|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | import math | 
					
						
						|  | from typing import Callable, Dict, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | import PIL | 
					
						
						|  | import numpy as np | 
					
						
						|  | import cv2 | 
					
						
						|  | from PIL import Image | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import T5EncoderModel, T5Tokenizer | 
					
						
						|  |  | 
					
						
						|  | from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | 
					
						
						|  | from diffusers.image_processor import PipelineImageInput | 
					
						
						|  | from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel | 
					
						
						|  | from diffusers.models.embeddings import get_3d_rotary_pos_embed | 
					
						
						|  | from diffusers.pipelines.pipeline_utils import DiffusionPipeline | 
					
						
						|  | from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler | 
					
						
						|  | from diffusers.utils import logging, replace_example_docstring | 
					
						
						|  | from diffusers.utils.torch_utils import randn_tensor | 
					
						
						|  | from diffusers.video_processor import VideoProcessor | 
					
						
						|  | from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput | 
					
						
						|  |  | 
					
						
						|  | from models.transformer_consisid import ConsisIDTransformer3DModel | 
					
						
						|  |  | 
					
						
						|  | current_file_path = os.path.abspath(__file__) | 
					
						
						|  | project_roots = [os.path.dirname(os.path.dirname(current_file_path))] | 
					
						
						|  | for project_root in project_roots: | 
					
						
						|  | sys.path.insert(0, project_root) if project_root not in sys.path else None | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | EXAMPLE_DOC_STRING = """ | 
					
						
						|  | Examples: | 
					
						
						|  | ```py | 
					
						
						|  | >>> import torch | 
					
						
						|  | >>> from diffusers import CogVideoXImageToVideoPipeline | 
					
						
						|  | >>> from diffusers.utils import export_to_video, load_image | 
					
						
						|  |  | 
					
						
						|  | >>> pipe = CogVideoXImageToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16) | 
					
						
						|  | >>> pipe.to("cuda") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot." | 
					
						
						|  | >>> image = load_image( | 
					
						
						|  | ...     "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg" | 
					
						
						|  | ... ) | 
					
						
						|  | >>> video = pipe(image, prompt, use_dynamic_cfg=True) | 
					
						
						|  | >>> export_to_video(video.frames[0], "output.mp4", fps=8) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): | 
					
						
						|  | stickwidth = 4 | 
					
						
						|  | limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) | 
					
						
						|  | kps = np.array(kps) | 
					
						
						|  |  | 
					
						
						|  | w, h = image_pil.size | 
					
						
						|  | out_img = np.zeros([h, w, 3]) | 
					
						
						|  |  | 
					
						
						|  | for i in range(len(limbSeq)): | 
					
						
						|  | index = limbSeq[i] | 
					
						
						|  | color = color_list[index[0]] | 
					
						
						|  |  | 
					
						
						|  | x = kps[index][:, 0] | 
					
						
						|  | y = kps[index][:, 1] | 
					
						
						|  | length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | 
					
						
						|  | angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) | 
					
						
						|  | polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) | 
					
						
						|  | out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) | 
					
						
						|  | out_img = (out_img * 0.6).astype(np.uint8) | 
					
						
						|  |  | 
					
						
						|  | for idx_kp, kp in enumerate(kps): | 
					
						
						|  | color = color_list[idx_kp] | 
					
						
						|  | x, y = kp | 
					
						
						|  | out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) | 
					
						
						|  |  | 
					
						
						|  | out_img_pil = Image.fromarray(out_img.astype(np.uint8)) | 
					
						
						|  | return out_img_pil | 
					
						
						|  |  | 
					
						
						|  | def process_image(image, vae): | 
					
						
						|  | image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=image.device) | 
					
						
						|  | image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=image.dtype) | 
					
						
						|  | noisy_image = torch.randn_like(image) * image_noise_sigma[:, None, None, None, None] | 
					
