File size: 1,921 Bytes
0d02199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from PIL import Image
import cv2
import gradio as gr
import numpy as np
import torch, os, random
from accelerate import Accelerator
from transformers import pipeline
from diffusers.utils import load_image
from diffusers import DiffusionPipeline, DDPMScheduler
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS

accelerator = Accelerator(cpu=True)
warp_prior = accelerator.prepare(DiffusionPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=torch.bfloat16))
warp_prior.scheduler = DDPMScheduler.from_config(warp_prior.scheduler.config)
warp_prior = warp_prior.to("cpu")
warp = accelerator.prepare(DiffusionPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.bfloat16))
warp.scheduler = DDPMScheduler.from_config(warp.scheduler.config)
warp = warp.to("cpu")
generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4876364))

def plex(cook, one, two, three):
    ###goof = load_image(img).resize((512, 512))
    negative_prompt = "lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature"
    warp_out = warp_prior(prompt=cook, height=512,width=512,negative_prompt=negative_prompt,guidance_scale=4.0, num_inference_steps=5,generator=generator)
    primpt = ""
    imas = warp(**warp_out, height=512, width=512, num_inference_steps=5, prompt=cook,negative_prompt=primpt,guidance_scale=0.0,output_type="pil",generator=generator).images[0]
    return imas

iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="prompt"), gr.Slider(label="Text Guide",minimum=0.01,step=0.01,maximum=0.99,value=0.5), gr.Slider(label="Your Image Guide",minimum=0.01,step=0.01,maximum=0.99,value=0.5),gr.Slider(label="Generated Image Guide",minimum=0.01,step=0.01,maximum=0.99,value=0.3)], outputs=gr.Image(), title="Txt2Img Wrstchn Interp", description="Txt2Img Wrstchn Interp")
iface.queue(max_size=1)
iface.launch(max_threads=1)