Update calendar_rag.py
Browse files- calendar_rag.py +917 -487
calendar_rag.py
CHANGED
@@ -2,30 +2,123 @@ from haystack import *
|
|
2 |
from haystack.components.generators.openai import OpenAIGenerator
|
3 |
from haystack.components.builders import PromptBuilder
|
4 |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
5 |
-
from haystack.components.retrievers.in_memory import
|
6 |
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
7 |
from haystack.utils import Secret
|
8 |
-
from tenacity import retry, stop_after_attempt, wait_exponential
|
9 |
from pathlib import Path
|
10 |
import hashlib
|
11 |
from datetime import *
|
12 |
from typing import *
|
13 |
-
import numpy as np
|
14 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
15 |
-
from rouge_score import rouge_scorer
|
16 |
-
import pandas as pd
|
17 |
from dataclasses import *
|
18 |
import json
|
19 |
import logging
|
20 |
-
import os
|
21 |
import re
|
22 |
import pickle
|
23 |
|
24 |
# Setup logging
|
25 |
logging.basicConfig(level=logging.INFO)
|
26 |
-
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
class OpenAIDateParser:
|
30 |
"""Uses OpenAI to parse complex Thai date formats"""
|
31 |
|
@@ -64,19 +157,14 @@ class OpenAIDateParser:
|
|
64 |
async def parse_date(self, date_str: str) -> Dict[str, Union[str, bool]]:
|
65 |
"""Parse complex Thai date format using OpenAI"""
|
66 |
try:
|
67 |
-
# Build prompt
|
68 |
result = self.prompt_builder.run(date=date_str)
|
69 |
-
|
70 |
-
# Get OpenAI response
|
71 |
response = await self.generator.arun(prompt=result["prompt"])
|
72 |
|
73 |
if not response or not response.get("replies"):
|
74 |
raise ValueError("Empty response from OpenAI")
|
75 |
|
76 |
-
# Parse JSON response
|
77 |
parsed = json.loads(response["replies"][0])
|
78 |
|
79 |
-
# Validate the parsed dates
|
80 |
for date_field in ['start_date', 'end_date']:
|
81 |
if parsed.get(date_field):
|
82 |
datetime.strptime(parsed[date_field], '%Y-%m-%d')
|
@@ -87,25 +175,10 @@ class OpenAIDateParser:
|
|
87 |
logger.error(f"OpenAI date parsing failed for '{date_str}': {str(e)}")
|
88 |
raise ValueError(f"Could not parse date: {date_str}")
|
89 |
|
90 |
-
@dataclass
|
91 |
-
class ValidationResult:
|
92 |
-
"""Stores the result of a validation check"""
|
93 |
-
is_valid: bool
|
94 |
-
errors: List[str]
|
95 |
-
warnings: List[str]
|
96 |
-
normalized_data: Dict[str, str]
|
97 |
-
|
98 |
class ThaiTextPreprocessor:
|
99 |
"""Handles Thai text preprocessing and normalization"""
|
100 |
|
101 |
-
|
102 |
-
CHAR_MAP = {
|
103 |
-
'ํา': 'ำ', # Normalize sara am
|
104 |
-
'์': '', # Remove yamakkan
|
105 |
-
'–': '-', # Normalize dashes
|
106 |
-
'—': '-',
|
107 |
-
'٫': ',', # Normalize separators
|
108 |
-
}
|
109 |
|
110 |
@classmethod
|
111 |
def normalize_thai_text(cls, text: str) -> str:
|
@@ -113,14 +186,11 @@ class ThaiTextPreprocessor:
|
|
113 |
if not text:
|
114 |
return text
|
115 |
|
116 |
-
# Apply character mappings
|
117 |
for old, new in cls.CHAR_MAP.items():
|
118 |
text = text.replace(old, new)
|
119 |
|
120 |
-
# Normalize whitespace
|
121 |
text = re.sub(r'\s+', ' ', text.strip())
|
122 |
|
123 |
-
# Normalize Thai numerals if present
|
124 |
thai_digits = '๐๑๒๓๔๕๖๗๘๙'
|
125 |
arabic_digits = '0123456789'
|
126 |
|
@@ -142,13 +212,11 @@ class CalendarEventValidator:
|
|
142 |
warnings = []
|
143 |
normalized_data = {}
|
144 |
|
145 |
-
# Validate and normalize date using OpenAI
|
146 |
if event.date:
|
147 |
try:
|
148 |
parsed_date = await self.date_parser.parse_date(event.date)
|
149 |
normalized_data['date'] = parsed_date['start_date']
|
150 |
|
151 |
-
# If it's a date range, store it in the note
|
152 |
if parsed_date['is_range'] and parsed_date['end_date']:
|
153 |
range_note = f"ถึงวันที่ {parsed_date['end_date']}"
|
154 |
if event.note:
|
@@ -161,14 +229,12 @@ class CalendarEventValidator:
|
|
161 |
else:
|
162 |
errors.append("Date is required")
|
163 |
|
164 |
-
# Validate time format if provided
|
165 |
if event.time:
|
166 |
time_pattern = r'^([01]?[0-9]|2[0-3]):([0-5][0-9])$'
|
167 |
if not re.match(time_pattern, event.time):
|
168 |
errors.append(f"Invalid time format: {event.time}")
|
169 |
normalized_data['time'] = event.time
|
170 |
|
171 |
-
# Validate and normalize activity
|
172 |
if event.activity:
|
173 |
normalized_activity = self.preprocessor.normalize_thai_text(event.activity)
|
174 |
if len(normalized_activity) < 3:
|
@@ -177,7 +243,6 @@ class CalendarEventValidator:
|
|
177 |
else:
|
178 |
errors.append("Activity is required")
|
179 |
|
180 |
-
# Validate semester
|
181 |
valid_semesters = {'ภาคต้น', 'ภาคปลาย', 'ภาคฤดูร้อน'}
|
182 |
if event.semester:
|
183 |
normalized_semester = self.preprocessor.normalize_thai_text(event.semester)
|
@@ -187,17 +252,14 @@ class CalendarEventValidator:
|
|
187 |
else:
|
188 |
errors.append("Semester is required")
|
189 |
|
190 |
-
# Validate event type
|
191 |
valid_types = {'registration', 'deadline', 'examination', 'academic', 'holiday'}
|
192 |
if event.event_type not in valid_types:
|
193 |
errors.append(f"Invalid event type: {event.event_type}")
|
194 |
normalized_data['event_type'] = event.event_type
|
195 |
|
196 |
-
# Normalize note if present and not already set by date range
|
197 |
if event.note and 'note' not in normalized_data:
|
198 |
normalized_data['note'] = self.preprocessor.normalize_thai_text(event.note)
|
199 |
|
200 |
-
# Normalize section if present
|
201 |
if event.section:
|
202 |
normalized_data['section'] = self.preprocessor.normalize_thai_text(event.section)
|
203 |
|
@@ -208,11 +270,17 @@ class CalendarEventValidator:
|
|
208 |
normalized_data=normalized_data
|
209 |
)
|
210 |
|
211 |
-
# Update CalendarEvent class to include async validation
|
212 |
@dataclass
|
213 |
class CalendarEvent:
|
214 |
"""Structured representation of a calendar event with validation"""
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
@staticmethod
|
217 |
def classify_event_type(activity: str) -> str:
|
218 |
"""Classify event type based on activity description"""
|
@@ -229,13 +297,6 @@ class CalendarEvent:
|
|
229 |
if any(term in activity_lower for term in terms):
|
230 |
return event_type
|
231 |
return 'academic'
|
232 |
-
date: str
|
233 |
-
time: str
|
234 |
-
activity: str
|
235 |
-
note: str
|
236 |
-
semester: str
|
237 |
-
event_type: str
|
238 |
-
section: Optional[str] = None
|
239 |
|
240 |
async def initialize(self, openai_api_key: str):
|
241 |
"""Asynchronously validate and normalize the event"""
|
@@ -245,11 +306,9 @@ class CalendarEvent:
