File size: 9,557 Bytes
9634b36 c7a5739 9634b36 b3bb65b ad0b1f7 7998543 b7a9a73 9d4e756 9323459 b3bb65b 06449e7 c7a5739 b3bb65b 7998543 06449e7 b3bb65b 9433534 b3bb65b c7a5739 06449e7 7998543 c7a5739 b3bb65b c7a5739 b3bb65b 7998543 c7a5739 b3bb65b 9433534 b3bb65b 9433534 b3bb65b 9323459 9433534 b3bb65b c7a5739 06449e7 b3bb65b 9323459 b3bb65b c7a5739 01fcd9e e263e01 01fcd9e a42bf4a 01fcd9e e263e01 01fcd9e e263e01 b7a9a73 e263e01 01fcd9e b7a9a73 e263e01 081cec0 9634b36 b7a9a73 081cec0 06449e7 081cec0 b7a9a73 081cec0 c2fa3ae 081cec0 c2fa3ae 06449e7 9634b36 c7a5739 9323459 9634b36 b3bb65b 9323459 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
import pandas as pd
import fitz # PyMuPDF
import os
import re
from huggingface_hub import HfApi
from huggingface_hub.utils import HfHubHTTPError
import time
import hashlib
import requests
def extract_full_paper_with_labels(pdf_path, progress=None):
print(f"π Starting PDF Processing: {os.path.basename(pdf_path)}")
doc = fitz.open(pdf_path)
content = ""
# Initialize metadata
title = ""
authors = ""
year = ""
doi = ""
abstract = ""
footnotes = ""
references = ""
sources = ""
total_pages = len(doc)
max_iterations = total_pages * 2 # To prevent infinite loops
iteration_count = 0
# Regex patterns for detection
doi_pattern = r"\b10\.\d{4,9}/[-._;()/:A-Z0-9]+\b"
year_pattern = r'\b(19|20)\d{2}\b'
code_pattern = r"(def\s+\w+\s*\(|class\s+\w+|import\s+\w+|for\s+\w+\s+in|if\s+\w+|while\s+\w+|try:|except|{|\}|;)"
reference_keywords = ['reference', 'bibliography', 'sources']
financial_keywords = ['p/e', 'volatility', 'market cap', 'roi', 'sharpe', 'drawdown']
for page_num, page in enumerate(doc):
iteration_count += 1
if iteration_count > max_iterations:
raise Exception("β οΈ PDF processing exceeded iteration limit. Possible malformed PDF.")
if progress is not None:
progress((page_num + 1) / total_pages, desc=f"Processing Page {page_num + 1}/{total_pages}")
blocks = page.get_text("dict")["blocks"]
for block in blocks:
if "lines" in block:
text = ""
max_font_size = 0
for line in block["lines"]:
for span in line["spans"]:
text += span["text"] + " "
if span["size"] > max_font_size:
max_font_size = span["size"]
text = text.strip()
# Title (First Page, Largest Font)
if page_num == 0 and max_font_size > 15 and not title:
title = text
content += f"<TITLE>{title}</TITLE>\n"
# Authors
elif re.search(r'author|by', text, re.IGNORECASE) and not authors:
authors = text
content += f"<AUTHORS>{authors}</AUTHORS>\n"
# Year
elif re.search(year_pattern, text) and not year:
year = re.search(year_pattern, text).group(0)
content += f"<YEAR>{year}</YEAR>\n"
# DOI
elif re.search(doi_pattern, text) and not doi:
doi = re.search(doi_pattern, text).group(0)
content += f"<DOI>{doi}</DOI>\n"
# Abstract
elif "abstract" in text.lower() and not abstract:
abstract = text
content += f"<ABSTRACT>{abstract}</ABSTRACT>\n"
# Footnotes (small fonts)
elif max_font_size < 10:
footnotes += text + " "
# References
elif any(keyword in text.lower() for keyword in reference_keywords):
references += text + " "
# Tables
elif re.search(r"table\s*\d+", text, re.IGNORECASE):
content += f"<TABLE>{text}</TABLE>\n"
# Figures
elif re.search(r"figure\s*\d+", text, re.IGNORECASE):
content += f"<FIGURE>{text}</FIGURE>\n"
# Equations (look for math symbols)
elif re.search(r"=|β|β|Β±|Γ|Ο|ΞΌ|Ο", text):
content += f"<EQUATION>{text}</EQUATION>\n"
# Code Blocks (enhanced detection)
elif re.search(code_pattern, text) and len(text.split()) <= 50:
content += f"<CODE>{text}</CODE>\n"
# Financial Metrics
elif any(fin_kw in text.lower() for fin_kw in financial_keywords):
content += f"<FINANCIAL_METRIC>{text}</FINANCIAL_METRIC>\n"
# Regular Paragraph
else:
content += f"<PARAGRAPH>{text}</PARAGRAPH>\n"
# Append Footnotes and References
if footnotes:
content += f"<FOOTNOTE>{footnotes.strip()}</FOOTNOTE>\n"
if references:
content += f"<REFERENCE>{references.strip()}</REFERENCE>\n"
print(f"β
Finished Processing PDF: {os.path.basename(pdf_path)}")
return {
"filename": os.path.basename(pdf_path),
"title": title if title else "Untitled_Paper",
"content": content
}
def upload_with_progress(file_path, repo_id, token, progress):
"""
Upload file to Hugging Face Dataset with progress tracking.
