File size: 5,149 Bytes
9634b36
 
c7a5739
9634b36
ad0b1f7
 
7998543
fb7ac68
7998543
06449e7
c7a5739
9634b36
 
7998543
06449e7
 
 
c7a5739
06449e7
 
 
 
 
7998543
 
c7a5739
 
 
 
 
 
 
7998543
c7a5739
 
 
 
 
 
 
 
 
 
 
06449e7
c7a5739
 
7998543
 
dfa54c4
7998543
06449e7
7998543
 
dfa54c4
7998543
dfa54c4
 
 
 
 
 
 
 
 
06449e7
dfa54c4
 
7998543
dfa54c4
 
7998543
dfa54c4
 
 
 
 
 
7998543
 
c7a5739
9634b36
06449e7
 
 
 
 
 
 
 
7998543
c7a5739
 
 
 
 
 
 
9634b36
06449e7
 
c7a5739
 
9634b36
06449e7
 
 
 
 
 
c7a5739
06449e7
 
 
c7a5739
 
7998543
c7a5739
06449e7
c7a5739
 
06449e7
c7a5739
9634b36
06449e7
9634b36
c7a5739
 
 
 
 
 
 
 
 
 
 
dfa54c4
 
9634b36
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import pandas as pd
import fitz  # PyMuPDF
import os
from huggingface_hub import HfApi
from huggingface_hub.utils import HfHubHTTPError
import time

def extract_paragraphs_with_headers(pdf_path, progress=None):
    print(f"πŸ“„ Starting PDF Processing: {os.path.basename(pdf_path)}")
    doc = fitz.open(pdf_path)
    data = []

    total_pages = len(doc)
    max_iterations = total_pages * 2  # To prevent infinite loops
    iteration_count = 0

    for page_num, page in enumerate(doc):
        iteration_count += 1
        if iteration_count > max_iterations:
            raise Exception("⚠️ PDF processing exceeded iteration limit. Possible malformed PDF.")

        if progress is not None:
            progress((page_num + 1) / total_pages, desc=f"Processing Page {page_num + 1}/{total_pages}")

        blocks = page.get_text("dict")["blocks"]
        for block in blocks:
            if "lines" in block:
                text = ""
                for line in block["lines"]:
                    for span in line["spans"]:
                        text += span["text"] + " "

                text = text.strip()

                # Detect headers based on font size
                is_header = any(span["size"] > 15 for line in block["lines"] for span in line["spans"])

                data.append({
                    "page_num": page_num + 1,
                    "text": text,
                    "is_header": is_header
                })

    print(f"βœ… Finished Processing PDF: {os.path.basename(pdf_path)}")
    return data

def upload_with_progress(file_path, repo_id, token, progress):
    """
    Upload file to Hugging Face Dataset using upload_file() API method.
    """
    print(f"πŸ“€ Starting upload of Parquet: {file_path}")
    file_size = os.path.getsize(file_path)

    api = HfApi()

    try:
        # Use upload_file() method from huggingface_hub
        api.upload_file(
            path_or_fileobj=file_path,
            path_in_repo=os.path.basename(file_path),
            repo_id=repo_id,
            repo_type="dataset",
            token=token
        )

        if progress is not None:
            progress(1, desc="βœ… Upload Complete")

        print(f"βœ… Successfully uploaded to {repo_id}")
        return f"βœ… Successfully uploaded to {repo_id}"

    except HfHubHTTPError as e:
        print(f"❌ Upload failed: {e}")
        return f"❌ Upload failed: {str(e)}"
    except Exception as e:
        print(f"❌ Unexpected error: {e}")
        return f"❌ Unexpected error: {str(e)}"

def pdf_to_parquet_and_upload(pdf_files, hf_token, dataset_repo_id, action_choice, progress=gr.Progress()):
    all_data = []

    total_files = len(pdf_files)
    print("πŸš€ Starting PDF to Parquet Conversion Process")

    for idx, pdf_file in enumerate(pdf_files):
        if progress is not None:
            progress(idx / total_files, desc=f"Processing File {idx + 1}/{total_files}")

        # βœ… Step 1: Process PDF
        extracted_data = extract_paragraphs_with_headers(pdf_file.name, progress=progress)
        for item in extracted_data:
            all_data.append({
                'filename': os.path.basename(pdf_file.name),
                'page_num': item['page_num'],
                'text': item['text'],
                'is_header': item['is_header']
            })

    print("🟑 Converting Processed Data to Parquet")
    # βœ… Step 2: Convert to Parquet
    df = pd.DataFrame(all_data)
    parquet_file = 'papers_with_headers.parquet'

    try:
        df.to_parquet(parquet_file, engine='pyarrow', index=False)
        print("βœ… Parquet Conversion Completed")
    except Exception as e:
        print(f"❌ Parquet Conversion Failed: {str(e)}")
        return None, f"❌ Parquet Conversion Failed: {str(e)}"

    upload_message = "Skipped Upload"

    # βœ… Step 3: Upload Parquet (if selected)
    if action_choice in ["Upload to Hugging Face", "Both"]:
        try:
            upload_message = upload_with_progress(parquet_file, dataset_repo_id, hf_token, progress)
        except Exception as e:
            print(f"❌ Upload Failed: {str(e)}")
            upload_message = f"❌ Upload failed: {str(e)}"

    print("🏁 Process Completed")
    return parquet_file, upload_message

# βœ… Gradio Interface
iface = gr.Interface(
    fn=pdf_to_parquet_and_upload,
    inputs=[
        gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs (Drag & Drop or Search)"),
        gr.Textbox(label="Hugging Face API Token", type="password", placeholder="Enter your Hugging Face API token"),
        gr.Textbox(label="Your Dataset Repo ID (e.g., username/research-dataset)", placeholder="username/research-dataset"),
        gr.Radio(["Download Locally", "Upload to Hugging Face", "Both"], label="Action", value="Download Locally")
    ],
    outputs=[
        gr.File(label="Download Parquet File"), 
        gr.Textbox(label="Status")
    ],
    title="PDF to Parquet Converter with Correct Upload API",
    description="Upload your PDFs, convert them to Parquet, and upload to your Hugging Face Dataset using the official API."
)

iface.launch()