File size: 7,948 Bytes
9634b36 c7a5739 9634b36 b3bb65b ad0b1f7 7998543 fb7ac68 b3bb65b 06449e7 c7a5739 b3bb65b 7998543 06449e7 b3bb65b 9433534 b3bb65b c7a5739 06449e7 7998543 c7a5739 b3bb65b c7a5739 b3bb65b 7998543 c7a5739 b3bb65b 9433534 b3bb65b 9433534 b3bb65b 9433534 b3bb65b c7a5739 06449e7 b3bb65b c7a5739 9433534 7998543 dfa54c4 7998543 06449e7 7998543 dfa54c4 7998543 dfa54c4 06449e7 dfa54c4 7998543 dfa54c4 7998543 dfa54c4 7998543 c7a5739 9634b36 06449e7 b3bb65b 9634b36 06449e7 c7a5739 b3bb65b 9634b36 06449e7 c7a5739 06449e7 c7a5739 7998543 c7a5739 06449e7 c7a5739 06449e7 c7a5739 9634b36 06449e7 9634b36 c7a5739 b3bb65b 9634b36 b3bb65b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import pandas as pd
import fitz # PyMuPDF
import os
import re
from huggingface_hub import HfApi
from huggingface_hub.utils import HfHubHTTPError
import time
def extract_full_paper_with_labels(pdf_path, progress=None):
print(f"π Starting PDF Processing: {os.path.basename(pdf_path)}")
doc = fitz.open(pdf_path)
content = ""
# Initialize metadata
title = ""
authors = ""
year = ""
doi = ""
abstract = ""
footnotes = ""
references = ""
sources = ""
total_pages = len(doc)
max_iterations = total_pages * 2 # To prevent infinite loops
iteration_count = 0
# Regex patterns for detection
doi_pattern = r"\b10\.\d{4,9}/[-._;()/:A-Z0-9]+\b"
year_pattern = r'\b(19|20)\d{2}\b'
code_pattern = r"(def\s+\w+\s*\(|class\s+\w+|import\s+\w+|for\s+\w+\s+in|if\s+\w+|while\s+\w+|try:|except|{|\}|;)"
reference_keywords = ['reference', 'bibliography', 'sources']
financial_keywords = ['p/e', 'volatility', 'market cap', 'roi', 'sharpe', 'drawdown']
for page_num, page in enumerate(doc):
iteration_count += 1
if iteration_count > max_iterations:
raise Exception("β οΈ PDF processing exceeded iteration limit. Possible malformed PDF.")
if progress is not None:
progress((page_num + 1) / total_pages, desc=f"Processing Page {page_num + 1}/{total_pages}")
blocks = page.get_text("dict")["blocks"]
for block in blocks:
if "lines" in block:
text = ""
max_font_size = 0
for line in block["lines"]:
for span in line["spans"]:
text += span["text"] + " "
if span["size"] > max_font_size:
max_font_size = span["size"]
text = text.strip()
# Title (First Page, Largest Font)
if page_num == 0 and max_font_size > 15 and not title:
title = text
content += f"<TITLE>{title}</TITLE>\n"
# Authors
elif re.search(r'author|by', text, re.IGNORECASE) and not authors:
authors = text
content += f"<AUTHORS>{authors}</AUTHORS>\n"
# Year
elif re.search(year_pattern, text) and not year:
year = re.search(year_pattern, text).group(0)
content += f"<YEAR>{year}</YEAR>\n"
# DOI
elif re.search(doi_pattern, text) and not doi:
doi = re.search(doi_pattern, text).group(0)
content += f"<DOI>{doi}</DOI>\n"
# Abstract
elif "abstract" in text.lower() and not abstract:
abstract = text
content += f"<ABSTRACT>{abstract}</ABSTRACT>\n"
# Footnotes (small fonts)
elif max_font_size < 10:
footnotes += text + " "
# References
elif any(keyword in text.lower() for keyword in reference_keywords):
references += text + " "
# Tables
elif re.search(r"table\s*\d+", text, re.IGNORECASE):
content += f"<TABLE>{text}</TABLE>\n"
# Figures
elif re.search(r"figure\s*\d+", text, re.IGNORECASE):
content += f"<FIGURE>{text}</FIGURE>\n"
# Equations (look for math symbols)
elif re.search(r"=|β|β|Β±|Γ|Ο|ΞΌ|Ο", text):
content += f"<EQUATION>{text}</EQUATION>\n"
# β
Improved Code Block Detection
elif re.search(code_pattern, text) and len(text.split()) <= 50:
content += f"<CODE>{text}</CODE>\n"
# Financial Metrics
elif any(fin_kw in text.lower() for fin_kw in financial_keywords):
content += f"<FINANCIAL_METRIC>{text}</FINANCIAL_METRIC>\n"
# Regular Paragraph
else:
content += f"<PARAGRAPH>{text}</PARAGRAPH>\n"
# Append Footnotes and References
if footnotes:
content += f"<FOOTNOTE>{footnotes.strip()}</FOOTNOTE>\n"
if references:
content += f"<REFERENCE>{references.strip()}</REFERENCE>\n"
print(f"β
Finished Processing PDF: {os.path.basename(pdf_path)}")
return {
"filename": os.path.basename(pdf_path),
"content": content
}
def upload_with_progress(file_path, repo_id, token, progress):
"""
Upload file to Hugging Face Dataset using upload_file() API method.