						
						|  | input_image = image + noisy_image | 
					
						
						|  | image_latent_dist = vae.encode(input_image).latent_dist | 
					
						
						|  | return image_latent_dist | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | 
					
						
						|  | tw = tgt_width | 
					
						
						|  | th = tgt_height | 
					
						
						|  | h, w = src | 
					
						
						|  | r = h / w | 
					
						
						|  | if r > (th / tw): | 
					
						
						|  | resize_height = th | 
					
						
						|  | resize_width = int(round(th / h * w)) | 
					
						
						|  | else: | 
					
						
						|  | resize_width = tw | 
					
						
						|  | resize_height = int(round(tw / w * h)) | 
					
						
						|  |  | 
					
						
						|  | crop_top = int(round((th - resize_height) / 2.0)) | 
					
						
						|  | crop_left = int(round((tw - resize_width) / 2.0)) | 
					
						
						|  |  | 
					
						
						|  | return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def retrieve_timesteps( | 
					
						
						|  | scheduler, | 
					
						
						|  | num_inference_steps: Optional[int] = None, | 
					
						
						|  | device: Optional[Union[str, torch.device]] = None, | 
					
						
						|  | timesteps: Optional[List[int]] = None, | 
					
						
						|  | sigmas: Optional[List[float]] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | 
					
						
						|  | custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | scheduler (`SchedulerMixin`): | 
					
						
						|  | The scheduler to get timesteps from. | 
					
						
						|  | num_inference_steps (`int`): | 
					
						
						|  | The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | 
					
						
						|  | must be `None`. | 
					
						
						|  | device (`str` or `torch.device`, *optional*): | 
					
						
						|  | The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | 
					
						
						|  | timesteps (`List[int]`, *optional*): | 
					
						
						|  | Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | 
					
						
						|  | `num_inference_steps` and `sigmas` must be `None`. | 
					
						
						|  | sigmas (`List[float]`, *optional*): | 
					
						
						|  | Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | 
					
						
						|  | `num_inference_steps` and `timesteps` must be `None`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | 
					
						
						|  | second element is the number of inference steps. | 
					
						
						|  | """ | 
					
						
						|  | if timesteps is not None and sigmas is not None: | 
					
						
						|  | raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | 
					
						
						|  | if timesteps is not None: | 
					
						
						|  | accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
						
						|  | if not accepts_timesteps: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
						
						|  | f" timestep schedules. Please check whether you are using the correct scheduler." | 
					
						
						|  | ) | 
					
						
						|  | scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | num_inference_steps = len(timesteps) | 
					
						
						|  | elif sigmas is not None: | 
					
						
						|  | accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | 
					
						
						|  | if not accept_sigmas: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | 
					
						
						|  | f" sigmas schedules. Please check whether you are using the correct scheduler." | 
					
						
						|  | ) | 
					
						
						|  | scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | num_inference_steps = len(timesteps) | 
					
						
						|  | else: | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | 
					
						
						|  | timesteps = scheduler.timesteps | 
					
						
						|  | return timesteps, num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def retrieve_latents( | 
					
						
						|  | encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | 
					
						
						|  | ): | 
					
						
						|  | if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | 
					
						
						|  | return encoder_output.latent_dist.sample(generator) | 
					
						
						|  | elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | 
					
						
						|  | return encoder_output.latent_dist.mode() | 
					
						
						|  | elif hasattr(encoder_output, "latents"): | 
					
						
						|  | return encoder_output.latents | 
					
						
						|  | else: | 
					
						
						|  | raise AttributeError("Could not access latents of provided encoder_output") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ConsisIDPipeline(DiffusionPipeline): | 
					
						
						|  | r""" | 
					
						
						|  | Pipeline for image-to-video generation using CogVideoX. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vae ([`AutoencoderKL`]): | 
					
