else:
|
| 203 |
print("AI Fallback: No moves or switches available. Using Struggle/Default.")
|
| 204 |
-
|
| 205 |
-
return self.choose_default_move(battle) # Handles struggle
|
| 206 |
|
| 207 |
-
async def _get_llm_decision(self, battle_state: str) ->
|
| 208 |
raise NotImplementedError("Subclasses must implement _get_llm_decision")
|
| 209 |
|
|
|
|
| 210 |
# --- Google Gemini Agent ---
|
| 211 |
class GeminiAgent(LLMAgentBase):
|
| 212 |
"""Uses Google Gemini API for decisions."""
|
| 213 |
-
def __init__(self, api_key: str
|
| 214 |
super().__init__(*args, **kwargs)
|
| 215 |
self.model_name = model
|
| 216 |
used_api_key = api_key or os.environ.get("GOOGLE_API_KEY")
|
| 217 |
-
self.model_name=model
|
| 218 |
if not used_api_key:
|
| 219 |
raise ValueError("Google API key not provided or found in GOOGLE_API_KEY env var.")
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
)
|
| 224 |
-
# --- Correct Tool Definition ---
|
| 225 |
-
# Create a list of function declaration dictionaries from the values in STANDARD_TOOL_SCHEMA
|
| 226 |
-
function_declarations = list(self.standard_tools.values())
|
| 227 |
-
# Create the Tool object expected by the API
|
| 228 |
-
self.gemini_tool_config = types.Tool(function_declarations=function_declarations)
|
| 229 |
-
# --- End Tool Definition ---
|
| 230 |
-
|
| 231 |
-
# --- Correct Model Initialization ---
|
| 232 |
-
# Pass the Tool object directly to the model's 'tools' parameter
|
| 233 |
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
async def _get_llm_decision(self, battle_state: str) -> dict:
|
| 237 |
"""Sends state to the Gemini API and gets back the function call decision."""
|
| 238 |
prompt = (
|
| 239 |
"You are a skilled Pokemon battle AI. Your goal is to win the battle. "
|
|
@@ -246,63 +232,64 @@ class GeminiAgent(LLMAgentBase):
|
|
| 246 |
)
|
| 247 |
|
| 248 |
try:
|
| 249 |
-
#
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
model=self.model_name,
|
| 254 |
-
contents=prompt
|
| 255 |
)
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
# --- Response Parsing (Your logic was already good here) ---
|
| 259 |
-
# Check candidates and parts safely
|
| 260 |
if not response.candidates:
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
| 265 |
|
| 266 |
candidate = response.candidates[0]
|
| 267 |
if not candidate.content or not candidate.content.parts:
|
| 268 |
finish_reason_str = "Unknown"
|
| 269 |
-
try:
|
| 270 |
-
|
|
|
|
|
|
|
| 271 |
return {"error": f"Gemini response issue. Finish Reason: {finish_reason_str}"}
|
| 272 |
|
| 273 |
-
part
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
| 296 |
except Exception as e:
|
| 297 |
-
# Catch any other unexpected errors during the API call or processing
|
| 298 |
print(f"Unexpected error during Gemini processing: {e}")
|
| 299 |
import traceback
|
| 300 |
-
traceback.print_exc()
|
| 301 |
return {"error": f"Unexpected error: {str(e)}"}
|
|
|
|
|
|
|
| 302 |
# --- OpenAI Agent ---
|
| 303 |
class OpenAIAgent(LLMAgentBase):
|
| 304 |
"""Uses OpenAI API for decisions."""
|
| 305 |
-
def __init__(self, api_key: str
|
| 306 |
super().__init__(*args, **kwargs)
|
| 307 |
self.model = model
|
| 308 |
used_api_key = api_key or os.environ.get("OPENAI_API_KEY")
|
|
@@ -311,9 +298,9 @@ class OpenAIAgent(LLMAgentBase):
|
|
| 311 |
self.openai_client = AsyncOpenAI(api_key=used_api_key)
|
| 312 |
|
| 313 |
# Convert standard schema to OpenAI's format
|
| 314 |
-
self.