|
|
245 |
if not result.is_valid:
|
246 |
raise ValueError(f"Invalid calendar event: {', '.join(result.errors)}")
|
247 |
|
248 |
-
# Update with normalized data
|
249 |
for field, value in result.normalized_data.items():
|
250 |
setattr(self, field, value)
|
251 |
-
|
252 |
-
# Log any warnings
|
253 |
if result.warnings:
|
254 |
logger.warning(f"Calendar event warnings: {', '.join(result.warnings)}")
|
255 |
|
@@ -259,22 +318,18 @@ class CalendarEvent:
|
|
259 |
ภาคการศึกษา: {self.semester}
|
260 |
ประเภท: {self.event_type}
|
261 |
วันที่: {self.date}
|
262 |
-
เวลา: {self.time}
|
263 |
กิจกรรม: {self.activity}
|
264 |
หมวดหมู่: {self.section or '-'}
|
265 |
-
หมายเหตุ: {self.note}
|
266 |
""".strip()
|
267 |
-
|
268 |
class CacheManager:
|
269 |
"""Manages caching for different components of the RAG pipeline"""
|
270 |
|
271 |
def __init__(self, cache_dir: Path, ttl: int = 3600):
|
272 |
"""
|
273 |
Initialize CacheManager
|
274 |
-
|
275 |
-
Args:
|
276 |
-
cache_dir: Directory to store cache files
|
277 |
-
ttl: Time-to-live in seconds for cache entries (default: 1 hour)
|
278 |
"""
|
279 |
self.cache_dir = cache_dir
|
280 |
self.ttl = ttl
|
@@ -297,7 +352,6 @@ class CacheManager:
|
|
297 |
try:
|
298 |
with open(cache_path, 'rb') as f:
|
299 |
cache = pickle.load(f)
|
300 |
-
# Clean expired entries
|
301 |
self._clean_expired_entries(cache)
|
302 |
return cache
|
303 |
except Exception as e:
|
@@ -354,259 +408,435 @@ class CacheManager:
|
|
354 |
self.query_cache[key] = (result, datetime.now())
|
355 |
self._save_cache("queries", self.query_cache)
|
356 |
|
357 |
-
def get_document_cache(self, doc_id: str) -> Optional[Any]:
|
358 |
-
"""Get cached document"""
|
359 |
-
if doc_id in self.document_cache:
|
360 |
-
doc, timestamp = self.document_cache[doc_id]
|
361 |
-
if datetime.now() - timestamp <= timedelta(seconds=self.ttl):
|
362 |
-
return doc
|
363 |
-
return None
|
364 |
-
|
365 |
def set_document_cache(self, doc_id: str, document: Any):
|
366 |
"""Cache document"""
|
367 |
self.document_cache[doc_id] = (document, datetime.now())
|
368 |
self._save_cache("documents", self.document_cache)
|
369 |
-
|
370 |
-
def clear_cache(self, cache_type: Optional[str] = None):
|
371 |
-
"""Clear specific or all caches"""
|
372 |
-
if cache_type == "embeddings":
|
373 |
-
self.embeddings_cache.clear()
|
374 |
-
self._save_cache("embeddings", self.embeddings_cache)
|
375 |
-
elif cache_type == "queries":
|
376 |
-
self.query_cache.clear()
|
377 |
-
self._save_cache("queries", self.query_cache)
|
378 |
-
elif cache_type == "documents":
|
379 |
-
self.document_cache.clear()
|
380 |
-
self._save_cache("documents", self.document_cache)
|
381 |
-
else:
|
382 |
-
self.embeddings_cache.clear()
|
383 |
-
self.query_cache.clear()
|
384 |
-
self.document_cache.clear()
|
385 |
-
for cache_type in ["embeddings", "queries", "documents"]:
|
386 |
-
self._save_cache(cache_type, {})
|
387 |
|
388 |
@dataclass
|
389 |
class ModelConfig:
|
390 |
-
"""Configuration for language models and embeddings"""
|
391 |
openai_api_key: str
|
392 |
embedder_model: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
393 |
openai_model: str = "gpt-4o"
|
394 |
temperature: float = 0.7
|
395 |
-
max_tokens: int = 2000
|
396 |
-
top_p: float = 0.95
|
397 |
-
frequency_penalty: float = 0.0
|
398 |
-
presence_penalty: float = 0.0
|
399 |
|
400 |
@dataclass
|
401 |
class RetrieverConfig:
|
402 |
-
"""Configuration for document retrieval"""
|
403 |
top_k: int = 5
|
404 |
-
similarity_threshold: float = 0.7
|
405 |
-
reranking_enabled: bool = False
|
406 |
-
reranking_model: Optional[str] = None
|
407 |
-
filter_duplicates: bool = True
|
408 |
-
min_document_length: int = 10
|
409 |
|
410 |
@dataclass
|
411 |
class CacheConfig:
|
412 |
-
"""Configuration for caching behavior"""
|
413 |
enabled: bool = True
|
414 |
-
cache_dir: Path =
|
415 |
-
|
416 |
-
query_cache_ttl: int = 3600 # 1 hour
|
417 |
-
max_cache_size: int = 1000 # entries
|
418 |
-
cache_cleanup_interval: int = 3600 # 1 hour
|
419 |
|
420 |
@dataclass
|
421 |
class ProcessingConfig:
|
422 |
-
"""Configuration for data processing"""
|
423 |
batch_size: int = 32
|
424 |
-
max_retries: int = 3
|
425 |
-
timeout: int = 30
|
426 |
-
max_concurrent_requests: int = 5
|
427 |
-
chunk_size: int = 512
|
428 |
-
chunk_overlap: int = 50
|
429 |
-
preprocessing_workers: int = 4
|
430 |
-
|
431 |
-
@dataclass
|
432 |
-
class MonitoringConfig:
|
433 |
-
"""Configuration for monitoring and logging"""
|
434 |
-
enable_monitoring: bool = True
|
435 |
-
log_level: str = "INFO"
|
436 |
-
metrics_enabled: bool = True
|
437 |
-
trace_enabled: bool = True
|
438 |
-
performance_logging: bool = True
|
439 |
-
slow_query_threshold: float = 5.0 # seconds
|
440 |
-
health_check_interval: int = 300 # 5 minutes
|
441 |
|
442 |
@dataclass
|
443 |
class LocalizationConfig:
|
444 |
-
"""Configuration for Thai language handling"""
|
445 |
-
thai_tokenizer_model: str = "thai-tokenizer"
|
446 |
enable_thai_normalization: bool = True
|
447 |
-
|
448 |
-
keep_english: bool = True
|
449 |
-
custom_stopwords: List[str] = field(default_factory=list)
|
450 |
-
custom_synonyms: Dict[str, List[str]] = field(default_factory=dict)
|
451 |
-
|
452 |
@dataclass
|
453 |
class PipelineConfig:
|
454 |
-
"""Main configuration for the RAG pipeline"""
|
455 |
-
# Model configurations
|
456 |
model: ModelConfig
|
457 |
-
|
458 |
-
# Retriever settings
|
459 |
retriever: RetrieverConfig = field(default_factory=RetrieverConfig)
|
460 |
-
|
461 |
-
# Cache settings
|
462 |
cache: CacheConfig = field(default_factory=CacheConfig)
|
463 |
-
|
464 |
-
# Processing settings
|
465 |
processing: ProcessingConfig = field(default_factory=ProcessingConfig)
|
466 |
-
|
467 |
-
# Monitoring settings
|
468 |
-
monitoring: MonitoringConfig = field(default_factory=MonitoringConfig)
|
469 |
-
|
470 |
-
# Localization settings
|
471 |
localization: LocalizationConfig = field(default_factory=LocalizationConfig)
|
472 |
-
|
473 |
-
# Rate limiting
|
474 |
-
rate_limit_enabled: bool = True
|
475 |
-
requests_per_minute: int = 60
|
476 |
-
|
477 |
-
# System settings
|
478 |
-
debug_mode: bool = False
|
479 |
-
development_mode: bool = False
|
480 |
-
|
481 |
-
def __post_init__(self):
|
482 |
-
"""Validate configuration and create necessary directories"""
|
483 |
-
if not self.model.openai_api_key:
|
484 |
-
raise ValueError("OpenAI API key is required")
|
485 |
-
|
486 |
-
if self.cache.enabled:
|
487 |
-
self.cache.cache_dir.mkdir(parents=True, exist_ok=True)