						
						|  | Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. | 
					
						
						|  | text_encoder ([`T5EncoderModel`]): | 
					
						
						|  | Frozen text-encoder. CogVideoX uses | 
					
						
						|  | [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the | 
					
						
						|  | [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | 
					
						
						|  | tokenizer (`T5Tokenizer`): | 
					
						
						|  | Tokenizer of class | 
					
						
						|  | [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | 
					
						
						|  | transformer ([`ConsisIDTransformer3DModel`]): | 
					
						
						|  | A text conditioned `ConsisIDTransformer3DModel` to denoise the encoded video latents. | 
					
						
						|  | scheduler ([`SchedulerMixin`]): | 
					
						
						|  | A scheduler to be used in combination with `transformer` to denoise the encoded video latents. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _optional_components = [] | 
					
						
						|  | model_cpu_offload_seq = "text_encoder->transformer->vae" | 
					
						
						|  |  | 
					
						
						|  | _callback_tensor_inputs = [ | 
					
						
						|  | "latents", | 
					
						
						|  | "prompt_embeds", | 
					
						
						|  | "negative_prompt_embeds", | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | tokenizer: T5Tokenizer, | 
					
						
						|  | text_encoder: T5EncoderModel, | 
					
						
						|  | vae: AutoencoderKLCogVideoX, | 
					
						
						|  | transformer: Union[ConsisIDTransformer3DModel, CogVideoXTransformer3DModel], | 
					
						
						|  | scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.register_modules( | 
					
						
						|  | tokenizer=tokenizer, | 
					
						
						|  | text_encoder=text_encoder, | 
					
						
						|  | vae=vae, | 
					
						
						|  | transformer=transformer, | 
					
						
						|  | scheduler=scheduler, | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor_spatial = ( | 
					
						
						|  | 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scale_factor_temporal = ( | 
					
						
						|  | self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 | 
					
						
						|  | ) | 
					
						
						|  | self.vae_scaling_factor_image = ( | 
					
						
						|  | self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_t5_prompt_embeds( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]] = None, | 
					
						
						|  | num_videos_per_prompt: int = 1, | 
					
						
						|  | max_sequence_length: int = 226, | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | dtype: Optional[torch.dtype] = None, | 
					
						
						|  | ): | 
					
						
						|  | device = device or self._execution_device | 
					
						
						|  | dtype = dtype or self.text_encoder.dtype | 
					
						
						|  |  | 
					
						
						|  | prompt = [prompt] if isinstance(prompt, str) else prompt | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.tokenizer( | 
					
						
						|  | prompt, | 
					
						
						|  | padding="max_length", | 
					
						
						|  | max_length=max_sequence_length, | 
					
						
						|  | truncation=True, | 
					
						
						|  | add_special_tokens=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ) | 
					
						
						|  | text_input_ids = text_inputs.input_ids | 
					
						
						|  | untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | 
					
						
						|  |  | 
					
						
						|  | if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | 
					
						
						|  | removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The following part of your input was truncated because `max_sequence_length` is set to " | 
					
						
						|  | f" {max_sequence_length} tokens: {removed_text}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] | 
					
						
						|  | prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _, seq_len, _ = prompt_embeds.shape | 
					
						
						|  | prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | 
					
						
						|  | prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def encode_prompt( | 
					
						
						|  | self, | 
					
						
						|  | prompt: Union[str, List[str]], | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | do_classifier_free_guidance: bool = True, | 
					
						
						|  | num_videos_per_prompt: int = 1, | 
					
						
						|  | prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | max_sequence_length: int = 226, | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | dtype: Optional[torch.dtype] = None, | 
					
						
						|  | ): | 
					
						
						|  | r""" | 
					
						
						|  | Encodes the prompt into text encoder hidden states. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | prompt to be encoded | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to use classifier free guidance or not. | 
					
						
						|  | num_videos_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | Number of videos that should be generated per prompt. torch device to place the resulting embeddings on | 
					
						
						|  | prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.Tensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | device: (`torch.device`, *optional*): | 
					