|
| 315 |
|
| 316 |
-
async def _get_llm_decision(self, battle_state: str) ->
|
| 317 |
system_prompt = (
|
| 318 |
"You are a skilled Pokemon battle AI. Your goal is to win the battle. "
|
| 319 |
"Based on the current battle state, decide the best action: either use an available move or switch to an available Pokémon. "
|
|
@@ -330,25 +317,26 @@ class OpenAIAgent(LLMAgentBase):
|
|
| 330 |
{"role": "system", "content": system_prompt},
|
| 331 |
{"role": "user", "content": user_prompt},
|
| 332 |
],
|
| 333 |
-
|
| 334 |
-
|
| 335 |
temperature=0.5,
|
| 336 |
)
|
| 337 |
message = response.choices[0].message
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
|
|
|
|
|
|
| 341 |
try:
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
return {"decision": {"name": function_name, "arguments": arguments}}
|
| 346 |
else:
|
| 347 |
-
|
| 348 |
except json.JSONDecodeError:
|
| 349 |
-
return {"error": f"Error decoding function
|
| 350 |
else:
|
| 351 |
-
# Model decided not to call a function
|
| 352 |
return {"error": f"OpenAI did not return a function call. Response: {message.content}"}
|
| 353 |
|
| 354 |
except APIError as e:
|
|
@@ -362,7 +350,7 @@ class OpenAIAgent(LLMAgentBase):
|
|
| 362 |
# --- Mistral Agent ---
|
| 363 |
class MistralAgent(LLMAgentBase):
|
| 364 |
"""Uses Mistral AI API for decisions."""
|
| 365 |
-
def __init__(self, api_key: str
|
| 366 |
super().__init__(*args, **kwargs)
|
| 367 |
self.model = model
|
| 368 |
used_api_key = api_key or os.environ.get("MISTRAL_API_KEY")
|
|
@@ -370,51 +358,51 @@ class MistralAgent(LLMAgentBase):
|
|
| 370 |
raise ValueError("Mistral API key not provided or found in MISTRAL_API_KEY env var.")
|
| 371 |
self.mistral_client = MistralAsyncClient(api_key=used_api_key)
|
| 372 |
|
| 373 |
-
# Convert standard schema to Mistral's tool format
|
| 374 |
-
self.mistral_tools =
|
| 375 |
|
| 376 |
-
async def _get_llm_decision(self, battle_state: str) ->
|
| 377 |
system_prompt = (
|
| 378 |
"You are a skilled Pokemon battle AI. Your goal is to win the battle. "
|
| 379 |
"Based on the current battle state, decide the best action: either use an available move or switch to an available Pokémon. "
|
| 380 |
"Consider type matchups, HP, status conditions, field effects, entry hazards, and potential opponent actions. "
|
| 381 |
"Only choose actions listed as available using their exact ID (for moves) or species name (for switches). "
|
| 382 |
-
"Use the provided tools
|
| 383 |
)
|
| 384 |
user_prompt = f"Current Battle State:\n{battle_state}\n\nChoose the best action by calling the appropriate function ('choose_move' or 'choose_switch')."
