File size: 4,250 Bytes
9634b36
 
c7a5739
9634b36
7998543
 
 
fb7ac68
7998543
c7a5739
9634b36
 
7998543
c7a5739
7998543
 
 
c7a5739
 
 
 
 
 
 
7998543
c7a5739
 
 
 
 
 
 
 
 
 
 
 
 
7998543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a5739
9634b36
7998543
c7a5739
7998543
c7a5739
 
 
 
 
 
 
9634b36
 
c7a5739
9634b36
c7a5739
 
9634b36
 
c7a5739
 
 
 
 
7998543
c7a5739
 
 
7998543
c7a5739
9634b36
 
 
c7a5739
 
 
 
 
 
 
 
 
 
 
7998543
 
9634b36
 
 
7998543
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
import pandas as pd
import fitz  # PyMuPDF
import os
from huggingface_hub import HfApi, HfHubHTTPError
import requests
import time

def extract_paragraphs_with_headers(pdf_path, progress=None):
    doc = fitz.open(pdf_path)
    data = []

    total_pages = len(doc)
    for page_num, page in enumerate(doc):
        if progress:
            progress((page_num + 1) / total_pages, desc=f"Processing Page {page_num + 1}/{total_pages}")

        blocks = page.get_text("dict")["blocks"]
        for block in blocks:
            if "lines" in block:
                text = ""
                for line in block["lines"]:
                    for span in line["spans"]:
                        text += span["text"] + " "

                text = text.strip()

                # Detect headers based on font size
                is_header = any(span["size"] > 15 for line in block["lines"] for span in line["spans"])

                data.append({
                    "page_num": page_num + 1,
                    "text": text,
                    "is_header": is_header
                })

    return data

def upload_with_progress(file_path, repo_id, token, progress):
    """
    Upload file to Hugging Face Dataset with progress tracking.
    """
    file_size = os.path.getsize(file_path)
    url = f"https://huggingface.co/api/datasets/{repo_id}/upload"

    headers = {
        "Authorization": f"Bearer {token}"
    }

    with open(file_path, 'rb') as f:
        chunk_size = 1024 * 1024  # 1MB
        uploaded = 0

        while True:
            chunk = f.read(chunk_size)
            if not chunk:
                break

            response = requests.put(
                url,
                headers=headers,
                data=chunk
            )

            uploaded += len(chunk)
            progress(uploaded / file_size, desc=f"Uploading... {uploaded // (1024 * 1024)}MB/{file_size // (1024 * 1024)}MB")
            time.sleep(0.1)  # Simulate delay for progress update

            if response.status_code != 200:
                raise Exception(f"Upload failed: {response.text}")

    return f"✅ Successfully uploaded to {repo_id}"

def pdf_to_parquet_and_upload(pdf_files, hf_token, dataset_repo_id, action_choice, progress=gr.Progress()):
    all_data = []

    # Process each uploaded PDF
    for pdf_file in pdf_files:
        extracted_data = extract_paragraphs_with_headers(pdf_file.name, progress=progress)
        for item in extracted_data:
            all_data.append({
                'filename': os.path.basename(pdf_file.name),
                'page_num': item['page_num'],
                'text': item['text'],
                'is_header': item['is_header']
            })

    # Convert to DataFrame
    df = pd.DataFrame(all_data)

    # Save as Parquet
    parquet_file = 'papers_with_headers.parquet'
    df.to_parquet(parquet_file, engine='pyarrow', index=False)

    upload_message = ""

    # Only upload if the user selects it
    if action_choice in ["Upload to Hugging Face", "Both"]:
        try:
            upload_message = upload_with_progress(parquet_file, dataset_repo_id, hf_token, progress)
        except Exception as e:
            upload_message = f"❌ Upload failed: {str(e)}"

    # Return Parquet file and status message
    return parquet_file, upload_message

# Gradio Interface
iface = gr.Interface(
    fn=pdf_to_parquet_and_upload,
    inputs=[
        gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs (Drag & Drop or Search)"),
        gr.Textbox(label="Hugging Face API Token", type="password", placeholder="Enter your Hugging Face API token"),
        gr.Textbox(label="Your Dataset Repo ID (e.g., username/research-dataset)", placeholder="username/research-dataset"),
        gr.Radio(["Download Locally", "Upload to Hugging Face", "Both"], label="Action", value="Download Locally")
    ],
    outputs=[
        gr.File(label="Download Parquet File"), 
        gr.Textbox(label="Status")
    ],
    title="PDF to Parquet Converter with Upload Progress",
    description="Upload your PDFs (drag & drop or search), convert them to Parquet, and upload to your own Hugging Face Dataset repo with real-time progress tracking."
)

iface.launch()