						
						|  | torch device | 
					
						
						|  | dtype: (`torch.dtype`, *optional*): | 
					
						
						|  | torch dtype | 
					
						
						|  | """ | 
					
						
						|  | device = device or self._execution_device | 
					
						
						|  |  | 
					
						
						|  | prompt = [prompt] if isinstance(prompt, str) else prompt | 
					
						
						|  | if prompt is not None: | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is None: | 
					
						
						|  | prompt_embeds = self._get_t5_prompt_embeds( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | num_videos_per_prompt=num_videos_per_prompt, | 
					
						
						|  | max_sequence_length=max_sequence_length, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if do_classifier_free_guidance and negative_prompt_embeds is None: | 
					
						
						|  | negative_prompt = negative_prompt or "" | 
					
						
						|  | negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and type(prompt) is not type(negative_prompt): | 
					
						
						|  | raise TypeError( | 
					
						
						|  | f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | 
					
						
						|  | f" {type(prompt)}." | 
					
						
						|  | ) | 
					
						
						|  | elif batch_size != len(negative_prompt): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | 
					
						
						|  | f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | 
					
						
						|  | " the batch size of `prompt`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | negative_prompt_embeds = self._get_t5_prompt_embeds( | 
					
						
						|  | prompt=negative_prompt, | 
					
						
						|  | num_videos_per_prompt=num_videos_per_prompt, | 
					
						
						|  | max_sequence_length=max_sequence_length, | 
					
						
						|  | device=device, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return prompt_embeds, negative_prompt_embeds | 
					
						
						|  |  | 
					
						
						|  | def prepare_latents( | 
					
						
						|  | self, | 
					
						
						|  | image: torch.Tensor, | 
					
						
						|  | batch_size: int = 1, | 
					
						
						|  | num_channels_latents: int = 16, | 
					
						
						|  | num_frames: int = 13, | 
					
						
						|  | height: int = 60, | 
					
						
						|  | width: int = 90, | 
					
						
						|  | dtype: Optional[torch.dtype] = None, | 
					
						
						|  | device: Optional[torch.device] = None, | 
					
						
						|  | generator: Optional[torch.Generator] = None, | 
					
						
						|  | latents: Optional[torch.Tensor] = None, | 
					
						
						|  | kps_cond: Optional[torch.Tensor] = None, | 
					
						
						|  | ): | 
					
						
						|  | if isinstance(generator, list) and len(generator) != batch_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | 
					
						
						|  | f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 | 
					
						
						|  | shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_frames, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height // self.vae_scale_factor_spatial, | 
					
						
						|  | width // self.vae_scale_factor_spatial, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = image.unsqueeze(2) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(generator, list): | 
					
						
						|  | image_latents = [ | 
					
						
						|  | retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size) | 
					
						
						|  | ] | 
					
						
						|  | if kps_cond is not None: | 
					
						
						|  | kps_cond = kps_cond.unsqueeze(2) | 
					
						
						|  | kps_cond_latents = [ | 
					
						
						|  | retrieve_latents(self.vae.encode(kps_cond[i].unsqueeze(0)), generator[i]) for i in range(batch_size) | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  | image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image] | 
					
						
						|  | if kps_cond is not None: | 
					
						
						|  | kps_cond = kps_cond.unsqueeze(2) | 
					
						
						|  | kps_cond_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in kps_cond] | 
					
						
						|  |  | 
					
						
						|  | image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) | 
					
						
						|  | image_latents = self.vae_scaling_factor_image * image_latents | 
					
						
						|  |  | 
					
						
						|  | if kps_cond is not None: | 
					
						
						|  | kps_cond_latents = torch.cat(kps_cond_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) | 
					
						
						|  | kps_cond_latents = self.vae_scaling_factor_image * kps_cond_latents | 
					
						
						|  |  | 
					
						
						|  | padding_shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_frames - 2, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height // self.vae_scale_factor_spatial, | 
					
						
						|  | width // self.vae_scale_factor_spatial, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | padding_shape = ( | 
					
