File size: 5,651 Bytes
9634b36
 
c7a5739
9634b36
ad0b1f7
 
7998543
 
fb7ac68
7998543
06449e7
c7a5739
9634b36
 
7998543
06449e7
 
 
c7a5739
06449e7
 
 
 
 
7998543
 
c7a5739
 
 
 
 
 
 
7998543
c7a5739
 
 
 
 
 
 
 
 
 
 
06449e7
c7a5739
 
7998543
 
 
 
06449e7
7998543
 
 
 
 
 
 
 
 
 
06449e7
 
7998543
 
 
 
 
 
 
 
 
 
 
 
 
06449e7
 
 
 
 
 
 
7998543
 
06449e7
7998543
06449e7
7998543
 
 
c7a5739
9634b36
06449e7
 
 
 
 
 
 
 
7998543
c7a5739
 
 
 
 
 
 
9634b36
06449e7
 
c7a5739
 
9634b36
06449e7
 
 
 
 
 
c7a5739
06449e7
 
 
c7a5739
 
7998543
c7a5739
06449e7
c7a5739
 
06449e7
c7a5739
9634b36
06449e7
9634b36
c7a5739
 
 
 
 
 
 
 
 
 
 
06449e7
 
9634b36
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import pandas as pd
import fitz  # PyMuPDF
import os
from huggingface_hub import HfApi
from huggingface_hub.utils import HfHubHTTPError
import requests
import time

def extract_paragraphs_with_headers(pdf_path, progress=None):
    print(f"πŸ“„ Starting PDF Processing: {os.path.basename(pdf_path)}")
    doc = fitz.open(pdf_path)
    data = []

    total_pages = len(doc)
    max_iterations = total_pages * 2  # To prevent infinite loops
    iteration_count = 0

    for page_num, page in enumerate(doc):
        iteration_count += 1
        if iteration_count > max_iterations:
            raise Exception("⚠️ PDF processing exceeded iteration limit. Possible malformed PDF.")

        if progress is not None:
            progress((page_num + 1) / total_pages, desc=f"Processing Page {page_num + 1}/{total_pages}")

        blocks = page.get_text("dict")["blocks"]
        for block in blocks:
            if "lines" in block:
                text = ""
                for line in block["lines"]:
                    for span in line["spans"]:
                        text += span["text"] + " "

                text = text.strip()

                # Detect headers based on font size
                is_header = any(span["size"] > 15 for line in block["lines"] for span in line["spans"])

                data.append({
                    "page_num": page_num + 1,
                    "text": text,
                    "is_header": is_header
                })

    print(f"βœ… Finished Processing PDF: {os.path.basename(pdf_path)}")
    return data

def upload_with_progress(file_path, repo_id, token, progress):
    """
    Upload file to Hugging Face Dataset with progress tracking.
    """
    print(f"πŸ“€ Starting upload of Parquet: {file_path}")
    file_size = os.path.getsize(file_path)
    url = f"https://huggingface.co/api/datasets/{repo_id}/upload"

    headers = {
        "Authorization": f"Bearer {token}"
    }

    with open(file_path, 'rb') as f:
        chunk_size = 1024 * 1024  # 1MB
        uploaded = 0
        max_chunks = file_size // chunk_size + 10  # Safety limit to avoid infinite loops
        chunk_count = 0

        while True:
            chunk = f.read(chunk_size)
            if not chunk:
                break

            response = requests.put(
                url,
                headers=headers,
                data=chunk
            )

            uploaded += len(chunk)
            if progress is not None:
                progress(uploaded / file_size, desc=f"Uploading... {uploaded // (1024 * 1024)}MB/{file_size // (1024 * 1024)}MB")
            time.sleep(0.1)  # Smooth progress update

            chunk_count += 1
            if chunk_count > max_chunks:
                raise Exception("⚠️ Upload exceeded expected chunk limit. Aborting.")

            if response.status_code != 200:
                raise Exception(f"❌ Upload failed: {response.text}")

    print(f"βœ… Successfully uploaded to {repo_id}")
    return f"βœ… Successfully uploaded to {repo_id}"

def pdf_to_parquet_and_upload(pdf_files, hf_token, dataset_repo_id, action_choice, progress=gr.Progress()):
    all_data = []

    total_files = len(pdf_files)
    print("πŸš€ Starting PDF to Parquet Conversion Process")

    for idx, pdf_file in enumerate(pdf_files):
        if progress is not None:
            progress(idx / total_files, desc=f"Processing File {idx + 1}/{total_files}")

        # βœ… Step 1: Process PDF
        extracted_data = extract_paragraphs_with_headers(pdf_file.name, progress=progress)
        for item in extracted_data:
            all_data.append({
                'filename': os.path.basename(pdf_file.name),
                'page_num': item['page_num'],
                'text': item['text'],
                'is_header': item['is_header']
            })

    print("🟑 Converting Processed Data to Parquet")
    # βœ… Step 2: Convert to Parquet
    df = pd.DataFrame(all_data)
    parquet_file = 'papers_with_headers.parquet'

    try:
        df.to_parquet(parquet_file, engine='pyarrow', index=False)
        print("βœ… Parquet Conversion Completed")
    except Exception as e:
        print(f"❌ Parquet Conversion Failed: {str(e)}")
        return None, f"❌ Parquet Conversion Failed: {str(e)}"

    upload_message = "Skipped Upload"

    # βœ… Step 3: Upload Parquet (if selected)
    if action_choice in ["Upload to Hugging Face", "Both"]:
        try:
            upload_message = upload_with_progress(parquet_file, dataset_repo_id, hf_token, progress)
        except Exception as e:
            print(f"❌ Upload Failed: {str(e)}")
            upload_message = f"❌ Upload failed: {str(e)}"

    print("🏁 Process Completed")
    return parquet_file, upload_message

# βœ… Gradio Interface
iface = gr.Interface(
    fn=pdf_to_parquet_and_upload,
    inputs=[
        gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDFs (Drag & Drop or Search)"),
        gr.Textbox(label="Hugging Face API Token", type="password", placeholder="Enter your Hugging Face API token"),
        gr.Textbox(label="Your Dataset Repo ID (e.g., username/research-dataset)", placeholder="username/research-dataset"),
        gr.Radio(["Download Locally", "Upload to Hugging Face", "Both"], label="Action", value="Download Locally")
    ],
    outputs=[
        gr.File(label="Download Parquet File"), 
        gr.Textbox(label="Status")
    ],
    title="PDF to Parquet Converter with Detailed Progress",
    description="Upload your PDFs, convert them to Parquet, and upload to your Hugging Face Dataset with clear progress indicators."
)

iface.launch()