|
488 |
-
|
489 |
-
def to_dict(self) -> Dict[str, Any]:
|
490 |
-
"""Convert configuration to dictionary format"""
|
491 |
-
return {
|
492 |
-
"model_config": {
|
493 |
-
"embedder_model": self.model.embedder_model,
|
494 |
-
"openai_model": self.model.openai_model,
|
495 |
-
"temperature": self.model.temperature,
|
496 |
-
# Add other relevant fields
|
497 |
-
},
|
498 |
-
"retriever_config": {
|
499 |
-
"top_k": self.retriever.top_k,
|
500 |
-
"similarity_threshold": self.retriever.similarity_threshold,
|
501 |
-
# Add other relevant fields
|
502 |
-
},
|
503 |
-
# Add other configuration sections
|
504 |
-
}
|
505 |
-
|
506 |
-
@classmethod
|
507 |
-
def from_dict(cls, config_dict: Dict[str, Any]) -> 'PipelineConfig':
|
508 |
-
"""Create configuration from dictionary"""
|
509 |
-
model_config = ModelConfig(**config_dict.get("model_config", {}))
|
510 |
-
retriever_config = RetrieverConfig(**config_dict.get("retriever_config", {}))
|
511 |
-
# Create other config objects
|
512 |
-
|
513 |
-
return cls(
|
514 |
-
model=model_config,
|
515 |
-
retriever=retriever_config,
|
516 |
-
# Add other configuration objects
|
517 |
-
)
|
518 |
|
519 |
def create_default_config(api_key: str) -> PipelineConfig:
|
520 |
-
|
521 |
-
model_config = ModelConfig(
|
522 |
-
openai_api_key=api_key,
|
523 |
-
embedder_model="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
524 |
-
)
|
525 |
-
return PipelineConfig(
|
526 |
-
model=model_config,
|
527 |
-
retriever=RetrieverConfig(),
|
528 |
-
cache=CacheConfig(),
|
529 |
-
processing=ProcessingConfig(),
|
530 |
-
monitoring=MonitoringConfig(),
|
531 |
-
localization=LocalizationConfig()
|
532 |
-
)
|
533 |
|
534 |
class CalendarDataProcessor:
|
535 |
-
"""Process and structure calendar data"""
|
536 |
|
537 |
@staticmethod
|
538 |
-
def parse_calendar_json(json_data:
|
|
|
539 |
events = []
|
540 |
|
541 |
-
|
542 |
-
|
|
|
|
|
|
|
|
|
543 |
|
544 |
-
#
|
545 |
-
for event in
|
546 |
-
# Check if this is a regular event or a section with details
|
547 |
if 'section' in event and 'details' in event:
|
548 |
-
#
|
549 |
section = event['section']
|
550 |
for detail in event['details']:
|
551 |
-
# Extract semester-specific information if available
|
552 |
if 'ภาคต้น' in detail and 'ภาคปลาย' in detail:
|
553 |
-
# Handle
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
else:
|
566 |
-
# Single event
|
567 |
events.append(CalendarEvent(
|
568 |
date=detail.get('date', ''),
|
569 |
time='',
|
570 |
activity=detail.get('title', ''),
|
571 |
note=section,
|
572 |
-
semester=semester,
|
573 |
event_type='deadline',
|
574 |
section=section
|
575 |
))
|
576 |
else:
|
577 |
-
#
|
578 |
event_type = CalendarEvent.classify_event_type(event.get('activity', ''))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
579 |
events.append(CalendarEvent(
|
580 |
date=event.get('date', ''),
|
581 |
time=event.get('time', ''),
|
582 |
activity=event.get('activity', ''),
|
583 |
note=event.get('note', ''),
|
584 |
-
semester=
|
585 |
event_type=event_type
|
586 |
))
|
587 |
|
588 |
return events
|
589 |
|
590 |
-
|
591 |
-
|
592 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
593 |
|
594 |
def __init__(self, config: PipelineConfig):
|
595 |
self.store = InMemoryDocumentStore()
|
596 |
self.embedder = SentenceTransformersDocumentEmbedder(
|
597 |
model=config.model.embedder_model
|
598 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
self.cache_manager = CacheManager(
|
600 |
cache_dir=config.cache.cache_dir,
|
601 |
-
ttl=config.cache.
|
602 |
)
|
603 |
|
604 |
-
# Configure for Thai text
|
605 |
self.embedder.warm_up()
|
606 |
|
|
|
607 |
self.events = []
|
608 |
self.event_type_index = {}
|
609 |
self.semester_index = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
610 |
|
611 |
def _compute_embedding(self, text: str) -> Any:
|
612 |
"""Compute embedding with caching"""
|
@@ -618,89 +848,269 @@ class EnhancedDocumentStore:
|
|
618 |
embedding = self.embedder.run(documents=[doc])["documents"][0].embedding
|
619 |
self.cache_manager.set_embedding_cache(text, embedding)
|
620 |
return embedding
|
621 |
-
|
622 |
-
def
|
623 |
-
"""Add
|
624 |
-
|
625 |
-
|
626 |
-
for event in events:
|
627 |
-
# Store event
|
628 |
-
self.events.append(event)
|
629 |
-
event_idx = len(self.events) - 1
|
630 |
-
|
631 |
-
# Update indices
|
632 |
-
if event.event_type not in self.event_type_index:
|
633 |
-
self.event_type_index[event.event_type] = []
|
634 |
-
self.event_type_index[event.event_type].append(event_idx)
|
635 |
-
|
636 |
-
if event.semester not in self.semester_index:
|
637 |
-
self.semester_index[event.semester] = []
|
638 |
-
self.semester_index[event.semester].append(event_idx)
|
639 |
-
|
640 |
-
# Create document with cached embedding
|
641 |
-
text = event.to_searchable_text()
|
642 |
embedding = self._compute_embedding(text)
|
643 |
|
|
|
644 |
doc = Document(
|
|
|
645 |
content=text,
|
646 |
embedding=embedding,
|
647 |
-
meta={
|
648 |
-
'event_type': event.event_type,
|
649 |
-
'semester': event.semester,
|
650 |
-
'date': event.date
|
651 |
-
}
|
652 |
)
|
653 |
-
|
|
|
|
|
654 |
|
655 |
# Cache document
|
656 |
-
self.cache_manager.set_document_cache(
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
cache_key = json.dumps({
|
669 |
'query': query,
|
670 |
'event_type': event_type,
|
671 |
'semester': semester,
|
672 |
-
'top_k': top_k
|
|
|
673 |
})
|
|
|
674 |
cached_results = self.cache_manager.get_query_cache(cache_key)
|
675 |
if cached_results is not None:
|
676 |
return cached_results
|
677 |
-
|
678 |
-
#
|
679 |
query_embedding = self._compute_embedding(query)
|
|
|
|
|
|
|
680 |
|
681 |
-
#
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
)
|
686 |
|
687 |
-
results
|
|
|
|
|
|
|
|
|
|
|
|
|
688 |
|
689 |
-
# Filter results
|
690 |
filtered_results = []
|
691 |
-
for doc in
|
692 |
-
if event_type and doc.meta
|
693 |
continue
|
694 |
-
if semester and doc.meta
|
695 |
continue
|
696 |
filtered_results.append(doc)
|
697 |
|
698 |
final_results = filtered_results[:top_k]
|
699 |
-
|
700 |
-
# Cache results
|
701 |
self.cache_manager.set_query_cache(cache_key, final_results)
|
702 |
|
703 |
return final_results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
704 |
|
705 |
class AdvancedQueryProcessor:
|
706 |
"""Process queries with better understanding"""
|
@@ -712,58 +1122,23 @@ class AdvancedQueryProcessor:
|
|
712 |
)
|
713 |
self.prompt_builder = PromptBuilder(
|
714 |
template="""
|
715 |
-
|
716 |
-
|
717 |
|
718 |
-
|
719 |
-
1.