						
						|  | batch_size, | 
					
						
						|  | num_frames - 1, | 
					
						
						|  | num_channels_latents, | 
					
						
						|  | height // self.vae_scale_factor_spatial, | 
					
						
						|  | width // self.vae_scale_factor_spatial, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype) | 
					
						
						|  | if kps_cond is not None: | 
					
						
						|  | image_latents = torch.cat([image_latents, kps_cond_latents, latent_padding], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | image_latents = torch.cat([image_latents, latent_padding], dim=1) | 
					
						
						|  |  | 
					
						
						|  | if latents is None: | 
					
						
						|  | latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | 
					
						
						|  | else: | 
					
						
						|  | latents = latents.to(device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | latents = latents * self.scheduler.init_noise_sigma | 
					
						
						|  | return latents, image_latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | latents = latents.permute(0, 2, 1, 3, 4) | 
					
						
						|  | latents = 1 / self.vae_scaling_factor_image * latents | 
					
						
						|  |  | 
					
						
						|  | frames = self.vae.decode(latents).sample | 
					
						
						|  | return frames | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_timesteps(self, num_inference_steps, timesteps, strength, device): | 
					
						
						|  |  | 
					
						
						|  | init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | t_start = max(num_inference_steps - init_timestep, 0) | 
					
						
						|  | timesteps = timesteps[t_start * self.scheduler.order :] | 
					
						
						|  |  | 
					
						
						|  | return timesteps, num_inference_steps - t_start | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_extra_step_kwargs(self, generator, eta): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | extra_step_kwargs = {} | 
					
						
						|  | if accepts_eta: | 
					
						
						|  | extra_step_kwargs["eta"] = eta | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | 
					
						
						|  | if accepts_generator: | 
					
						
						|  | extra_step_kwargs["generator"] = generator | 
					
						
						|  | return extra_step_kwargs | 
					
						
						|  |  | 
					
						
						|  | def check_inputs( | 
					
						
						|  | self, | 
					
						
						|  | image, | 
					
						
						|  | prompt, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | callback_on_step_end_tensor_inputs, | 
					
						
						|  | latents=None, | 
					
						
						|  | prompt_embeds=None, | 
					
						
						|  | negative_prompt_embeds=None, | 
					
						
						|  | ): | 
					
						
						|  | if ( | 
					
						
						|  | not isinstance(image, torch.Tensor) | 
					
						
						|  | and not isinstance(image, PIL.Image.Image) | 
					
						
						|  | and not isinstance(image, list) | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | 
					
						
						|  | f" {type(image)}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if height % 8 != 0 or width % 8 != 0: | 
					
						
						|  | raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end_tensor_inputs is not None and not all( | 
					
						
						|  | k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | 
					
						
						|  | ) | 
					
						
						|  | if prompt is not None and prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | 
					
						
						|  | " only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is None and prompt_embeds is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | 
					
						
						|  | ) | 
					
						
						|  | elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | 
					
						
						|  | raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if negative_prompt is not None and negative_prompt_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | 
					
						
						|  | f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if prompt_embeds is not None and negative_prompt_embeds is not None: | 
					
						
						|  | if prompt_embeds.shape != negative_prompt_embeds.shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | 
					
						
						|  | f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | 
					
						
						|  | f" {negative_prompt_embeds.shape}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def fuse_qkv_projections(self) -> None: | 
					
						
						|  | r"""Enables fused QKV projections.""" | 
					
						
						|  | self.fusing_transformer = True | 
					
						
						|  | self.transformer.fuse_qkv_projections() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def unfuse_qkv_projections(self) -> None: | 
					
						
						|  | r"""Disable QKV projection fusion if enabled.""" | 
					
						
						|  | if not self.fusing_transformer: | 
					
						
						|  | logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") | 
					
						
						|  | else: | 
					
						
						|  | self.transformer.unfuse_qkv_projections() | 
					
						
						|  | self.fusing_transformer = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _prepare_rotary_positional_embeddings( | 
					