"""
print(f"π€ Starting upload of Parquet: {file_path}")
file_size = os.path.getsize(file_path)
api = HfApi()
try:
# Use upload_file() method from huggingface_hub
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=os.path.basename(file_path),
repo_id=repo_id,
repo_type="dataset",
token=token
)
if progress is not None:
progress(1, desc="β
Upload Complete")
print(f"β
Successfully uploaded to {repo_id}")
return f"β
Successfully uploaded to {repo_id}"
except HfHubHTTPError as e:
print(f"β Upload failed: {e}")
return f"β Upload failed: {str(e)}"
except Exception as e:
print(f"β Unexpected error: {e}")
return f"β Unexpected error: {str(e)}"
def pdf_to_parquet_and_upload(pdf_files, hf_token, dataset_repo_id, action_choice, progress=gr.Progress()):
all_data = []
total_files = len(pdf_files)
print("π Starting PDF to Parquet Conversion Process")
for idx, pdf_file in enumerate(pdf_files):
if progress is not None:
progress(idx / total_files, desc=f"Processing File {idx + 1}/{total_files}")
# β
Step 1: Process PDF with Full Labels
extracted_data = extract_full_paper_with_labels(pdf_file.name, progress=progress)
all_data.append(extracted_data)
print("π‘ Converting Processed Data to Parquet")
# β
Step 2: Convert to Parquet
df = pd.DataFrame(all_data)
parquet_file = 'fully_labeled_papers.parquet'
try:
df.to_parquet(parquet_file, engine='pyarrow', index=False)
print("β
Parquet Conversion Completed")
except Exception as e:
print(f"β Parquet Conversion Failed: {str(e)}")
return None, f"β Parquet Conversion Failed: {str(e)}"
upload_message = "Skipped Upload"
# β
Step 3: Upload Parquet (if selected)
if action_choice in ["Upload to Hugging Face", "Both"]:
try:
upload_message = upload_with_progress(parquet_file, dataset_repo_id, hf_token, progress)
except Exception as e:
print(f"β Upload Failed: {str(e)}")
upload_message = f"β Upload failed: {str(e)}"
print("π Process Completed")
return parquet_file, upload_message
# β
Gradio Interface
iface = gr.Interface(
fn=pdf_to_parquet_and_upload,
inputs=[
gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs (Drag & Drop or Search)"),
gr.Textbox(label="Hugging Face API Token", type="password", placeholder="Enter your Hugging Face API token"),
gr.Textbox(label="Your Dataset Repo ID (e.g., username/research-dataset)", placeholder="username/research-dataset"),
gr.Radio(["Download Locally", "Upload to Hugging Face", "Both"], label="Action", value="Download Locally")
],
outputs=[
gr.File(label="Download Parquet File"),
gr.Textbox(label="Status")
],
title="PDF to Parquet Converter with Full Labeling",
description="Upload your PDFs, convert them to Parquet with full section labeling, and upload to your Hugging Face Dataset."
)
iface.launch()
|