JoPmt commited on
Commit
1158fc1
·
1 Parent(s): bae50d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -6
app.py CHANGED
@@ -5,12 +5,9 @@ from accelerate import Accelerator
5
  from transformers import pipeline
6
  from diffusers.utils import load_image
7
  from diffusers import DiffusionPipeline, DDPMScheduler
8
-
9
  from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
10
  from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
11
 
12
-
13
-
14
  accelerator = Accelerator(cpu=True)
15
  warp_prior = accelerator.prepare(WuerstchenPriorPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=torch.bfloat16, use_safetensors=True, safety_cheker=None))
16
  ###warp_prior.scheduler = DDPMWuerstchenScheduler.from_config(warp_prior.scheduler.config)
@@ -23,11 +20,11 @@ generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4876364)
23
  def plex(cook, one, two):
24
  ###goof = load_image(img).resize((512, 512))
25
  negative_prompt = "lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature"
26
- warp_out = warp_prior(prompt=cook, height=512,width=512,negative_prompt=negative_prompt,guidance_scale=4.0, num_inference_steps=5,generator=generator,)
27
  primpt = ""
28
- imas = warp(warp_out.image_embbedings, height=512, width=512, num_inference_steps=5, prompt=cook,negative_prompt=primpt,guidance_scale=0.0,output_type="pil",generator=generator).images[0]
29
  return imas
30
 
31
- iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="prompt"), gr.Slider(label="Inference steps",minimum=1,step=1,maximum=10,value=5), gr.Slider(label="Prior guidance scale",minimum=4.1,step=0.1,maximum=19.9,value=4.1)], outputs=gr.Image(), title="Txt2Img Wrstchn SD", description="Txt2Img Wrstchn SD")
32
  iface.queue(max_size=1)
33
  iface.launch(max_threads=1)
 
5
  from transformers import pipeline
6
  from diffusers.utils import load_image
7
  from diffusers import DiffusionPipeline, DDPMScheduler
 
8
  from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
9
  from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
10
 
 
 
11
  accelerator = Accelerator(cpu=True)
12
  warp_prior = accelerator.prepare(WuerstchenPriorPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=torch.bfloat16, use_safetensors=True, safety_cheker=None))
13
  ###warp_prior.scheduler = DDPMWuerstchenScheduler.from_config(warp_prior.scheduler.config)
 
20
  def plex(cook, one, two):
21
  ###goof = load_image(img).resize((512, 512))
22
  negative_prompt = "lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature"
23
+ warp_out = warp_prior(prompt=cook, height=512,width=512,negative_prompt=negative_prompt,guidance_scale=two, num_inference_steps=one,generator=generator,)
24
  primpt = ""
25
+ imas = warp(warp_out.image_embbedings, height=512, width=512, num_inference_steps=one, prompt=cook,negative_prompt=primpt,guidance_scale=0.0,output_type="pil",generator=generator).images[0]
26
  return imas
27
 
28
+ iface = gr.Interface(fn=plex,outputs=gr.Image(label="Generated Output Image"),inputs=[gr.Textbox(label="prompt"), gr.Slider(label="Inference steps",minimum=1,step=1,maximum=10,value=5), gr.Slider(label="Prior guidance scale",minimum=4.1,step=0.1,maximum=19.9,value=4.1)], title="Txt2Img Wrstchn SD", description="Txt2Img Wrstchn SD")
29
  iface.queue(max_size=1)
30
  iface.launch(max_threads=1)