File size: 7,174 Bytes
9634b36
 
c7a5739
9634b36
b3bb65b
ad0b1f7
 
7998543
9323459
b3bb65b
69c287e
c7a5739
b3bb65b
 
 
 
 
 
 
 
 
 
 
7998543
06449e7
 
 
b3bb65b
 
 
69c287e
b3bb65b
 
 
c7a5739
06449e7
 
 
 
 
7998543
 
c7a5739
 
 
 
b3bb65b
c7a5739
 
 
b3bb65b
 
7998543
c7a5739
 
b3bb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9433534
b3bb65b
 
 
9433534
b3bb65b
 
 
 
 
 
 
c8cd30b
9433534
b3bb65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a5739
06449e7
b3bb65b
 
 
 
c7a5739
43a7a2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69c287e
43a7a2a
69c287e
 
 
 
 
 
 
 
 
 
43a7a2a
 
 
 
69c287e
43a7a2a
 
 
69c287e
43a7a2a
69c287e
 
 
43a7a2a
69c287e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import pandas as pd
import fitz  # PyMuPDF
import os
import re
from huggingface_hub import HfApi
from huggingface_hub.utils import HfHubHTTPError
import time

def extract_full_paper_with_labels(pdf_path, progress=None):
    print(f"📝 Starting PDF Processing: {os.path.basename(pdf_path)}")
    doc = fitz.open(pdf_path)
    content = ""

    # Initialize metadata
    title = ""
    authors = ""
    year = ""
    doi = ""
    abstract = ""
    footnotes = ""
    references = ""
    sources = ""
    total_pages = len(doc)
    max_iterations = total_pages * 2  # To prevent infinite loops
    iteration_count = 0

    # Regex patterns for detection
    doi_pattern = r"\b10\.\d{4,9}/[-._;()/:A-Z0-9]+\b"
    year_pattern = r'\b(19|20)\d{2}\b'
    code_pattern = r"(def\s+\w+\s*\(|class\s+\w+|import\s+\w+|for\s+\w+\s+in|if\s+\w+|while\s+\w+|try:|except|{|}|;)"
    reference_keywords = ['reference', 'bibliography', 'sources']
    financial_keywords = ['p/e', 'volatility', 'market cap', 'roi', 'sharpe', 'drawdown']

    for page_num, page in enumerate(doc):
        iteration_count += 1
        if iteration_count > max_iterations:
            raise Exception("⚠️ PDF processing exceeded iteration limit. Possible malformed PDF.")

        if progress is not None:
            progress((page_num + 1) / total_pages, desc=f"Processing Page {page_num + 1}/{total_pages}")

        blocks = page.get_text("dict")["blocks"]
        for block in blocks:
            if "lines" in block:
                text = ""
                max_font_size = 0
                for line in block["lines"]:
                    for span in line["spans"]:
                        text += span["text"] + " "
                        if span["size"] > max_font_size:
                            max_font_size = span["size"]

                text = text.strip()

                # Title (First Page, Largest Font)
                if page_num == 0 and max_font_size > 15 and not title:
                    title = text
                    content += f"<TITLE>{title}</TITLE>\n"

                # Authors
                elif re.search(r'author|by', text, re.IGNORECASE) and not authors:
                    authors = text
                    content += f"<AUTHORS>{authors}</AUTHORS>\n"

                # Year
                elif re.search(year_pattern, text) and not year:
                    year = re.search(year_pattern, text).group(0)
                    content += f"<YEAR>{year}</YEAR>\n"

                # DOI
                elif re.search(doi_pattern, text) and not doi:
                    doi = re.search(doi_pattern, text).group(0)
                    content += f"<DOI>{doi}</DOI>\n"

                # Abstract
                elif "abstract" in text.lower() and not abstract:
                    abstract = text
                    content += f"<ABSTRACT>{abstract}</ABSTRACT>\n"