						
						|  | self, | 
					
						
						|  | height: int, | 
					
						
						|  | width: int, | 
					
						
						|  | num_frames: int, | 
					
						
						|  | device: torch.device, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  | grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | 
					
						
						|  | grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | 
					
						
						|  | base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | 
					
						
						|  | base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | 
					
						
						|  |  | 
					
						
						|  | grid_crops_coords = get_resize_crop_region_for_grid( | 
					
						
						|  | (grid_height, grid_width), base_size_width, base_size_height | 
					
						
						|  | ) | 
					
						
						|  | freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | 
					
						
						|  | embed_dim=self.transformer.config.attention_head_dim, | 
					
						
						|  | crops_coords=grid_crops_coords, | 
					
						
						|  | grid_size=(grid_height, grid_width), | 
					
						
						|  | temporal_size=num_frames, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | freqs_cos = freqs_cos.to(device=device) | 
					
						
						|  | freqs_sin = freqs_sin.to(device=device) | 
					
						
						|  | return freqs_cos, freqs_sin | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def guidance_scale(self): | 
					
						
						|  | return self._guidance_scale | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_timesteps(self): | 
					
						
						|  | return self._num_timesteps | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def interrupt(self): | 
					
						
						|  | return self._interrupt | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | @replace_example_docstring(EXAMPLE_DOC_STRING) | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | image: PipelineImageInput, | 
					
						
						|  | prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | negative_prompt: Optional[Union[str, List[str]]] = None, | 
					
						
						|  | height: int = 480, | 
					
						
						|  | width: int = 720, | 
					
						
						|  | num_frames: int = 49, | 
					
						
						|  | num_inference_steps: int = 50, | 
					
						
						|  | timesteps: Optional[List[int]] = None, | 
					
						
						|  | guidance_scale: float = 6, | 
					
						
						|  | use_dynamic_cfg: bool = False, | 
					
						
						|  | num_videos_per_prompt: int = 1, | 
					
						
						|  | eta: float = 0.0, | 
					
						
						|  | generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | 
					
						
						|  | latents: Optional[torch.FloatTensor] = None, | 
					
						
						|  | prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | negative_prompt_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_type: str = "pil", | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | callback_on_step_end: Optional[ | 
					
						
						|  | Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | 
					
						
						|  | ] = None, | 
					
						
						|  | callback_on_step_end_tensor_inputs: List[str] = ["latents"], | 
					
						
						|  | max_sequence_length: int = 226, | 
					
						
						|  | id_vit_hidden: Optional[torch.Tensor] = None, | 
					
						
						|  | id_cond: Optional[torch.Tensor] = None, | 
					
						
						|  | kps_cond: Optional[torch.Tensor] = None, | 
					
						
						|  | ) -> Union[CogVideoXPipelineOutput, Tuple]: | 
					
						
						|  | """ | 
					
						
						|  | Function invoked when calling the pipeline for generation. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image (`PipelineImageInput`): | 
					
						
						|  | The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. | 
					
						
						|  | prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | 
					
						
						|  | instead. | 
					
						
						|  | negative_prompt (`str` or `List[str]`, *optional*): | 
					
						
						|  | The prompt or prompts not to guide the image generation. If not defined, one has to pass | 
					
						
						|  | `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | 
					
						
						|  | less than `1`). | 
					
						
						|  | height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): | 
					
						
						|  | The height in pixels of the generated image. This is set to 480 by default for the best results. | 
					
						
						|  | width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): | 
					
						
						|  | The width in pixels of the generated image. This is set to 720 by default for the best results. | 
					
						
						|  | num_frames (`int`, defaults to `48`): | 
					
						
						|  | Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will | 
					
						
						|  | contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where | 
					
						
						|  | num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that | 
					
						
						|  | needs to be satisfied is that of divisibility mentioned above. | 
					
						
						|  | num_inference_steps (`int`, *optional*, defaults to 50): | 
					
						
						|  | The number of denoising steps. More denoising steps usually lead to a higher quality image at the | 
					
