File size: 9,557 Bytes
9634b36
 
c7a5739
9634b36
b3bb65b
ad0b1f7
 
7998543
b7a9a73
9d4e756
9323459
b3bb65b
06449e7
c7a5739
b3bb65b
 
 
 
 
 
 
 
 
 
 
7998543
06449e7
 
 
b3bb65b
 
 
9433534
b3bb65b
 
 
c7a5739
06449e7
 
 
 
 
7998543
 
c7a5739
 
 
 
b3bb65b
c7a5739
 
 
b3bb65b
 
7998543
c7a5739
 
b3bb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9433534
b3bb65b
 
 
9433534
b3bb65b
 
 
 
 
 
 
9323459
9433534
b3bb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a5739
06449e7
b3bb65b
 
9323459
b3bb65b
 
c7a5739
01fcd9e
 
 
e263e01
01fcd9e
a42bf4a
01fcd9e
 
 
 
e263e01
 
 
01fcd9e
e263e01
 
 
 
 
 
 
 
 
 
 
 
 
b7a9a73
e263e01
 
 
 
 
 
 
 
 
 
 
01fcd9e
 
 
 
 
 
 
 
 
 
 
 
 
b7a9a73
e263e01
081cec0
 
9634b36
b7a9a73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
081cec0
 
 
 
06449e7
081cec0
 
 
 
 
b7a9a73
081cec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2fa3ae
081cec0
 
c2fa3ae
06449e7
9634b36
c7a5739
 
 
 
 
 
 
 
 
 
 
9323459
 
9634b36
 
 
b3bb65b
9323459
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gradio as gr
import pandas as pd
import fitz  # PyMuPDF
import os
import re
from huggingface_hub import HfApi
from huggingface_hub.utils import HfHubHTTPError
import time
import hashlib
import requests

def extract_full_paper_with_labels(pdf_path, progress=None):
    print(f"πŸ“„ Starting PDF Processing: {os.path.basename(pdf_path)}")
    doc = fitz.open(pdf_path)
    content = ""

    # Initialize metadata
    title = ""
    authors = ""
    year = ""
    doi = ""
    abstract = ""
    footnotes = ""
    references = ""
    sources = ""
    total_pages = len(doc)
    max_iterations = total_pages * 2  # To prevent infinite loops
    iteration_count = 0

    # Regex patterns for detection
    doi_pattern = r"\b10\.\d{4,9}/[-._;()/:A-Z0-9]+\b"
    year_pattern = r'\b(19|20)\d{2}\b'
    code_pattern = r"(def\s+\w+\s*\(|class\s+\w+|import\s+\w+|for\s+\w+\s+in|if\s+\w+|while\s+\w+|try:|except|{|\}|;)"
    reference_keywords = ['reference', 'bibliography', 'sources']
    financial_keywords = ['p/e', 'volatility', 'market cap', 'roi', 'sharpe', 'drawdown']

    for page_num, page in enumerate(doc):
        iteration_count += 1
        if iteration_count > max_iterations:
            raise Exception("⚠️ PDF processing exceeded iteration limit. Possible malformed PDF.")

        if progress is not None:
            progress((page_num + 1) / total_pages, desc=f"Processing Page {page_num + 1}/{total_pages}")

        blocks = page.get_text("dict")["blocks"]
        for block in blocks:
            if "lines" in block:
                text = ""
                max_font_size = 0
                for line in block["lines"]:
                    for span in line["spans"]:
                        text += span["text"] + " "
                        if span["size"] > max_font_size:
                            max_font_size = span["size"]

                text = text.strip()

                # Title (First Page, Largest Font)
                if page_num == 0 and max_font_size > 15 and not title:
                    title = text
                    content += f"<TITLE>{title}</TITLE>\n"

                # Authors
                elif re.search(r'author|by', text, re.IGNORECASE) and not authors:
                    authors = text
                    content += f"<AUTHORS>{authors}</AUTHORS>\n"

                # Year
                elif re.search(year_pattern, text) and not year:
                    year = re.search(year_pattern, text).group(0)
                    content += f"<YEAR>{year}</YEAR>\n"

                # DOI
                elif re.search(doi_pattern, text) and not doi:
                    doi = re.search(doi_pattern, text).group(0)
                    content += f"<DOI>{doi}</DOI>\n"

                # Abstract
                elif "abstract" in text.lower() and not abstract:
                    abstract = text
                    content += f"<ABSTRACT>{abstract}</ABSTRACT>\n"

                # Footnotes (small fonts)
                elif max_font_size < 10:
                    footnotes += text + " "

                # References
                elif any(keyword in text.lower() for keyword in reference_keywords):
                    references += text + " "

                # Tables
                elif re.search(r"table\s*\d+", text, re.IGNORECASE):
                    content += f"<TABLE>{text}</TABLE>\n"

                # Figures
                elif re.search(r"figure\s*\d+", text, re.IGNORECASE):
                    content += f"<FIGURE>{text}</FIGURE>\n"

                # Equations (look for math symbols)
                elif re.search(r"=|βˆ‘|√|Β±|Γ—|Ο€|ΞΌ|Οƒ", text):
                    content += f"<EQUATION>{text}</EQUATION>\n"

                # Code Blocks (enhanced detection)
                elif re.search(code_pattern, text) and len(text.split()) <= 50:
                    content += f"<CODE>{text}</CODE>\n"