|
720 |
-
2.
|
721 |
-
3.
|
722 |
|
723 |
-
|
724 |
{
|
725 |
-
"event_type": "
|
726 |
-
"semester": "
|
727 |
-
"key_terms": ["
|
728 |
-
"response_format": "
|
729 |
}
|
730 |
-
"""
|
731 |
-
|
732 |
-
def process_query(self, query: str) -> Dict[str, Any]:
|
733 |
-
"""Process and analyze query"""
|
734 |
-
try:
|
735 |
-
# Get analysis
|
736 |
-
result = self.prompt_builder.run(query=query)
|
737 |
-
response = self.generator.run(prompt=result["prompt"])
|
738 |
-
|
739 |
-
# Add validation for empty response
|
740 |
-
if not response or not response.get("replies") or not response["replies"][0]:
|
741 |
-
logger.warning("Received empty response from generator")
|
742 |
-
return self._get_default_analysis(query)
|
743 |
-
|
744 |
-
try:
|
745 |
-
# Parse response with error handling
|
746 |
-
analysis = json.loads(response["replies"][0])
|
747 |
-
|
748 |
-
# Validate required fields
|
749 |
-
required_fields = ["event_type", "semester", "key_terms", "response_format"]
|
750 |
-
for field in required_fields:
|
751 |
-
if field not in analysis:
|
752 |
-
logger.warning(f"Missing required field: {field}")
|
753 |
-
return self._get_default_analysis(query)
|
754 |
-
|
755 |
-
return {
|
756 |
-
"original_query": query,
|
757 |
-
**analysis
|
758 |
-
}
|
759 |
-
|
760 |
-
except json.JSONDecodeError as je:
|
761 |
-
logger.error(f"JSON parsing failed: {str(je)}")
|
762 |
-
return self._get_default_analysis(query)
|
763 |
-
|
764 |
-
except Exception as e:
|
765 |
-
logger.error(f"Query processing failed: {str(e)}")
|
766 |
-
return self._get_default_analysis(query)
|
767 |
|
768 |
def _get_default_analysis(self, query: str) -> Dict[str, Any]:
|
769 |
"""Return default analysis when processing fails"""
|
@@ -775,98 +1150,41 @@ class AdvancedQueryProcessor:
|
|
775 |
"key_terms": [],
|
776 |
"response_format": "detailed"
|
777 |
}
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
requests_per_minute: int = 60
|
783 |
-
max_retries: int = 3
|
784 |
-
base_delay: float = 1.0
|
785 |
-
max_delay: float = 60.0
|
786 |
-
timeout: float = 30.0
|
787 |
-
concurrent_requests: int = 5
|
788 |
-
|
789 |
-
class APIError(Exception):
|
790 |
-
"""Base class for API related errors"""
|
791 |
-
def __init__(self, message: str, status_code: Optional[int] = None, response: Optional[Dict] = None):
|
792 |
-
super().__init__(message)
|
793 |
-
self.status_code = status_code
|
794 |
-
self.response = response
|
795 |
-
|
796 |
-
class RateLimitExceededError(APIError):
|
797 |
-
"""Raised when rate limit is exceeded"""
|
798 |
-
pass
|
799 |
-
|
800 |
-
class OpenAIRateLimiter:
|
801 |
-
"""Rate limiter with advanced error handling for OpenAI API"""
|
802 |
-
|
803 |
-
def __init__(self, config: RateLimitConfig):
|
804 |
-
self.config = config
|
805 |
-
self.requests = deque(maxlen=config.requests_per_minute)
|
806 |
-
self.semaphore = asyncio.Semaphore(config.concurrent_requests)
|
807 |
-
self.total_requests = 0
|
808 |
-
self.errors = deque(maxlen=1000) # Store recent errors
|
809 |
-
self.start_time = datetime.now()
|
810 |
-
|
811 |
-
async def acquire(self):
|
812 |
-
"""Acquire permission to make a request"""
|
813 |
-
now = time.time()
|
814 |
-
|
815 |
-
# Clean old requests
|
816 |
-
while self.requests and self.requests[0] < now - 60:
|
817 |
-
self.requests.popleft()
|
818 |
-
|
819 |
-
# Check if we're at the limit
|
820 |
-
if len(self.requests) >= self.config.requests_per_minute:
|
821 |
-
wait_time = 60 - (now - self.requests[0])
|
822 |
-
logger.warning(f"Rate limit reached. Waiting {wait_time:.2f} seconds")
|
823 |
-
await asyncio.sleep(wait_time)
|
824 |
-
|
825 |
-
# Add new request timestamp
|
826 |
-
self.requests.append(now)
|
827 |
-
self.total_requests += 1
|
828 |
-
|
829 |
-
def get_usage_stats(self) -> Dict[str, Any]:
|
830 |
-
"""Get current usage statistics"""
|
831 |
-
return {
|
832 |
-
"total_requests": self.total_requests,
|
833 |
-
"current_rpm": len(self.requests),
|
834 |
-
"uptime": (datetime.now() - self.start_time).total_seconds(),
|
835 |
-
"error_rate": len(self.errors) / self.total_requests if self.total_requests > 0 else 0
|
836 |
-
}
|
837 |
-
|
838 |
-
@retry(
|
839 |
-
stop=stop_after_attempt(3),
|
840 |
-
wait=wait_exponential(multiplier=1, min=4, max=60),
|
841 |
-
reraise=True
|
842 |
-
)
|
843 |
-
async def execute_with_retry(self, func, *args, **kwargs):
|
844 |
-
"""Execute API call with retry logic"""
|
845 |
try:
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
855 |
}
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
await asyncio.sleep(self.config.base_delay)
|
861 |
-
raise
|
862 |
-
|
863 |
-
elif "timeout" in str(e).lower():
|
864 |
-
logger.error(f"Timeout error: {str(e)}")
|
865 |
-
raise APIError(f"Request timed out after {self.config.timeout} seconds")
|
866 |
-
|
867 |
-
else:
|
868 |
-
logger.error(f"API error: {str(e)}")
|
869 |
-
raise
|
870 |
|
871 |
class ResponseGenerator:
|
872 |
"""Generate responses with better context utilization"""
|
@@ -878,27 +1196,24 @@ class ResponseGenerator:
|
|
878 |
)
|
879 |
self.prompt_builder = PromptBuilder(
|
880 |
template="""
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
{% for doc in context %}
|
887 |
-
---
|
888 |
{{doc.content}}
|
889 |
{% endfor %}
|
890 |
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
Provide your response:
|
900 |
-
""")
|
901 |
-
|
902 |
def generate_response(self,
|
903 |
query: str,
|
904 |
documents: List[Document],
|
@@ -919,34 +1234,164 @@ class ResponseGenerator:
|
|
919 |
return "ขออภัย ไม่สามารถประมวลผลคำตอบได้ในขณะนี้"
|
920 |
|
921 |
class AcademicCalendarRAG:
|
922 |
-
"""
|
923 |
|
924 |
def __init__(self, config: PipelineConfig):
|
925 |
self.config = config
|
926 |
-
self.document_store =
|
927 |
self.query_processor = AdvancedQueryProcessor(config)
|
928 |
self.response_generator = ResponseGenerator(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
929 |
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
935 |
|
936 |
-
|
937 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
938 |
try:
|
939 |
# Analyze query
|
940 |
query_info = self.query_processor.process_query(query)
|
941 |
|
942 |
-
#
|
943 |
-
documents = self.document_store.