|
| 385 |
|
| 386 |
try:
|
| 387 |
-
response = await self.mistral_client.chat
|
| 388 |
model=self.model,
|
| 389 |
messages=[
|
| 390 |
-
{"role": "system", "content":
|
| 391 |
-
{"role": "user", "content":
|
| 392 |
],
|
| 393 |
tools=self.mistral_tools,
|
| 394 |
-
tool_choice="auto",
|
| 395 |
temperature=0.5,
|
| 396 |
)
|
| 397 |
|
| 398 |
message = response.choices[0].message
|
| 399 |
-
#
|
| 400 |
if message.tool_calls:
|
| 401 |
-
tool_call =
|
| 402 |
function_name = tool_call.function.name
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
|
|
|
|
|
|
|
|
|
| 408 |
else:
|
| 409 |
-
# Model decided not to call a tool
|
| 410 |
-
|
| 411 |
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
|
|
|
| 415 |
print(f"Error during Mistral API call: {e}")
|
| 416 |
-
|
| 417 |
-
error_details = str(e)
|
| 418 |
-
# if isinstance(e, MistralAPIException): # Example
|
| 419 |
-
# error_details = f"{e.status_code} - {e.message}"
|
| 420 |
-
return {"error": f"Mistral API Error: {error_details}"}
|
|
|
|
| 3 |
import asyncio
|
| 4 |
import random
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
# --- OpenAI ---
|
| 7 |
+
from openai import AsyncOpenAI, APIError
|
| 8 |
|
| 9 |
# --- Google Gemini ---
|
| 10 |
from google import genai
|
| 11 |
from google.genai import types
|
| 12 |
+
from google.api_core import exceptions as google_exceptions
|
|
|
|
| 13 |
|
| 14 |
# --- Mistral AI ---
|
| 15 |
+
from mistralai.async_client import MistralAsyncClient
|
| 16 |
+
from mistralai.exceptions import MistralAPIError
|
| 17 |
|
| 18 |
# --- Poke-Env ---
|
| 19 |
from poke_env.player import Player
|
| 20 |
from poke_env.environment.battle import Battle
|
| 21 |
from poke_env.environment.move import Move
|
| 22 |
from poke_env.environment.pokemon import Pokemon
|
| 23 |
+
from typing import Optional, Dict, Any, Union
|
| 24 |
|
| 25 |
+
# --- Helper Function & Base Class ---
|
| 26 |
def normalize_name(name: str) -> str:
|
| 27 |
"""Lowercase and remove non-alphanumeric characters."""
|
| 28 |
return "".join(filter(str.isalnum, name)).lower()
|
|
|
|
| 59 |
}
|
| 60 |
|
| 61 |
|
| 62 |
+
class LLMAgentBase(Player):
|
| 63 |
def __init__(self, *args, **kwargs):
|
| 64 |
super().__init__(*args, **kwargs)
|
| 65 |
self.standard_tools = STANDARD_TOOL_SCHEMA
|
| 66 |
+
self.battle_history = []
|
| 67 |
|
| 68 |
def _format_battle_state(self, battle: Battle) -> str:
|
|
|
|
| 69 |
active_pkmn = battle.active_pokemon
|
| 70 |
active_pkmn_info = f"Your active Pokemon: {active_pkmn.species} " \
|
| 71 |
f"(Type: {'/'.join(map(str, active_pkmn.types))}) " \
|
|
|
|
| 111 |
f"Opponent Side Conditions: {battle.opponent_side_conditions}"
|
| 112 |
return state_str.strip()
|
| 113 |
|
| 114 |
+
def _find_move_by_name(self, battle: Battle, move_name: str) -> Optional[Move]:
|
|
|
|
|
|
|
| 115 |
normalized_name = normalize_name(move_name)
|
| 116 |
# Prioritize exact ID match
|
| 117 |
for move in battle.available_moves:
|
|
|
|
| 124 |
return move
|
| 125 |
return None
|
| 126 |
|
| 127 |
+
def _find_pokemon_by_name(self, battle: Battle, pokemon_name: str) -> Optional[Pokemon]:
|
|
|
|
| 128 |
normalized_name = normalize_name(pokemon_name)
|
| 129 |
for pkmn in battle.available_switches:
|
| 130 |
# Normalize the species name for comparison
|
|
|
|
| 133 |
return None
|
| 134 |
|
| 135 |
async def choose_move(self, battle: Battle) -> str:
|
|
|
|
| 136 |
battle_state_str = self._format_battle_state(battle)
|
| 137 |
decision_result = await self._get_llm_decision(battle_state_str)
|
| 138 |
decision = decision_result.get("decision")
|
|
|
|
| 150 |
if chosen_move and chosen_move in battle.available_moves:
|
| 151 |
action_taken = True
|
| 152 |
chat_msg = f"AI Decision: Using move '{chosen_move.id}'."
|
| 153 |
+
print(chat_msg)
|
|
|
|
| 154 |
return self.create_order(chosen_move)
|
| 155 |
else:
|
| 156 |
fallback_reason = f"LLM chose unavailable/invalid move '{move_name}'."
|
|
|
|
| 163 |
if chosen_switch and chosen_switch in battle.available_switches:
|
| 164 |
action_taken = True
|
| 165 |
chat_msg = f"AI Decision: Switching to '{chosen_switch.species}'."