                # Financial Metrics
                elif any(fin_kw in text.lower() for fin_kw in financial_keywords):
                    content += f"<FINANCIAL_METRIC>{text}</FINANCIAL_METRIC>\n"

                # Regular Paragraph
                else:
                    content += f"<PARAGRAPH>{text}</PARAGRAPH>\n"

    # Append Footnotes and References
    if footnotes:
        content += f"<FOOTNOTE>{footnotes.strip()}</FOOTNOTE>\n"
    if references:
        content += f"<REFERENCE>{references.strip()}</REFERENCE>\n"

    print(f"βœ… Finished Processing PDF: {os.path.basename(pdf_path)}")
    return {
        "filename": os.path.basename(pdf_path),
        "title": title if title else "Untitled_Paper",
        "content": content
    }


def upload_with_progress(file_path, repo_id, token, progress):
    """
    Upload file to Hugging Face Dataset with progress tracking.
    """

    print(f"πŸ“€ Starting upload of Parquet: {file_path}")
    file_size = os.path.getsize(file_path)
    api = HfApi()

    # Get the proper upload URL from the Hugging Face API
    upload_url = f"https://huggingface.co/api/datasets/{repo_id}/upload"

    try:
        with open(file_path, 'rb') as f:
            chunk_size = 1024 * 1024  # 1 MB chunks
            uploaded = 0

            headers = {
                "Authorization": f"Bearer {token}",
                "Content-Type": "application/octet-stream"
            }

            while True:
                chunk = f.read(chunk_size)
                if not chunk:
                    break  # Finished reading file

                response = requests.put(upload_url, headers=headers, data=chunk)

                if response.status_code != 200:
                    raise Exception(f"Upload failed: {response.text}")

                # Update progress after each chunk
                uploaded += len(chunk)
                if progress is not None:
                    progress(uploaded / file_size, desc=f"Uploading... {uploaded // (1024 * 1024)}MB/{file_size // (1024 * 1024)}MB")

        # Final progress update
        if progress is not None:
            progress(1, desc="βœ… Upload Complete")

        print(f"βœ… Successfully uploaded to {repo_id}")
        return f"βœ… Successfully uploaded to {repo_id}"

    except HfHubHTTPError as e:
        print(f"❌ Upload failed: {e}")
        return f"❌ Upload failed: {str(e)}"
    except Exception as e:
        print(f"❌ Unexpected error: {e}")
        return f"❌ Unexpected error: {str(e)}"



def pdf_to_parquet_and_upload(pdf_files, hf_token, dataset_repo_id, action_choice, progress=gr.Progress()):
    upload_message = ""

    # βœ… Helper function inside this block to avoid external edits
    def sanitize_filename(title, max_length=100):
        """
        Sanitize and truncate the filename to avoid OS limits.
        """
        # Remove invalid characters
        sanitized = re.sub(r'[\\/*?:"<>|]', "", title)
        sanitized = sanitized.replace(" ", "_")

        # Truncate to max_length if necessary
        if len(sanitized) > max_length:
            # Append an 8-character hash for uniqueness
            hash_suffix = hashlib.md5(sanitized.encode()).hexdigest()[:8]
            sanitized = sanitized[:max_length] + "_" + hash_suffix

        return sanitized

    total_files = len(pdf_files)
    print("πŸš€ Starting PDF to Parquet Conversion Process")

    for idx, pdf_file in enumerate(pdf_files):
        if progress is not None:
            progress(idx / total_files, desc=f"Processing File {idx + 1}/{total_files}")

        # βœ… Step 1: Process PDF with Full Labels
        extracted_data = extract_full_paper_with_labels(pdf_file.name, progress=progress)

        # βœ… Step 2: Use Title for Parquet Filename with Truncation & Hash
        sanitized_title = sanitize_filename(extracted_data["title"])
        parquet_file = f"{sanitized_title}.parquet"

        # Convert to DataFrame
        df = pd.DataFrame([extracted_data])

        try:
            df.to_parquet(parquet_file, engine='pyarrow', index=False)
            print(f"βœ… Parquet saved as: {parquet_file}")
        except Exception as e:
            print(f"❌ Parquet Conversion Failed: {str(e)}")
            return None, f"❌ Parquet Conversion Failed: {str(e)}"

        # βœ… Step 3: Upload Parquet (if selected)
        if action_choice in ["Upload to Hugging Face", "Both"]:
            try:
                upload_message = upload_with_progress(parquet_file, dataset_repo_id, hf_token, progress)
            except Exception as e:
                print(f"❌ Upload Failed: {str(e)}")
                upload_message = f"❌ Upload failed: {str(e)}"

    print("🏁 Process Completed")
    return parquet_file, upload_message

# βœ… Gradio Interface
iface = gr.Interface(
    fn=pdf_to_parquet_and_upload,
    inputs=[
        gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs (Drag & Drop or Search)"),
        gr.Textbox(label="Hugging Face API Token", type="password", placeholder="Enter your Hugging Face API token"),
        gr.Textbox(label="Your Dataset Repo ID (e.g., username/research-dataset)", placeholder="username/research-dataset"),
        gr.Radio(["Download Locally", "Upload to Hugging Face", "Both"], label="Action", value="Download Locally")
    ],
    outputs=[
        gr.File(label="Download Parquet File"), 
        gr.Textbox(label="Status")
    ],
    title="PDF to Parquet Converter with Title-Based Naming",
    description="Upload your PDFs, convert them to Parquet files named after the paper title, and upload to your Hugging Face Dataset."
)

iface.launch()