                # Footnotes (small fonts)
                elif max_font_size < 10:
                    footnotes += text + " "

                # References
                elif any(keyword in text.lower() for keyword in reference_keywords):
                    references += text + " "

                # Tables
                elif re.search(r"table\s*\d+", text, re.IGNORECASE):
                    content += f"<TABLE>{text}</TABLE>\n"

                # Figures
                elif re.search(r"figure\s*\d+", text, re.IGNORECASE):
                    content += f"<FIGURE>{text}</FIGURE>\n"

                # Equations (look for math symbols)
                elif re.search(r"=|∑|√|±|×|π|μ|σ", text):
                    content += f"<EQUATION>{text}</EQUATION>\n"

                # ✅ Improved Code Block Detection
                elif re.search(code_pattern, text) and len(text.split()) <= 50:
                    content += f"<CODE>{text}</CODE>\n"

                # Financial Metrics
                elif any(fin_kw in text.lower() for fin_kw in financial_keywords):
                    content += f"<FINANCIAL_METRIC>{text}</FINANCIAL_METRIC>\n"

                # Regular Paragraph
                else:
                    content += f"<PARAGRAPH>{text}</PARAGRAPH>\n"

    # Append Footnotes and References
    if footnotes:
        content += f"<FOOTNOTE>{footnotes.strip()}</FOOTNOTE>\n"
    if references:
        content += f"<REFERENCE>{references.strip()}</REFERENCE>\n"

    print(f"✅ Finished Processing PDF: {os.path.basename(pdf_path)}")
    return {
        "filename": os.path.basename(pdf_path),
        "content": content
    }

def process_pdf_file(pdf_file, api_key, repo_address):
    if pdf_file is None:
        return None, "No PDF file uploaded."
    # Extract content from PDF.
    # pdf_file can be a file-like object or a dict depending on how Gradio returns it.
    file_path = pdf_file.name if hasattr(pdf_file, "name") else pdf_file['name']
    result = extract_full_paper_with_labels(file_path)
    
    # Convert the result dictionary into a DataFrame and write it to a parquet file.
    df = pd.DataFrame([result])
    base = os.path.splitext(result['filename'])[0]
    parquet_filename = f"{base}.parquet"
    df.to_parquet(parquet_filename, index=False)
    
    repo_status = ""
    # If API key and repo address are provided, attempt to upload the parquet file.
    if api_key and repo_address:
        api = HfApi()
        try:
            api.upload_file(
                path_or_fileobj=parquet_filename,
                path_in_repo=parquet_filename,
                repo_id=repo_address,
                token=api_key
            )
            repo_status = f"File uploaded to repo {repo_address} successfully."
        except Exception as e:
            repo_status = f"Failed to upload to repo: {str(e)}"
    else:
        repo_status = "API key or repo address not provided, skipping repo upload."
    
    # Return the parquet file for local download and the status message.
    return parquet_filename, repo_status

# Function to clear only file-related inputs/outputs, preserving the API key and repo address.
def clear_files():
    return None, None, ""

# Gradio interface setup
with gr.Blocks() as demo:
    with gr.Row():
        api_key_input = gr.Textbox(label="API Key", placeholder="Enter API Key")
        repo_address_input = gr.Textbox(label="Repo Address", placeholder="Enter Repo Address")
    with gr.Row():
        pdf_file_input = gr.File(label="Upload PDF")
        convert_button = gr.Button("Convert to Parquet")
        clear_button = gr.Button("Clear Files")
    with gr.Row():
        download_file_output = gr.File(label="Download Parquet File")
        repo_status_output = gr.Textbox(label="Repo Upload Status")
    
    convert_button.click(
        process_pdf_file,
        inputs=[pdf_file_input, api_key_input, repo_address_input],
        outputs=[download_file_output, repo_status_output]
    )
    # The clear button now only clears file-related components; API key and Repo Address remain unchanged.
    clear_button.click(
        clear_files,
        inputs=None,
        outputs=[pdf_file_input, download_file_output, repo_status_output]
    )

demo.launch()