|
| 166 |
+
print(chat_msg)
|
|
|
|
| 167 |
return self.create_order(chosen_switch)
|
| 168 |
else:
|
| 169 |
fallback_reason = f"LLM chose unavailable/invalid switch '{pokemon_name}'."
|
|
|
|
| 173 |
fallback_reason = f"LLM called unknown function '{function_name}'."
|
| 174 |
|
| 175 |
if not action_taken:
|
| 176 |
+
if not fallback_reason:
|
| 177 |
if error_message:
|
| 178 |
fallback_reason = f"API Error: {error_message}"
|
| 179 |
+
elif decision is None:
|
| 180 |
fallback_reason = "LLM did not provide a valid function call."
|
| 181 |
+
else:
|
| 182 |
fallback_reason = "Unknown error processing LLM decision."
|
| 183 |
|
| 184 |
print(f"Warning: {fallback_reason} Choosing random action.")
|
|
|
|
| 185 |
|
|
|
|
| 186 |
if battle.available_moves or battle.available_switches:
|
| 187 |
return self.choose_random_move(battle)
|
| 188 |
else:
|
| 189 |
print("AI Fallback: No moves or switches available. Using Struggle/Default.")
|
| 190 |
+
return self.choose_default_move(battle)
|
|
|
|
| 191 |
|
| 192 |
+
async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]:
|
| 193 |
raise NotImplementedError("Subclasses must implement _get_llm_decision")
|
| 194 |
|
| 195 |
+
|
| 196 |
# --- Google Gemini Agent ---
|
| 197 |
class GeminiAgent(LLMAgentBase):
|
| 198 |
"""Uses Google Gemini API for decisions."""
|
| 199 |
+
def __init__(self, api_key: str = None, model: str = "gemini-1.5-flash", *args, **kwargs):
|
| 200 |
super().__init__(*args, **kwargs)
|
| 201 |
self.model_name = model
|
| 202 |
used_api_key = api_key or os.environ.get("GOOGLE_API_KEY")
|
|
|
|
| 203 |
if not used_api_key:
|
| 204 |
raise ValueError("Google API key not provided or found in GOOGLE_API_KEY env var.")
|
| 205 |
+
|
| 206 |
+
# Initialize Gemini client
|
| 207 |
+
genai.configure(api_key=used_api_key)
|
| 208 |
+
|
| 209 |
+
# Configure the model with tools
|
| 210 |
+
self.gemini_tool_config = [
|
| 211 |
+
{
|
| 212 |
+
"function_declarations": list(self.standard_tools.values())
|
| 213 |
+
}
|
| 214 |
+
]
|
| 215 |
+
|
| 216 |
+
# Initialize the model
|
| 217 |
+
self.model = genai.GenerativeModel(
|
| 218 |
+
model_name=self.model_name,
|
| 219 |
+
tools=self.gemini_tool_config
|
| 220 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]:
|
|
|
|
|
|
|
| 223 |
"""Sends state to the Gemini API and gets back the function call decision."""
