from diffusers import AutoPipelineForText2Image import torch import gradio as gr from PIL import Image import os, random import PIL.Image from transformers import pipeline from diffusers.utils import load_image from accelerate import Accelerator accelerator = Accelerator() def plex(prompt,neg_prompt): apol=[] pipe = accelerator.prepare(AutoPipelineForText2Image.from_pretrained("openskyml/overall-v1", torch_dtype=torch.float32, variant=None, use_safetensors=False, safety_checker=None)) pipe = accelerator.prepare(pipe.to("cpu")) image = pipe(prompt=prompt, negative_prompt=neg_prompt,num_inference_steps=10) for a, imze in enumerate(image["images"]): apol.append(imze) return apol iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="Prompt"), gr.Textbox(label="negative_prompt", value="low quality, bad quality")],outputs=gr.Gallery(label="Generated Output Image", columns=1), title="Txt2Img_Overall_v1_SD",description="Running on cpu, very slow!") iface.queue(max_size=1,api_open=False) iface.launch(max_threads=1)