File size: 10,256 Bytes
9634b36 c7a5739 9634b36 b3bb65b ad0b1f7 7998543 9323459 14cda2c b3bb65b 9bea774 c7a5739 b3bb65b 7998543 06449e7 b3bb65b 9bea774 b3bb65b c7a5739 06449e7 7998543 c7a5739 b3bb65b c7a5739 b3bb65b 7998543 c7a5739 b3bb65b 9433534 b3bb65b 9433534 b3bb65b c8cd30b 9433534 b3bb65b c7a5739 06449e7 b3bb65b 14cda2c b3bb65b c7a5739 9bea774 14cda2c 9bea774 43a7a2a 9bea774 43a7a2a 9bea774 43a7a2a 9bea774 69c287e 9bea774 69c287e 9bea774 69c287e 9bea774 43a7a2a 9bea774 43a7a2a 69c287e 9bea774 69c287e 9bea774 69c287e 9bea774 69c287e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import gradio as gr
import pandas as pd
import fitz # PyMuPDF
import os
import re
from huggingface_hub import HfApi
from huggingface_hub.utils import HfHubHTTPError
import time
def sanitize_title(title, max_length=100):
"""
Sanitize the paper title to be safe for use as a filename.
Removes non-alphanumeric characters (except underscores and hyphens)
and truncates to max_length characters.
"""
sanitized = re.sub(r'[^\w\s-]', '', title).strip() # Remove unwanted characters
sanitized = re.sub(r'[-\s]+', '_', sanitized) # Replace spaces and hyphens with underscores
if len(sanitized) > max_length:
sanitized = sanitized[:max_length]
return sanitized
def extract_full_paper_with_labels(pdf_path, progress=None):
print(f"π Starting PDF Processing: {os.path.basename(pdf_path)}")
doc = fitz.open(pdf_path)
content = ""
# Initialize metadata
title = ""
authors = ""
year = ""
doi = ""
abstract = ""
footnotes = ""
references = ""
sources = ""
total_pages = len(doc)
max_iterations = total_pages * 2 # To prevent infinite loops
iteration_count = 0
# Regex patterns for detection
doi_pattern = r"\b10\.\d{4,9}/[-._;()/:A-Z0-9]+\b"
year_pattern = r'\b(19|20)\d{2}\b'
code_pattern = r"(def\s+\w+\s*\(|class\s+\w+|import\s+\w+|for\s+\w+\s+in|if\s+\w+|while\s+\w+|try:|except|{|\}|;)"
reference_keywords = ['reference', 'bibliography', 'sources']
financial_keywords = ['p/e', 'volatility', 'market cap', 'roi', 'sharpe', 'drawdown']
for page_num, page in enumerate(doc):
iteration_count += 1
if iteration_count > max_iterations:
raise Exception("β οΈ PDF processing exceeded iteration limit. Possible malformed PDF.")
if progress is not None:
progress((page_num + 1) / total_pages, desc=f"Processing Page {page_num + 1}/{total_pages}")
blocks = page.get_text("dict")["blocks"]
for block in blocks:
if "lines" in block:
text = ""
max_font_size = 0
for line in block["lines"]:
for span in line["spans"]:
text += span["text"] + " "
if span["size"] > max_font_size:
max_font_size = span["size"]
text = text.strip()
# Title (First Page, Largest Font)
if page_num == 0 and max_font_size > 15 and not title:
title = text
content += f"<TITLE>{title}</TITLE>\n"
# Authors
elif re.search(r'author|by', text, re.IGNORECASE) and not authors:
authors = text
content += f"<AUTHORS>{authors}</AUTHORS>\n"
# Year
elif re.search(year_pattern, text) and not year:
year = re.search(year_pattern, text).group(0)
content += f"<YEAR>{year}</YEAR>\n"
# DOI
elif re.search(doi_pattern, text) and not doi:
doi = re.search(doi_pattern, text).group(0)
content += f"<DOI>{doi}</DOI>\n"
# Abstract
elif "abstract" in text.lower() and not abstract:
abstract = text
content += f"<ABSTRACT>{abstract}</ABSTRACT>\n"
# Footnotes (small fonts)
elif max_font_size < 10:
footnotes += text + " "
# References
elif any(keyword in text.lower() for keyword in reference_keywords):
references += text + " "
# Tables
elif re.search(r"table\s*\d+", text, re.IGNORECASE):
content += f"<TABLE>{text}</TABLE>\n"
# Figures
elif re.search(r"figure\s*\d+", text, re.IGNORECASE):
content += f"<FIGURE>{text}</FIGURE>\n"
# Equations (look for math symbols)
elif re.search(r"=|β|β|Β±|Γ|Ο|ΞΌ|Ο", text):
content += f"<EQUATION>{text}</EQUATION>\n"
# β
Improved Code Block Detection
elif re.search(code_pattern, text) and len(text.split()) <= 50:
content += f"<CODE>{text}</CODE>\n"
# Financial Metrics
elif any(fin_kw in text.lower() for fin_kw in financial_keywords):
content += f"<FINANCIAL_METRIC>{text}</FINANCIAL_METRIC>\n"
# Regular Paragraph
else:
content += f"<PARAGRAPH>{text}</PARAGRAPH>\n"
# Append Footnotes and References
if footnotes:
content += f"<FOOTNOTE>{footnotes.strip()}</FOOTNOTE>\n"
if references:
content += f"<REFERENCE>{references.strip()}</REFERENCE>\n"
print(f"β
Finished Processing PDF: {os.path.basename(pdf_path)}")
return {
"filename": os.path.basename(pdf_path),
"title": title, # Include the title in the return data
"content": content
}
def upload_with_progress(file_path, repo_id, token, progress):
"""
Upload file to Hugging Face Dataset using upload_file() API method.