|
| 224 |
prompt = (
|
| 225 |
"You are a skilled Pokemon battle AI. Your goal is to win the battle. "
|
|
|
|
| 232 |
)
|
| 233 |
|
| 234 |
try:
|
| 235 |
+
# Use the async API for Gemini
|
| 236 |
+
response = await self.model.generate_content_async(
|
| 237 |
+
prompt,
|
| 238 |
+
generation_config={"temperature": 0.5}
|
|
|
|
|
|
|
| 239 |
)
|
| 240 |
+
|
|
|
|
|
|
|
|
|
|
| 241 |
if not response.candidates:
|
| 242 |
+
finish_reason_str = "No candidates found"
|
| 243 |
+
try:
|
| 244 |
+
finish_reason_str = response.prompt_feedback.block_reason.name
|
| 245 |
+
except AttributeError:
|
| 246 |
+
pass
|
| 247 |
+
return {"error": f"Gemini response issue. Reason: {finish_reason_str}"}
|
| 248 |
|
| 249 |
candidate = response.candidates[0]
|
| 250 |
if not candidate.content or not candidate.content.parts:
|
| 251 |
finish_reason_str = "Unknown"
|
| 252 |
+
try:
|
| 253 |
+
finish_reason_str = candidate.finish_reason.name
|
| 254 |
+
except AttributeError:
|
| 255 |
+
pass
|
| 256 |
return {"error": f"Gemini response issue. Finish Reason: {finish_reason_str}"}
|
| 257 |
|
| 258 |
+
for part in candidate.content.parts:
|
| 259 |
+
if hasattr(part, 'function_call') and part.function_call:
|
| 260 |
+
fc = part.function_call
|
| 261 |
+
function_name = fc.name
|
| 262 |
+
# Convert arguments to dict
|
| 263 |
+
arguments = {}
|
| 264 |
+
if fc.args:
|
| 265 |
+
arguments = {k: v for k, v in fc.args.items()}
|
| 266 |
+
|
| 267 |
+
if function_name in self.standard_tools:
|
| 268 |
+
return {"decision": {"name": function_name, "arguments": arguments}}
|
| 269 |
+
else:
|
| 270 |
+
return {"error": f"Model called unknown function '{function_name}'. Args: {arguments}"}
|
| 271 |
+
|
| 272 |
+
# If we got here, no function call was found in any part
|
| 273 |
+
text_content = " ".join([
|
| 274 |
+
part.text if hasattr(part, 'text') else str(part)
|
| 275 |
+
for part in candidate.content.parts
|
| 276 |
+
])
|
| 277 |
+
return {"error": f"Gemini did not return a function call. Response: {text_content[:100]}..."}
|
| 278 |
+
|
| 279 |
+
except google_exceptions.GoogleAPIError as e:
|
| 280 |
+
print(f"Google API error: {e}")
|
| 281 |
+
return {"error": f"Google API error: {str(e)}"}
|
| 282 |
except Exception as e:
|
|
|
|
| 283 |
print(f"Unexpected error during Gemini processing: {e}")
|
| 284 |
import traceback
|
| 285 |
+
traceback.print_exc()
|
| 286 |
return {"error": f"Unexpected error: {str(e)}"}
|
| 287 |
+
|
| 288 |
+
|
| 289 |
# --- OpenAI Agent ---
|
| 290 |
class OpenAIAgent(LLMAgentBase):
|
| 291 |
"""Uses OpenAI API for decisions."""
|
| 292 |
+
def __init__(self, api_key: str = None, model: str = "gpt-4o", *args, **kwargs):
|
| 293 |
super().__init__(*args, **kwargs)
|
| 294 |
self.model = model
|
| 295 |
used_api_key = api_key or os.environ.get("OPENAI_API_KEY")
|
|
|
|
| 298 |
self.openai_client = AsyncOpenAI(api_key=used_api_key)
|
| 299 |
|
| 300 |
# Convert standard schema to OpenAI's format
|
| 301 |
+
self.openai_tools = list(self.standard_tools.values())
|
| 302 |
|
| 303 |
+
async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]:
|
| 304 |
system_prompt = (
|
| 305 |
"You are a skilled Pokemon battle AI. Your goal is to win the battle. "
|
| 306 |
"Based on the current battle state, decide the best action: either use an available move or switch to an available Pokémon. "
|
|
|
|
| 317 |
{"role": "system", "content": system_prompt},
|
| 318 |
{"role": "user", "content": user_prompt},
|
| 319 |
],
|
| 320 |
+
tools=self.openai_tools,
|
| 321 |
+
tool_choice="auto", # Let the model choose
|
| 322 |
temperature=0.5,
|
| 323 |
)
|
| 324 |
message = response.choices[0].message
|
| 325 |
+
|
| 326 |
+
# Check for tool calls in the response
|
| 327 |
+
if message.tool_calls:
|
| 328 |
+
tool_call = message.tool_calls[0] # Get the first tool call
|
| 329 |
+
function_name = tool_call.function.name
|
| 330 |
try:
|
| 331 |
+
arguments = json.loads(tool_call.function.arguments or '{}')
|
| 332 |
+
if function_name in self.standard_tools:
|
| 333 |
+
return {"decision": {"name": function_name, "arguments": arguments}}
|
|
|
|
| 334 |
else:
|
| 335 |
+
return {"error": f"Model called unknown function '{function_name}'."}
|
| 336 |
except json.JSONDecodeError:
|
| 337 |
+
return {"error": f"Error decoding function arguments: {tool_call.function.arguments}"}
|
| 338 |
else:
|
| 339 |
+
# Model decided not to call a function
|
| 340 |
return {"error": f"OpenAI did not return a function call. Response: {message.content}"}
|
| 341 |
|
| 342 |
except APIError as e:
|
|
|
|
| 350 |
# --- Mistral Agent ---
|
| 351 |
class MistralAgent(LLMAgentBase):
|
| 352 |
"""Uses Mistral AI API for decisions."""