						
						|  | expense of slower inference. | 
					
						
						|  | timesteps (`List[int]`, *optional*): | 
					
						
						|  | Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | 
					
						
						|  | in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | 
					
						
						|  | passed will be used. Must be in descending order. | 
					
						
						|  | guidance_scale (`float`, *optional*, defaults to 7.0): | 
					
						
						|  | Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | 
					
						
						|  | `guidance_scale` is defined as `w` of equation 2. of [Imagen | 
					
						
						|  | Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | 
					
						
						|  | 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | 
					
						
						|  | usually at the expense of lower image quality. | 
					
						
						|  | num_videos_per_prompt (`int`, *optional*, defaults to 1): | 
					
						
						|  | The number of videos to generate per prompt. | 
					
						
						|  | generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | 
					
						
						|  | One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | 
					
						
						|  | to make generation deterministic. | 
					
						
						|  | latents (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 
					
						
						|  | generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | 
					
						
						|  | tensor will ge generated by sampling using the supplied random `generator`. | 
					
						
						|  | prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | 
					
						
						|  | provided, text embeddings will be generated from `prompt` input argument. | 
					
						
						|  | negative_prompt_embeds (`torch.FloatTensor`, *optional*): | 
					
						
						|  | Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 
					
						
						|  | weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | 
					
						
						|  | argument. | 
					
						
						|  | output_type (`str`, *optional*, defaults to `"pil"`): | 
					
						
						|  | The output format of the generate image. Choose between | 
					
						
						|  | [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | 
					
						
						|  | return_dict (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | 
					
						
						|  | of a plain tuple. | 
					
						
						|  | callback_on_step_end (`Callable`, *optional*): | 
					
						
						|  | A function that calls at the end of each denoising steps during the inference. The function is called | 
					
						
						|  | with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | 
					
						
						|  | callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | 
					
						
						|  | `callback_on_step_end_tensor_inputs`. | 
					
						
						|  | callback_on_step_end_tensor_inputs (`List`, *optional*): | 
					
						
						|  | The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | 
					
						
						|  | will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | 
					
						
						|  | `._callback_tensor_inputs` attribute of your pipeline class. | 
					
						
						|  | max_sequence_length (`int`, defaults to `226`): | 
					
						
						|  | Maximum sequence length in encoded prompt. Must be consistent with | 
					
						
						|  | `self.transformer.config.max_text_seq_length` otherwise may lead to poor results. | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] or `tuple`: | 
					
						
						|  | [`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a | 
					
						
						|  | `tuple`. When returning a tuple, the first element is a list with the generated images. | 
					
						
						|  | """ | 
					
						
						|  | if num_frames > 49: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | 
					
						
						|  | callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | 
					
						
						|  |  | 
					
						
						|  | num_videos_per_prompt = 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.check_inputs( | 
					
						
						|  | image=image, | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | height=height, | 
					
						
						|  | width=width, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | 
					
						
						|  | latents=latents, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | ) | 
					
						
						|  | self._guidance_scale = guidance_scale | 
					
						
						|  | self._interrupt = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if prompt is not None and isinstance(prompt, str): | 
					
						
						|  | batch_size = 1 | 
					
						
						|  | elif prompt is not None and isinstance(prompt, list): | 
					
						
						|  | batch_size = len(prompt) | 
					
						
						|  | else: | 
					
						
						|  | batch_size = prompt_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = self._execution_device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | do_classifier_free_guidance = guidance_scale > 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | prompt_embeds, negative_prompt_embeds = self.encode_prompt( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | do_classifier_free_guidance=do_classifier_free_guidance, | 
					
						
						|  | num_videos_per_prompt=num_videos_per_prompt, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | max_sequence_length=max_sequence_length, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | 
					
						
						|  | self._num_timesteps = len(timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if kps_cond is not None: | 
					