"""
print(f"π€ Starting upload of Parquet: {file_path}")
file_size = os.path.getsize(file_path)
api = HfApi()
try:
# Use upload_file() method from huggingface_hub
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=os.path.basename(file_path),
repo_id=repo_id,
repo_type="dataset",
token=token
)
if progress is not None:
progress(1, desc="β
Upload Complete")
print(f"β
Successfully uploaded to {repo_id}")
return f"β
Successfully uploaded to {repo_id}"
except HfHubHTTPError as e:
print(f"β Upload failed: {e}")
return f"β Upload failed: {str(e)}"
except Exception as e:
print(f"β Unexpected error: {e}")
return f"β Unexpected error: {str(e)}"
def pdf_to_parquet_and_upload(pdf_files, hf_token, dataset_repo_id, action_choice, progress=gr.Progress()):
all_data = []
total_files = len(pdf_files)
print("π Starting PDF to Parquet Conversion Process")
for idx, pdf_file in enumerate(pdf_files):
if progress is not None:
progress(idx / total_files, desc=f"Processing File {idx + 1}/{total_files}")
# β
Step 1: Process PDF with Full Labels
extracted_data = extract_full_paper_with_labels(pdf_file.name, progress=progress)
all_data.append(extracted_data)
print("π‘ Converting Processed Data to Parquet")
# β
Step 2: Convert to Parquet
df = pd.DataFrame(all_data)
# Generate the parquet file name
if len(all_data) == 1:
paper_title = all_data[0].get("title", "").strip()
if paper_title:
safe_title = sanitize_title(paper_title)
parquet_file = f"{safe_title}.parquet"
else:
parquet_file = 'fully_labeled_papers.parquet'
else:
# For multiple PDFs, include a timestamp to avoid overwrites
parquet_file = f"fully_labeled_papers_{time.strftime('%Y%m%d_%H%M%S')}.parquet"
try:
df.to_parquet(parquet_file, engine='pyarrow', index=False)
print("β
Parquet Conversion Completed")
except Exception as e:
print(f"β Parquet Conversion Failed: {str(e)}")
return None, f"β Parquet Conversion Failed: {str(e)}"
upload_message = "Skipped Upload"
# β
Step 3: Upload Parquet (if selected)
if action_choice in ["Upload to Hugging Face", "Both"]:
try:
upload_message = upload_with_progress(parquet_file, dataset_repo_id, hf_token, progress)
except Exception as e:
print(f"β Upload Failed: {str(e)}")
upload_message = f"β Upload failed: {str(e)}"
print("π Process Completed")
return parquet_file, upload_message
# Define a function for our custom "Reset Files Only" button.
def reset_files_fn():
# Return None for both the file input and the output file, clearing them.
return None, None
with gr.Blocks() as demo:
gr.Markdown(
"""
# PDF to Parquet Converter with Full Labeling
**Clear All Inputs:** The button below (labeled "Clear All Inputs") will reset every field, including your API key and dataset repo ID.
**Reset Files Only:** Use this button if you want to clear the PDF file uploads and the generated Parquet file, while keeping your credentials intact.
"""
)
with gr.Row():
pdf_input = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs (Drag & Drop or Search)")
with gr.Row():
hf_token = gr.Textbox(label="Hugging Face API Token", type="password", placeholder="Enter your Hugging Face API token")
dataset_repo = gr.Textbox(label="Your Dataset Repo ID (e.g., username/research-dataset)", placeholder="username/research-dataset")
with gr.Row():
action_radio = gr.Radio(["Download Locally", "Upload to Hugging Face", "Both"], label="Action", value="Download Locally")
with gr.Row():
convert_button = gr.Button("Convert PDF to Parquet")
reset_files_button = gr.Button("Reset Files Only")
clear_all_button = gr.Button("Clear All Inputs")
with gr.Row():
output_file = gr.File(label="Download Parquet File")
status_text = gr.Textbox(label="Status")
convert_button.click(
fn=pdf_to_parquet_and_upload,
inputs=[pdf_input, hf_token, dataset_repo, action_radio],
outputs=[output_file, status_text]
)
reset_files_button.click(
fn=reset_files_fn,
inputs=None,
outputs=[pdf_input, output_file]
)
# The Clear All button resets every input field.
def clear_all_fn():
return None, None, None, "Download Locally"
clear_all_button.click(
fn=clear_all_fn,
inputs=None,
outputs=[pdf_input, hf_token, dataset_repo, action_radio]
)
demo.launch()
|