|
944 |
query=query,
|
945 |
-
event_type=query_info
|
946 |
-
semester=query_info
|
947 |
-
top_k=self.config.retriever.top_k
|
|
|
948 |
)
|
949 |
|
|
|
|
|
|
|
|
|
|
|
950 |
# Generate response
|
951 |
response = self.response_generator.generate_response(
|
952 |
query=query,
|
@@ -955,65 +1400,50 @@ class AcademicCalendarRAG:
|
|
955 |
)
|
956 |
|
957 |
return {
|
|
|
958 |
"answer": response,
|
959 |
-
"
|
960 |
"query_info": query_info
|
961 |
}
|
962 |
|
963 |
except Exception as e:
|
964 |
-
logger.error(f"
|
965 |
return {
|
966 |
-
"
|
967 |
-
"
|
968 |
-
"
|
969 |
}
|
970 |
-
|
971 |
# def main():
|
972 |
-
# """Main function
|
973 |
# try:
|
974 |
# # Load API key
|
975 |
# with open("key.txt", "r") as f:
|
976 |
# openai_api_key = f.read().strip()
|
977 |
|
978 |
-
# #
|
979 |
# config = create_default_config(openai_api_key)
|
980 |
-
|
981 |
-
# # Customize config for Thai academic calendar use case
|
982 |
# config.localization.enable_thai_normalization = True
|
983 |
-
# config.retriever.top_k = 5
|
984 |
-
# config.model.temperature = 0.3
|
985 |
|
986 |
-
# # Initialize pipeline with enhanced config
|
987 |
# pipeline = AcademicCalendarRAG(config)
|
988 |
|
989 |
-
# # Load
|
990 |
-
# with open("
|
991 |
-
#
|
992 |
-
# pipeline.load_data(calendar_data)
|
993 |
|
994 |
-
#
|
995 |
-
|
|
|
|
|
996 |
|
997 |
-
# print("Processing calendar queries...")
|
998 |
# print("=" * 80)
|
999 |
|
1000 |
# for query in queries:
|
1001 |
-
# result = pipeline.process_query(query)
|
1002 |
# print(f"\nQuery: {query}")
|
|
|
1003 |
# print(f"Answer: {result['answer']}")
|
1004 |
-
|
1005 |
-
# # # Print retrieved documents for verification
|
1006 |
-
# # print("\nRetrieved Documents:")
|
1007 |
-
# # for i, doc in enumerate(result['documents'], 1):
|
1008 |
-
# # print(f"\nDocument {i}:")
|
1009 |
-
# # print(doc.content)
|
1010 |
-
|
1011 |
-
# # # Print query understanding info
|
1012 |
-
# # print("\nQuery Understanding:")
|
1013 |
-
# # for key, value in result['query_info'].items():
|
1014 |
-
# # print(f"{key}: {value}")
|
1015 |
-
|
1016 |
-
# print("=" * 80)
|
1017 |
|
1018 |
# except Exception as e:
|
1019 |
# logger.error(f"Pipeline execution failed: {str(e)}")
|
|
|
2 |
from haystack.components.generators.openai import OpenAIGenerator
|
3 |
from haystack.components.builders import PromptBuilder
|
4 |
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
5 |
+
from haystack.components.retrievers.in_memory import *
|
6 |
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
7 |
from haystack.utils import Secret
|
|
|
8 |
from pathlib import Path
|
9 |
import hashlib
|
10 |
from datetime import *
|
11 |
from typing import *
|
|
|
|
|
|
|
|
|
12 |
from dataclasses import *
|
13 |
import json
|
14 |
import logging
|
|
|
15 |
import re
|
16 |
import pickle
|
17 |
|
18 |
# Setup logging
|
19 |
logging.basicConfig(level=logging.INFO)
|
|
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
+
@dataclass
|
23 |
+
class ValidationResult:
|
24 |
+
"""Stores the result of a validation check"""
|
25 |
+
is_valid: bool
|
26 |
+
errors: List[str]
|
27 |
+
warnings: List[str]
|
28 |
+
normalized_data: Dict[str, str]
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class ApplicationInfo:
|
32 |
+
application_portal: str
|
33 |
+
program_email: str
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class RequiredDocument:
|
37 |
+
name: str
|
38 |
+
description: str
|
39 |
+
conditions: Optional[str] = None
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class SelectionStep:
|
43 |
+
step_number: str
|
44 |
+
description: str
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class ProgramDetailInfo:
|
48 |
+
application_info: ApplicationInfo
|
49 |
+
required_documents: Dict[str, Dict[str, RequiredDocument]]
|
50 |
+
submission_process: str
|
51 |
+
selection_process: List[SelectionStep]
|
52 |
+
|
53 |
+
@dataclass
|
54 |
+
class Transportation:
|
55 |
+
boat: str
|
56 |
+
bts: str
|
57 |
+
mrt: str
|
58 |
+
airport_link: str
|
59 |
+
bus: Dict[str, str]
|
60 |
+
|
61 |
+
@dataclass
|
62 |
+
class Contact:
|
63 |
+
email: str
|
64 |
+
facebook: Dict[str, str]
|
65 |
+
|
66 |
+
@dataclass
|
67 |
+
class ContactDetail:
|
68 |
+
event_type: str
|
69 |
+
department: str
|
70 |
+
faculty: str
|
71 |
+
university: str
|
72 |
+
location: str
|
73 |
+
contact: Contact
|
74 |
+
transportation: Transportation
|
75 |
+
|
76 |
+
@dataclass
|
77 |
+
class Course:
|
78 |
+
code: str
|
79 |
+
title_th: str
|
80 |
+
title_en: str
|
81 |
+
credits: int
|
82 |
+
|
83 |
+
@dataclass
|
84 |
+
class CourseCategory:
|
85 |
+
description: Optional[str]
|
86 |
+
credits: Union[str, int]
|
87 |
+
minimum_credits: Optional[int]
|
88 |
+
courses: List[Course]
|
89 |
+
|
90 |
+
@dataclass
|
91 |
+
class CourseStructure:
|
92 |
+
event_type: str
|
93 |
+
program_name: str
|
94 |
+
department: str
|
95 |
+
total_credits: int
|
96 |
+
degree_level: str
|
97 |
+
structure: Dict[str, CourseCategory]
|
98 |
+
|
99 |
+
@dataclass
|
100 |
+
class StudyPlan:
|
101 |
+
event_type: str
|
102 |
+
years: Dict[str, Dict[str, Any]]
|
103 |
+
|
104 |
+
@dataclass
|
105 |
+
class RegularFee:
|
106 |
+
amount: float
|
107 |
+
currency: str
|
108 |
+
period: str
|
109 |
+
|
110 |
+
@dataclass
|
111 |
+
class LatePaymentFee:
|
112 |
+
amount: float
|
113 |
+
currency: str
|
114 |
+
|
115 |
+
@dataclass
|
116 |
+
class TuitionFee:
|
117 |
+
event_type: str
|
118 |
+
regular_fee: RegularFee
|
119 |
+
late_payment_fee: LatePaymentFee
|
120 |
+
|
121 |
+
|
122 |
class OpenAIDateParser:
|
123 |
"""Uses OpenAI to parse complex Thai date formats"""
|
124 |
|
|
|
157 |
async def parse_date(self, date_str: str) -> Dict[str, Union[str, bool]]:
|
158 |
"""Parse complex Thai date format using OpenAI"""
|
159 |
try:
|
|
|
160 |
result = self.prompt_builder.run(date=date_str)
|
|
|
|
|
161 |
response = await self.generator.arun(prompt=result["prompt"])
|
162 |
|
163 |
if not response or not response.get("replies"):
|
164 |
raise ValueError("Empty response from OpenAI")
|
165 |
|
|
|
166 |
parsed = json.loads(response["replies"][0])
|
167 |
|
|
|
168 |
for date_field in ['start_date', 'end_date']:
|
169 |
if parsed.get(date_field):
|
170 |
datetime.strptime(parsed[date_field], '%Y-%m-%d')
|
|
|
175 |
logger.error(f"OpenAI date parsing failed for '{date_str}': {str(e)}")
|
176 |
raise ValueError(f"Could not parse date: {date_str}")
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
class ThaiTextPreprocessor:
|
179 |
"""Handles Thai text preprocessing and normalization"""
|
180 |
|
181 |
+
CHAR_MAP = {'ํา': 'ำ','์': '','–': '-','—': '-','٫': ',',}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
@classmethod
|
184 |