						
						|  | kps_cond = draw_kps(image, kps_cond) | 
					
						
						|  | kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to( | 
					
						
						|  | device, dtype=prompt_embeds.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = self.video_processor.preprocess(image, height=height, width=width).to( | 
					
						
						|  | device, dtype=prompt_embeds.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | latent_channels = self.transformer.config.in_channels // 2 | 
					
						
						|  | latents, image_latents = self.prepare_latents( | 
					
						
						|  | image, | 
					
						
						|  | batch_size * num_videos_per_prompt, | 
					
						
						|  | latent_channels, | 
					
						
						|  | num_frames, | 
					
						
						|  | height, | 
					
						
						|  | width, | 
					
						
						|  | prompt_embeds.dtype, | 
					
						
						|  | device, | 
					
						
						|  | generator, | 
					
						
						|  | latents, | 
					
						
						|  | kps_cond | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_rotary_emb = ( | 
					
						
						|  | self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) | 
					
						
						|  | if self.transformer.config.use_rotary_positional_embeddings | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | 
					
						
						|  |  | 
					
						
						|  | with self.progress_bar(total=num_inference_steps) as progress_bar: | 
					
						
						|  |  | 
					
						
						|  | old_pred_original_sample = None | 
					
						
						|  | for i, t in enumerate(timesteps): | 
					
						
						|  | if self.interrupt: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | 
					
						
						|  | latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | 
					
						
						|  |  | 
					
						
						|  | latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents | 
					
						
						|  | latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | timestep = t.expand(latent_model_input.shape[0]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | noise_pred = self.transformer( | 
					
						
						|  | hidden_states=latent_model_input, | 
					
						
						|  | encoder_hidden_states=prompt_embeds, | 
					
						
						|  | timestep=timestep, | 
					
						
						|  | image_rotary_emb=image_rotary_emb, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | id_vit_hidden = id_vit_hidden, | 
					
						
						|  | id_cond = id_cond, | 
					
						
						|  | )[0] | 
					
						
						|  | noise_pred = noise_pred.float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if use_dynamic_cfg: | 
					
						
						|  | self._guidance_scale = 1 + guidance_scale * ( | 
					
						
						|  | (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 | 
					
						
						|  | ) | 
					
						
						|  | if do_classifier_free_guidance: | 
					
						
						|  | noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | 
					
						
						|  | noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(self.scheduler, CogVideoXDPMScheduler): | 
					
						
						|  | latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | 
					
						
						|  | else: | 
					
						
						|  | latents, old_pred_original_sample = self.scheduler.step( | 
					
						
						|  | noise_pred, | 
					
						
						|  | old_pred_original_sample, | 
					
						
						|  | t, | 
					
						
						|  | timesteps[i - 1] if i > 0 else None, | 
					
						
						|  | latents, | 
					
						
						|  | **extra_step_kwargs, | 
					
						
						|  | return_dict=False, | 
					
						
						|  | ) | 
					
						
						|  | latents = latents.to(prompt_embeds.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if callback_on_step_end is not None: | 
					
						
						|  | callback_kwargs = {} | 
					
						
						|  | for k in callback_on_step_end_tensor_inputs: | 
					
						
						|  | callback_kwargs[k] = locals()[k] | 
					
						
						|  | callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | 
					
						
						|  |  | 
					
						
						|  | latents = callback_outputs.pop("latents", latents) | 
					
						
						|  | prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | 
					
						
						|  | negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | 
					
						
						|  |  | 
					
						
						|  | if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | 
					
						
						|  | progress_bar.update() | 
					
						
						|  |  | 
					
						
						|  | if not output_type == "latent": | 
					
						
						|  | video = self.decode_latents(latents) | 
					
						
						|  | video = self.video_processor.postprocess_video(video=video, output_type=output_type) | 
					
						
						|  | else: | 
					
						
						|  | video = latents | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.maybe_free_model_hooks() | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (video,) | 
					
						
						|  |  | 
					
						
						|  | return CogVideoXPipelineOutput(frames=video) | 
					
						
						|  |  |