|
| 353 |
+
def __init__(self, api_key: str = None, model: str = "mistral-large-latest", *args, **kwargs):
|
| 354 |
super().__init__(*args, **kwargs)
|
| 355 |
self.model = model
|
| 356 |
used_api_key = api_key or os.environ.get("MISTRAL_API_KEY")
|
|
|
|
| 358 |
raise ValueError("Mistral API key not provided or found in MISTRAL_API_KEY env var.")
|
| 359 |
self.mistral_client = MistralAsyncClient(api_key=used_api_key)
|
| 360 |
|
| 361 |
+
# Convert standard schema to Mistral's tool format
|
| 362 |
+
self.mistral_tools = list(self.standard_tools.values())
|
| 363 |
|
| 364 |
+
async def _get_llm_decision(self, battle_state: str) -> Dict[str, Any]:
|
| 365 |
system_prompt = (
|
| 366 |
"You are a skilled Pokemon battle AI. Your goal is to win the battle. "
|
| 367 |
"Based on the current battle state, decide the best action: either use an available move or switch to an available Pokémon. "
|
| 368 |
"Consider type matchups, HP, status conditions, field effects, entry hazards, and potential opponent actions. "
|
| 369 |
"Only choose actions listed as available using their exact ID (for moves) or species name (for switches). "
|
| 370 |
+
"Use the provided tools to indicate your choice."
|
| 371 |
)
|
| 372 |
user_prompt = f"Current Battle State:\n{battle_state}\n\nChoose the best action by calling the appropriate function ('choose_move' or 'choose_switch')."
|
| 373 |
|
| 374 |
try:
|
| 375 |
+
response = await self.mistral_client.chat(
|
| 376 |
model=self.model,
|
| 377 |
messages=[
|
| 378 |
+
{"role": "system", "content": system_prompt},
|
| 379 |
+
{"role": "user", "content": user_prompt}
|
| 380 |
],
|
| 381 |
tools=self.mistral_tools,
|
| 382 |
+
tool_choice="auto", # Let the model choose
|
| 383 |
temperature=0.5,
|
| 384 |
)
|
| 385 |
|
| 386 |
message = response.choices[0].message
|
| 387 |
+
# Check for tool calls in the response
|
| 388 |
if message.tool_calls:
|
| 389 |
+
tool_call = message.tool_calls[0] # Get the first tool call
|
| 390 |
function_name = tool_call.function.name
|
| 391 |
+
try:
|
| 392 |
+
arguments = json.loads(tool_call.function.arguments or '{}')
|
| 393 |
+
if function_name in self.standard_tools:
|
| 394 |
+
return {"decision": {"name": function_name, "arguments": arguments}}
|
| 395 |
+
else:
|
| 396 |
+
return {"error": f"Model called unknown function '{function_name}'."}
|
| 397 |
+
except json.JSONDecodeError:
|
| 398 |
+
return {"error": f"Error decoding function arguments: {tool_call.function.arguments}"}
|
| 399 |
else:
|
| 400 |
+
# Model decided not to call a tool
|
| 401 |
+
return {"error": f"Mistral did not return a tool call. Response: {message.content}"}
|
| 402 |
|
| 403 |
+
except MistralAPIError as e:
|
| 404 |
+
print(f"Error during Mistral API call: {e}")
|
| 405 |
+
return {"error": f"Mistral API Error: {str(e)}"}
|
| 406 |
+
except Exception as e:
|
| 407 |
print(f"Error during Mistral API call: {e}")
|
| 408 |
+
return {"error": f"Unexpected error: {str(e)}"}
|
|
|
|
|
|
|
|
|
|
|
|