def normalize_thai_text(cls, text: str) -> str:
|
|
|
186 |
if not text:
|
187 |
return text
|
188 |
|
|
|
189 |
for old, new in cls.CHAR_MAP.items():
|
190 |
text = text.replace(old, new)
|
191 |
|
|
|
192 |
text = re.sub(r'\s+', ' ', text.strip())
|
193 |
|
|
|
194 |
thai_digits = '๐๑๒๓๔๕๖๗๘๙'
|
195 |
arabic_digits = '0123456789'
|
196 |
|
|
|
212 |
warnings = []
|
213 |
normalized_data = {}
|
214 |
|
|
|
215 |
if event.date:
|
216 |
try:
|
217 |
parsed_date = await self.date_parser.parse_date(event.date)
|
218 |
normalized_data['date'] = parsed_date['start_date']
|
219 |
|
|
|
220 |
if parsed_date['is_range'] and parsed_date['end_date']:
|
221 |
range_note = f"ถึงวันที่ {parsed_date['end_date']}"
|
222 |
if event.note:
|
|
|
229 |
else:
|
230 |
errors.append("Date is required")
|
231 |
|
|
|
232 |
if event.time:
|
233 |
time_pattern = r'^([01]?[0-9]|2[0-3]):([0-5][0-9])$'
|
234 |
if not re.match(time_pattern, event.time):
|
235 |
errors.append(f"Invalid time format: {event.time}")
|
236 |
normalized_data['time'] = event.time
|
237 |
|
|
|
238 |
if event.activity:
|
239 |
normalized_activity = self.preprocessor.normalize_thai_text(event.activity)
|
240 |
if len(normalized_activity) < 3:
|
|
|
243 |
else:
|
244 |
errors.append("Activity is required")
|
245 |
|
|
|
246 |
valid_semesters = {'ภาคต้น', 'ภาคปลาย', 'ภาคฤดูร้อน'}
|
247 |
if event.semester:
|
248 |
normalized_semester = self.preprocessor.normalize_thai_text(event.semester)
|
|
|
252 |
else:
|
253 |
errors.append("Semester is required")
|
254 |
|
|
|
255 |
valid_types = {'registration', 'deadline', 'examination', 'academic', 'holiday'}
|
256 |
if event.event_type not in valid_types:
|
257 |
errors.append(f"Invalid event type: {event.event_type}")
|
258 |
normalized_data['event_type'] = event.event_type
|
259 |
|
|
|
260 |
if event.note and 'note' not in normalized_data:
|
261 |
normalized_data['note'] = self.preprocessor.normalize_thai_text(event.note)
|
262 |
|
|
|
263 |
if event.section:
|
264 |
normalized_data['section'] = self.preprocessor.normalize_thai_text(event.section)
|
265 |
|
|
|
270 |
normalized_data=normalized_data
|
271 |
)
|
272 |
|
|
|
273 |
@dataclass
|
274 |
class CalendarEvent:
|
275 |
"""Structured representation of a calendar event with validation"""
|
276 |
+
date: str
|
277 |
+
time: str
|
278 |
+
activity: str
|
279 |
+
note: str
|
280 |
+
semester: str
|
281 |
+
event_type: str
|
282 |
+
section: Optional[str] = None
|
283 |
+
|
284 |
@staticmethod
|
285 |
def classify_event_type(activity: str) -> str:
|
286 |
"""Classify event type based on activity description"""
|
|
|
297 |
if any(term in activity_lower for term in terms):
|
298 |
return event_type
|
299 |
return 'academic'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
async def initialize(self, openai_api_key: str):
|
302 |
"""Asynchronously validate and normalize the event"""
|
|
|
306 |
if not result.is_valid:
|
307 |
raise ValueError(f"Invalid calendar event: {', '.join(result.errors)}")
|
308 |
|
|
|
309 |
for field, value in result.normalized_data.items():
|
310 |
setattr(self, field, value)
|
311 |
+
|
|
|
312 |
if result.warnings:
|
313 |
logger.warning(f"Calendar event warnings: {', '.join(result.warnings)}")
|
314 |
|
|
|
318 |
ภาคการศึกษา: {self.semester}
|
319 |
ประเภท: {self.event_type}
|
320 |
วันที่: {self.date}
|
321 |
+
เวลา: {self.time or '-'}
|
322 |
กิจกรรม: {self.activity}
|
323 |
หมวดหมู่: {self.section or '-'}
|
324 |
+
หมายเหตุ: {self.note or '-'}
|
325 |
""".strip()
|
326 |
+
|
327 |
class CacheManager:
|
328 |
"""Manages caching for different components of the RAG pipeline"""
|
329 |
|
330 |
def __init__(self, cache_dir: Path, ttl: int = 3600):
|
331 |
"""
|
332 |
Initialize CacheManager
|
|
|
|
|
|
|
|
|
333 |
"""
|
334 |
self.cache_dir = cache_dir
|
335 |
self.ttl = ttl
|
|
|
352 |
try:
|
353 |
with open(cache_path, 'rb') as f:
|
354 |
cache = pickle.load(f)
|
|
|
355 |
self._clean_expired_entries(cache)
|
356 |
return cache
|
357 |
except Exception as e:
|
|
|
408 |
self.query_cache[key] = (result, datetime.now())
|
409 |
self._save_cache("queries", self.query_cache)
|
410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
def set_document_cache(self, doc_id: str, document: Any):
|
412 |
"""Cache document"""
|
413 |
self.document_cache[doc_id] = (document, datetime.now())
|
414 |
self._save_cache("documents", self.document_cache)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
@dataclass
|
417 |
class ModelConfig:
|
|
|
418 |
openai_api_key: str
|
419 |
embedder_model: str = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
420 |
openai_model: str = "gpt-4o"
|
421 |
temperature: float = 0.7
|
|
|
|
|
|
|
|
|
422 |
|
423 |
@dataclass
|
424 |
class RetrieverConfig:
|
|
|
425 |
top_k: int = 5
|
|
|
|
|
|
|
|
|
|
|
426 |
|
427 |
@dataclass
|
428 |
class CacheConfig:
|
|
|
429 |
enabled: bool = True
|
430 |
+
cache_dir: Path = Path("./cache")
|
431 |
+
ttl: int = 86400 # 24 hours
|
|
|
|
|
|
|
432 |
|
433 |
@dataclass
|
434 |
class ProcessingConfig:
|
|
|
435 |
batch_size: int = 32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
|
437 |
@dataclass
|
438 |
class LocalizationConfig:
|
|
|
|
|
439 |
enable_thai_normalization: bool = True
|
440 |
+
|
|
|
|
|
|
|
|
|
441 |
@dataclass
|
442 |
class PipelineConfig:
|
|
|
|
|
443 |
model: ModelConfig
|
|
|
|
|
444 |
retriever: RetrieverConfig = field(default_factory=RetrieverConfig)
|
|
|
|
|
445 |
cache: CacheConfig = field(default_factory=CacheConfig)
|
|
|
|
|
446 |
processing: ProcessingConfig = field(default_factory=ProcessingConfig)
|
|
|
|
|
|
|
|
|
|
|
447 |
localization: LocalizationConfig = field(default_factory=LocalizationConfig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
|
449 |
def create_default_config(api_key: str) -> PipelineConfig:
|
450 |
+
return PipelineConfig(model=ModelConfig(openai_api_key=api_key))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
class CalendarDataProcessor:
|
453 |
+
"""Process and structure calendar data from the new raw-data.json format"""
|
454 |
|
455 |
@staticmethod
|
456 |
+
def parse_calendar_json(json_data: Dict) -> List[CalendarEvent]:
|
457 |
+
"""Parse the new calendar JSON format into CalendarEvent objects"""
|
458 |
events = []
|
459 |
|
460 |
+
# Extract academic calendar data - handle direct dictionary input
|
461 |
+
calendar_data = json_data.get('academic_calendar', []) if isinstance(json_data, dict) else json_data
|
462 |
+
|
463 |
+
for semester_block in calendar_data:
|
464 |
+
semester = semester_block.get('education', '')
|
465 |
+
schedule = semester_block.get('schedule', [])
|
466 |
|
467 |
+
# Handle regular schedule events
|
468 |
+
for event in schedule:
|
|
|
469 |
if 'section' in event and 'details' in event:
