Update app.py
Browse files
app.py
CHANGED
@@ -126,9 +126,8 @@ def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
|
|
126 |
pipe = accelerator.prepare(pipe.to("cpu"))
|
127 |
|
128 |
tilage = pope(prompt,num_inference_steps=5,height=512,width=512,generator=generator).images[0]
|
129 |
-
tilage.save('./til.png', 'PNG')
|
130 |
-
|
131 |
-
cannyimage = np.array(apol[0])
|
132 |
low_threshold = 100
|
133 |
high_threshold = 200
|
134 |
cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold)
|
@@ -138,17 +137,18 @@ def plex(mput, prompt, neg_prompt, stips, modal_id, dula, blip, blop):
|
|
138 |
cannyimage = cannyimage[:, :, None]
|
139 |
cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
|
140 |
canny_image = Image.fromarray(cannyimage)
|
141 |
-
canny_image.save('./can.png', 'PNG')
|
142 |
-
apol.append(canny_image)
|
143 |
pose_image = load_image(mput)
|
144 |
-
pose_image.save('./pos.png', 'PNG')
|
145 |
openpose_image = openpose(mput)
|
146 |
-
openpose_image.save('./fin.png','PNG')
|
147 |
-
|
148 |
-
images = [apol[2], apol[1]]
|
149 |
imoge = pipe([prompt]*2,images,num_inference_steps=stips,generator=generator,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=[blip, blop])
|
150 |
for i, imge in enumerate(imoge["images"]):
|
151 |
apol.append(imge)
|
|
|
|
|
|
|
152 |
return apol
|
153 |
|
154 |
iface = gr.Interface(fn=plex,inputs=[gr.Image(type="filepath"), gr.Textbox(label="prompt"), gr.Textbox(label="neg_prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality"), gr.Slider(label="infer_steps", value=5, minimum=1, step=1, maximum=5), gr.Dropdown(choices=models, value=models[0], type="value", label="select a model"), gr.Dropdown(choices=sdulers, value=sdulers[0], type="value", label="schedulrs"), gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.1, step=0.1, maximum=1), gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.1, step=0.1, maximum=1)], outputs=gr.Gallery(columns=1,rows=5), title="Img2Img Guided Multi-Conditioned Canny/Pose Controlnet Selectable StableDiffusion Model Demo", description="by JoPmt.")
|
|
|
126 |
pipe = accelerator.prepare(pipe.to("cpu"))
|
127 |
|
128 |
tilage = pope(prompt,num_inference_steps=5,height=512,width=512,generator=generator).images[0]
|
129 |
+
##tilage.save('./til.png', 'PNG')
|
130 |
+
cannyimage = np.array(tilage)
|
|
|
131 |
low_threshold = 100
|
132 |
high_threshold = 200
|
133 |
cannyimage = cv2.Canny(cannyimage, low_threshold, high_threshold)
|
|
|
137 |
cannyimage = cannyimage[:, :, None]
|
138 |
cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
|
139 |
canny_image = Image.fromarray(cannyimage)
|
140 |
+
##canny_image.save('./can.png', 'PNG')
|
|
|
141 |
pose_image = load_image(mput)
|
142 |
+
##pose_image.save('./pos.png', 'PNG')
|
143 |
openpose_image = openpose(mput)
|
144 |
+
##openpose_image.save('./fin.png','PNG')
|
145 |
+
images = [openpose_image, canny_image]
|
|
|
146 |
imoge = pipe([prompt]*2,images,num_inference_steps=stips,generator=generator,negative_prompt=[neg_prompt]*2,controlnet_conditioning_scale=[blip, blop])
|
147 |
for i, imge in enumerate(imoge["images"]):
|
148 |
apol.append(imge)
|
149 |
+
apol.append(openpose_image)
|
150 |
+
apol.append(canny_image)
|
151 |
+
apol.append(tilage)
|
152 |
return apol
|
153 |
|
154 |
iface = gr.Interface(fn=plex,inputs=[gr.Image(type="filepath"), gr.Textbox(label="prompt"), gr.Textbox(label="neg_prompt", value="monochrome, lowres, bad anatomy, worst quality, low quality"), gr.Slider(label="infer_steps", value=5, minimum=1, step=1, maximum=5), gr.Dropdown(choices=models, value=models[0], type="value", label="select a model"), gr.Dropdown(choices=sdulers, value=sdulers[0], type="value", label="schedulrs"), gr.Slider(label="condition_scale_canny", value=0.5, minimum=0.1, step=0.1, maximum=1), gr.Slider(label="condition_scale_pose", value=0.5, minimum=0.1, step=0.1, maximum=1)], outputs=gr.Gallery(columns=1,rows=5), title="Img2Img Guided Multi-Conditioned Canny/Pose Controlnet Selectable StableDiffusion Model Demo", description="by JoPmt.")
|