|
import gradio as gr |
|
import pandas as pd |
|
import fitz |
|
import os |
|
from huggingface_hub import HfApi, HfHubHTTPError |
|
|
|
def extract_paragraphs_with_headers(pdf_path): |
|
doc = fitz.open(pdf_path) |
|
data = [] |
|
|
|
for page_num, page in enumerate(doc): |
|
blocks = page.get_text("dict")["blocks"] |
|
for block in blocks: |
|
if "lines" in block: |
|
text = "" |
|
for line in block["lines"]: |
|
for span in line["spans"]: |
|
text += span["text"] + " " |
|
|
|
text = text.strip() |
|
|
|
|
|
is_header = any(span["size"] > 15 for line in block["lines"] for span in line["spans"]) |
|
|
|
data.append({ |
|
"page_num": page_num + 1, |
|
"text": text, |
|
"is_header": is_header |
|
}) |
|
|
|
return data |
|
|
|
def pdf_to_parquet_and_upload(pdf_files, hf_token, dataset_repo_id, action_choice): |
|
all_data = [] |
|
|
|
for pdf_file in pdf_files: |
|
extracted_data = extract_paragraphs_with_headers(pdf_file.name) |
|
|
|
for item in extracted_data: |
|
all_data.append({ |
|
'filename': os.path.basename(pdf_file.name), |
|
'page_num': item['page_num'], |
|
'text': item['text'], |
|
'is_header': item['is_header'] |
|
}) |
|
|
|
|
|
df = pd.DataFrame(all_data) |
|
|
|
|
|
parquet_file = 'papers_with_headers.parquet' |
|
df.to_parquet(parquet_file, engine='pyarrow', index=False) |
|
|
|
upload_message = "" |
|
|
|
|
|
if action_choice in ["Upload to Hugging Face", "Both"]: |
|
try: |
|
api = HfApi() |
|
api.set_access_token(hf_token) |
|
|
|
|
|
try: |
|
api.repo_info(repo_id=dataset_repo_id, repo_type="dataset") |
|
repo_exists = True |
|
except HfHubHTTPError: |
|
repo_exists = False |
|
|
|
if repo_exists: |
|
api.upload_file( |
|
path_or_fileobj=parquet_file, |
|
path_in_repo='papers_with_headers.parquet', |
|
repo_id=dataset_repo_id, |
|
repo_type='dataset' |
|
) |
|
upload_message = f"β
Successfully uploaded to {dataset_repo_id}" |
|
else: |
|
upload_message = "β Dataset repo not found. Please check the repo ID." |
|
|
|
except Exception as e: |
|
upload_message = f"β Upload failed: {str(e)}" |
|
|
|
|
|
return parquet_file, upload_message |
|
|
|
|
|
iface = gr.Interface( |
|
fn=pdf_to_parquet_and_upload, |
|
inputs=[ |
|
gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs (Drag & Drop or Search)"), |
|
gr.Textbox(label="Hugging Face API Token", type="password", placeholder="Enter your Hugging Face API token"), |
|
gr.Textbox(label="Your Dataset Repo ID (e.g., username/research-dataset)", placeholder="username/research-dataset"), |
|
gr.Radio(["Download Locally", "Upload to Hugging Face", "Both"], label="Action", value="Download Locally") |
|
], |
|
outputs=[ |
|
gr.File(label="Download Parquet File"), |
|
gr.Textbox(label="Status") |
|
], |
|
title="PDF to Parquet Converter with User-Controlled Upload", |
|
description="Upload your PDFs (drag & drop or search), convert them to Parquet, and upload to your own Hugging Face Dataset repo." |
|
) |
|
|
|
iface.launch() |
|
|