|
470 |
+
# Process section-based events (thesis deadlines, etc.)
|
471 |
section = event['section']
|
472 |
for detail in event['details']:
|
|
|
473 |
if 'ภาคต้น' in detail and 'ภาคปลาย' in detail:
|
474 |
+
# Handle dual-semester events
|
475 |
+
for sem_key in ['ภาคต้น', 'ภาคปลาย']:
|
476 |
+
if detail.get(sem_key):
|
477 |
+
events.append(CalendarEvent(
|
478 |
+
date=detail[sem_key],
|
479 |
+
time='',
|
480 |
+
activity=detail['title'],
|
481 |
+
note=section,
|
482 |
+
semester=sem_key,
|
483 |
+
event_type='deadline',
|
484 |
+
section=section
|
485 |
+
))
|
486 |
else:
|
487 |
+
# Single semester event
|
488 |
events.append(CalendarEvent(
|
489 |
date=detail.get('date', ''),
|
490 |
time='',
|
491 |
activity=detail.get('title', ''),
|
492 |
note=section,
|
493 |
+
semester=ThaiTextPreprocessor.normalize_thai_text(semester),
|
494 |
event_type='deadline',
|
495 |
section=section
|
496 |
))
|
497 |
else:
|
498 |
+
# Regular calendar event
|
499 |
event_type = CalendarEvent.classify_event_type(event.get('activity', ''))
|
500 |
+
|
501 |
+
# Clean semester string
|
502 |
+
cleaned_semester = semester
|
503 |
+
if '(' in semester:
|
504 |
+
match = re.search(r'\((.*?)\)', semester)
|
505 |
+
if match:
|
506 |
+
cleaned_semester = match.group(1)
|
507 |
+
cleaned_semester = ThaiTextPreprocessor.normalize_thai_text(cleaned_semester)
|
508 |
+
|
509 |
events.append(CalendarEvent(
|
510 |
date=event.get('date', ''),
|
511 |
time=event.get('time', ''),
|
512 |
activity=event.get('activity', ''),
|
513 |
note=event.get('note', ''),
|
514 |
+
semester=cleaned_semester,
|
515 |
event_type=event_type
|
516 |
))
|
517 |
|
518 |
return events
|
519 |
|
520 |
+
@staticmethod
|
521 |
+
def extract_program_details(json_data: Dict) -> ProgramDetailInfo:
|
522 |
+
"""Extract and structure program details into ProgramDetailInfo object"""
|
523 |
+
raw_details = json_data.get('program_details', {})
|
524 |
+
|
525 |
+
# Process application info
|
526 |
+
app_info_data = raw_details.get('application_info', {})
|
527 |
+
app_info = ApplicationInfo(
|
528 |
+
application_portal=app_info_data.get('application_portal', ''),
|
529 |
+
program_email=app_info_data.get('program_email', '')
|
530 |
+
)
|
531 |
+
|
532 |
+
# Process required documents
|
533 |
+
req_docs = {}
|
534 |
+
raw_docs = raw_details.get('required_documents', {})
|
535 |
+
|
536 |
+
# Process mandatory documents
|
537 |
+
mandatory_docs = {}
|
538 |
+
for doc_key, doc_value in raw_docs.get('mandatory', {}).items():
|
539 |
+
mandatory_docs[doc_key] = RequiredDocument(
|
540 |
+
name=doc_key,
|
541 |
+
description=doc_value
|
542 |
+
)
|
543 |
+
req_docs['mandatory'] = mandatory_docs
|
544 |
+
|
545 |
+
# Process optional documents
|
546 |
+
optional_docs = {}
|
547 |
+
for doc_key, doc_data in raw_docs.get('optional', {}).items():
|
548 |
+
if doc_key == 'english_proficiency':
|
549 |
+
ep_data = doc_data
|
550 |
+
optional_docs[doc_key] = RequiredDocument(
|
551 |
+
name=ep_data.get('name', ''),
|
552 |
+
description=str(ep_data.get('accepted_tests', {})),
|
553 |
+
conditions=f"Validity: {ep_data.get('validity', '')}, Benefits: {ep_data.get('benefits', '')}, Exemptions: {ep_data.get('exemptions', '')}"
|
554 |
+
)
|
555 |
+
else:
|
556 |
+
optional_docs[doc_key] = RequiredDocument(
|
557 |
+
name=doc_data.get('name', ''),
|
558 |
+
description='',
|
559 |
+
conditions=doc_data.get('condition', '')
|
560 |
+
)
|
561 |
+
req_docs['optional'] = optional_docs
|
562 |
+
|
563 |
+
# Process selection steps
|
564 |
+
selection_steps = []
|
565 |
+
for step_data in raw_details.get('selection_process', {}).get('steps', []):
|
566 |
+
for step_num, description in step_data.items():
|
567 |
+
selection_steps.append(SelectionStep(
|
568 |
+
step_number=step_num,
|
569 |
+
description=description
|
570 |
+
))
|
571 |
+
|
572 |
+
return [ProgramDetailInfo(
|
573 |
+
application_info=app_info,
|
574 |
+
required_documents=req_docs,
|
575 |
+
submission_process=raw_details.get('submission_process', ''),
|
576 |
+
selection_process=selection_steps
|
577 |
+
)]
|
578 |
+
|
579 |
+
@staticmethod
|
580 |
+
def extract_contact_details(json_data: Dict) -> List[ContactDetail]:
|
581 |
+
"""Extract and structure contact details into ContactDetail objects"""
|
582 |
+
raw_contacts = json_data.get('contact_details', [])
|
583 |
+
contact_details = []
|
584 |
+
|
585 |
+
# Handle the case where raw_contacts might be a single object instead of a list
|
586 |
+
if not isinstance(raw_contacts, list):
|
587 |
+
raw_contacts = [raw_contacts]
|
588 |
+
|
589 |
+
for contact_data in raw_contacts:
|
590 |
+
# Skip if contact_data is not a dictionary
|
591 |
+
if not isinstance(contact_data, dict):
|
592 |
+
continue
|
593 |
+
|
594 |
+
try:
|
595 |
+
# Process transportation data
|
596 |
+
transportation_data = contact_data.get('transportation', {})
|
597 |
+
transportation = Transportation(
|
598 |
+
boat=transportation_data.get('boat', ''),
|
599 |
+
bts=transportation_data.get('bts', ''),
|
600 |
+
mrt=transportation_data.get('mrt', ''),
|
601 |
+
airport_link=transportation_data.get('airport_link', ''),
|
602 |
+
bus=transportation_data.get('bus', {})
|
603 |
+
)
|
604 |
+
|
605 |
+
# Process contact information
|
606 |
+
contact_info = Contact(
|
607 |
+
email=contact_data.get('email', ''),
|
608 |
+
facebook=contact_data.get('facebook', {})
|
609 |
+
)
|
610 |
+
|
611 |
+
# Create ContactDetail object
|
612 |
+
contact_details.append(ContactDetail(
|
613 |
+
event_type=contact_data.get('event_type', ''),
|
614 |
+
department=contact_data.get('department', ''),
|
615 |
+
faculty=contact_data.get('faculty', ''),
|
616 |
