Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,12 +13,10 @@ from diffusers import (
|
|
| 13 |
EulerDiscreteScheduler,
|
| 14 |
)
|
| 15 |
|
| 16 |
-
# Initialize ControlNet model
|
| 17 |
controlnet = ControlNetModel.from_pretrained(
|
| 18 |
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
| 19 |
)
|
| 20 |
|
| 21 |
-
# Initialize pipeline
|
| 22 |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 23 |
"XpucT/Deliberate",
|
| 24 |
controlnet=controlnet,
|
|
@@ -27,13 +25,11 @@ pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
|
| 27 |
).to("cuda")
|
| 28 |
pipe.enable_xformers_memory_efficient_attention()
|
| 29 |
|
| 30 |
-
# Sampler configurations
|
| 31 |
SAMPLER_MAP = {
|
| 32 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
| 33 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
| 34 |
}
|
| 35 |
|
| 36 |
-
# Inference function
|
| 37 |
def inference(
|
| 38 |
input_image: Image.Image,
|
| 39 |
prompt: str,
|
|
@@ -47,6 +43,8 @@ def inference(
|
|
| 47 |
if prompt is None or prompt == "":
|
| 48 |
raise gr.Error("Prompt is required")
|
| 49 |
|
|
|
|
|
|
|
| 50 |
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
|
| 51 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 52 |
|
|
@@ -54,18 +52,15 @@ def inference(
|
|
| 54 |
prompt=prompt,
|
| 55 |
negative_prompt=negative_prompt,
|
| 56 |
image=input_image,
|
| 57 |
-
control_image=input_image,
|
| 58 |
-
width=512, # type: ignore
|
| 59 |
-
height=512, # type: ignore
|
| 60 |
guidance_scale=float(guidance_scale),
|
| 61 |
-
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 62 |
generator=generator,
|
| 63 |
strength=float(strength),
|
| 64 |
num_inference_steps=40,
|
| 65 |
)
|
| 66 |
-
return out.images[0]
|
| 67 |
|
| 68 |
-
# Gradio UI
|
| 69 |
with gr.Blocks() as app:
|
| 70 |
gr.Markdown(
|
| 71 |
'''
|
|
@@ -78,7 +73,7 @@ with gr.Blocks() as app:
|
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column():
|
| 80 |
input_image = gr.Image(label="Input Illusion", type="pil")
|
| 81 |
-
prompt = gr.Textbox(label="Prompt"
|
| 82 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
|
| 83 |
with gr.Accordion(label="Advanced Options", open=False):
|
| 84 |
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
|
|
@@ -99,4 +94,4 @@ with gr.Blocks() as app:
|
|
| 99 |
app.queue(concurrency_count=4, max_size=20)
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
-
app.launch(debug=True)
|
|
|
|
| 13 |
EulerDiscreteScheduler,
|
| 14 |
)
|
| 15 |
|
|
|
|
| 16 |
controlnet = ControlNetModel.from_pretrained(
|
| 17 |
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
| 18 |
)
|
| 19 |
|
|
|
|
| 20 |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 21 |
"XpucT/Deliberate",
|
| 22 |
controlnet=controlnet,
|
|
|
|
| 25 |
).to("cuda")
|
| 26 |
pipe.enable_xformers_memory_efficient_attention()
|
| 27 |
|
|
|
|
| 28 |
SAMPLER_MAP = {
|
| 29 |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
| 30 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
| 31 |
}
|
| 32 |
|
|
|
|
| 33 |
def inference(
|
| 34 |
input_image: Image.Image,
|
| 35 |
prompt: str,
|
|
|
|
| 43 |
if prompt is None or prompt == "":
|
| 44 |
raise gr.Error("Prompt is required")
|
| 45 |
|
| 46 |
+
input_image = input_image.resize((512, 512))
|
| 47 |
+
|
| 48 |
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
|
| 49 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 50 |
|
|
|
|
| 52 |
prompt=prompt,
|
| 53 |
negative_prompt=negative_prompt,
|
| 54 |
image=input_image,
|
| 55 |
+
control_image=input_image,
|
|
|
|
|
|
|
| 56 |
guidance_scale=float(guidance_scale),
|
| 57 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 58 |
generator=generator,
|
| 59 |
strength=float(strength),
|
| 60 |
num_inference_steps=40,
|
| 61 |
)
|
| 62 |
+
return out.images[0]
|
| 63 |
|
|
|
|
| 64 |
with gr.Blocks() as app:
|
| 65 |
gr.Markdown(
|
| 66 |
'''
|
|
|
|
| 73 |
with gr.Row():
|
| 74 |
with gr.Column():
|
| 75 |
input_image = gr.Image(label="Input Illusion", type="pil")
|
| 76 |
+
prompt = gr.Textbox(label="Prompt")
|
| 77 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
|
| 78 |
with gr.Accordion(label="Advanced Options", open=False):
|
| 79 |
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
|
|
|
|
| 94 |
app.queue(concurrency_count=4, max_size=20)
|
| 95 |
|
| 96 |
if __name__ == "__main__":
|
| 97 |
+
app.launch(debug=True)
|