"""
print(f"π€ Starting upload of Parquet: {file_path}")
file_size = os.path.getsize(file_path)
api = HfApi()
# Get the proper upload URL from the Hugging Face API
upload_url = f"https://huggingface.co/api/datasets/{repo_id}/upload"
try:
with open(file_path, 'rb') as f:
chunk_size = 1024 * 1024 # 1 MB chunks
uploaded = 0
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/octet-stream"
}
while True:
chunk = f.read(chunk_size)
if not chunk:
break # Finished reading file
response = requests.put(upload_url, headers=headers, data=chunk)
if response.status_code != 200:
raise Exception(f"Upload failed: {response.text}")
# Update progress after each chunk
uploaded += len(chunk)
if progress is not None:
progress(uploaded / file_size, desc=f"Uploading... {uploaded // (1024 * 1024)}MB/{file_size // (1024 * 1024)}MB")
# Final progress update
if progress is not None:
progress(1, desc="β
Upload Complete")
print(f"β
Successfully uploaded to {repo_id}")
return f"β
Successfully uploaded to {repo_id}"
except HfHubHTTPError as e:
print(f"β Upload failed: {e}")
return f"β Upload failed: {str(e)}"
except Exception as e:
print(f"β Unexpected error: {e}")
return f"β Unexpected error: {str(e)}"
def pdf_to_parquet_and_upload(pdf_files, hf_token, dataset_repo_id, action_choice, progress=gr.Progress()):
upload_message = ""
# β
Helper function inside this block to avoid external edits
def sanitize_filename(title, max_length=100):
"""
Sanitize and truncate the filename to avoid OS limits.
"""
# Remove invalid characters
sanitized = re.sub(r'[\\/*?:"<>|]', "", title)
sanitized = sanitized.replace(" ", "_")
# Truncate to max_length if necessary
if len(sanitized) > max_length:
# Append an 8-character hash for uniqueness
hash_suffix = hashlib.md5(sanitized.encode()).hexdigest()[:8]
sanitized = sanitized[:max_length] + "_" + hash_suffix
return sanitized
total_files = len(pdf_files)
print("π Starting PDF to Parquet Conversion Process")
for idx, pdf_file in enumerate(pdf_files):
if progress is not None:
progress(idx / total_files, desc=f"Processing File {idx + 1}/{total_files}")
# β
Step 1: Process PDF with Full Labels
extracted_data = extract_full_paper_with_labels(pdf_file.name, progress=progress)
# β
Step 2: Use Title for Parquet Filename with Truncation & Hash
sanitized_title = sanitize_filename(extracted_data["title"])
parquet_file = f"{sanitized_title}.parquet"
# Convert to DataFrame
df = pd.DataFrame([extracted_data])
try:
df.to_parquet(parquet_file, engine='pyarrow', index=False)
print(f"β
Parquet saved as: {parquet_file}")
except Exception as e:
print(f"β Parquet Conversion Failed: {str(e)}")
return None, f"β Parquet Conversion Failed: {str(e)}"
# β
Step 3: Upload Parquet (if selected)
if action_choice in ["Upload to Hugging Face", "Both"]:
try:
upload_message = upload_with_progress(parquet_file, dataset_repo_id, hf_token, progress)
except Exception as e:
print(f"β Upload Failed: {str(e)}")
upload_message = f"β Upload failed: {str(e)}"
print("π Process Completed")
return parquet_file, upload_message
# β
Gradio Interface
iface = gr.Interface(
fn=pdf_to_parquet_and_upload,
inputs=[
gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs (Drag & Drop or Search)"),
gr.Textbox(label="Hugging Face API Token", type="password", placeholder="Enter your Hugging Face API token"),
gr.Textbox(label="Your Dataset Repo ID (e.g., username/research-dataset)", placeholder="username/research-dataset"),
gr.Radio(["Download Locally", "Upload to Hugging Face", "Both"], label="Action", value="Download Locally")
],
outputs=[
gr.File(label="Download Parquet File"),
gr.Textbox(label="Status")
],
title="PDF to Parquet Converter with Title-Based Naming",
description="Upload your PDFs, convert them to Parquet files named after the paper title, and upload to your Hugging Face Dataset."
)
iface.launch()
|