+
university=contact_data.get('university', ''),
|
617 |
+
location=contact_data.get('location', ''),
|
618 |
+
contact=contact_info,
|
619 |
+
transportation=transportation
|
620 |
+
))
|
621 |
+
except Exception as e:
|
622 |
+
print(f"Error processing contact data: {e}")
|
623 |
+
continue
|
624 |
+
|
625 |
+
return contact_details
|
626 |
+
|
627 |
+
|
628 |
+
@staticmethod
|
629 |
+
def extract_course_structure(json_data: Dict) -> List[CourseStructure]:
|
630 |
+
"""Extract and structure course information into CourseStructure objects"""
|
631 |
+
course_structures = []
|
632 |
+
|
633 |
+
# Get course structure data
|
634 |
+
course_data = json_data.get('course_structure', {})
|
635 |
+
program_metadata = course_data.get('program_metadata', {})
|
636 |
+
curriculum = course_data.get('curriculum_structure', {})
|
637 |
+
|
638 |
+
# Process foundation courses
|
639 |
+
foundation_data = curriculum.get('foundation_courses', {})
|
640 |
+
foundation_courses = []
|
641 |
+
for course in foundation_data.get('courses', []):
|
642 |
+
foundation_courses.append(Course(
|
643 |
+
code=course.get('code', ''),
|
644 |
+
title_th=course.get('title', {}).get('th', ''),
|
645 |
+
title_en=course.get('title', {}).get('en', ''),
|
646 |
+
credits=course.get('credits', 0)
|
647 |
+
))
|
648 |
+
|
649 |
+
# Process core courses
|
650 |
+
core_data = curriculum.get('core_courses', {})
|
651 |
+
core_courses = []
|
652 |
+
for course in core_data.get('modules', []):
|
653 |
+
core_courses.append(Course(
|
654 |
+
code=course.get('code', ''),
|
655 |
+
title_th=course.get('title', {}).get('th', ''),
|
656 |
+
title_en=course.get('title', {}).get('en', ''),
|
657 |
+
credits=course.get('credits', 0)
|
658 |
+
))
|
659 |
+
|
660 |
+
# Process elective courses
|
661 |
+
elective_data = curriculum.get('electives', {})
|
662 |
+
elective_courses = []
|
663 |
+
for course in elective_data.get('course_groups', []):
|
664 |
+
elective_courses.append(Course(
|
665 |
+
code=course.get('code', ''),
|
666 |
+
title_th=course.get('title', {}).get('th', ''),
|
667 |
+
title_en=course.get('title', {}).get('en', ''),
|
668 |
+
credits=course.get('credits', 0)
|
669 |
+
))
|
670 |
+
|
671 |
+
# Process research courses
|
672 |
+
research_data = curriculum.get('research', {})
|
673 |
+
research_courses = []
|
674 |
+
for course in research_data.get('course', []):
|
675 |
+
research_courses.append(Course(
|
676 |
+
code=course.get('code', ''),
|
677 |
+
title_th=course.get('title', {}).get('th', ''),
|
678 |
+
title_en=course.get('title', {}).get('en', ''),
|
679 |
+
credits=course.get('credits', 0)
|
680 |
+
))
|
681 |
+
|
682 |
+
# Create course categories
|
683 |
+
structure = {
|
684 |
+
'หมวดวิชาปรับพื้นฐาน': CourseCategory( # Previously foundation_courses
|
685 |
+
description=foundation_data.get('metadata', {}).get('description'),
|
686 |
+
credits=foundation_data.get('metadata', {}).get('credits', 'non-credit'),
|
687 |
+
minimum_credits=None,
|
688 |
+
courses=foundation_courses
|
689 |
+
),
|
690 |
+
'หมวดวิชาบังคับ': CourseCategory( # Previously core_courses
|
691 |
+
description=None,
|
692 |
+
credits=0,
|
693 |
+
minimum_credits=core_data.get('minimum_requirement_credits'),
|
694 |
+
courses=core_courses
|
695 |
+
),
|
696 |
+
'หมวดวิชาเลือก': CourseCategory( # Previously elective_courses
|
697 |
+
description=None,
|
698 |
+
credits=0,
|
699 |
+
minimum_credits=elective_data.get('minimum_requirement_credits'),
|
700 |
+
courses=elective_courses
|
701 |
+
),
|
702 |
+
'หมวดวิชาการค้นคว้าอิสระ': CourseCategory( # Previously research_courses
|
703 |
+
description=None,
|
704 |
+
credits=0,
|
705 |
+
minimum_credits=research_data.get('minimum_requirement_credits'),
|
706 |
+
courses=research_courses
|
707 |
+
)
|
708 |
+
}
|
709 |
+
|
710 |
+
# Create course structure
|
711 |
+
course_structure = CourseStructure(
|
712 |
+
event_type='curriculum_structure',
|
713 |
+
program_name=program_metadata.get('name', ''),
|
714 |
+
department=program_metadata.get('department', ''),
|
715 |
+
total_credits=program_metadata.get('total_credits', 0),
|
716 |
+
degree_level=program_metadata.get('degree_level', ''),
|
717 |
+
structure=structure
|
718 |
+
)
|
719 |
+
|
720 |
+
return [course_structure]
|
721 |
+
|
722 |
+
@staticmethod
|
723 |
+
def extract_program_study_plan(json_data: Dict) -> List[StudyPlan]:
|
724 |
+
"""Extract and structure study plan information into StudyPlan objects"""
|
725 |
+
study_plan_data = json_data.get('program_study_plan', {})
|
726 |
+
|
727 |
+
# Initialize the years dictionary to store all year/semester data
|
728 |
+
years_dict = {}
|
729 |
+
|
730 |
+
for year_key, year_data in study_plan_data.items():
|
731 |
+
years_dict[year_key] = {}
|
732 |
+
|
733 |
+
for semester_key, semester_data in year_data.items():
|
734 |
+
# Get metadata
|
735 |
+
metadata = semester_data.get('metadata', {})
|
736 |
+
|
737 |
+
# Initialize semester structure
|
738 |
+
semester_struct = {
|
739 |
+
'metadata': metadata,
|
740 |
+
'courses': []
|
741 |
+
}
|
742 |
+
|
743 |
+
# Handle both 'modules' and 'courses' keys
|
744 |
+
course_data = semester_data.get('modules', []) or semester_data.get('courses', [])
|
745 |
+
|
746 |
+
# Add courses to semester
|
747 |
+
for course in course_data:
|
748 |
+
course_info = {
|
749 |
+
'code': course.get('code', ''),
|
750 |
+
'title': course.get('title', {'th': '', 'en': ''}),
|
751 |
+
'credits': course.get('credits', 0)
|
752 |
+
}
|
753 |
+
semester_struct['courses'].append(course_info)
|
754 |
+
|
755 |
+
# Add semester data to year
|
756 |
+
years_dict[year_key][semester_key] = semester_struct
|
757 |
+
|
758 |
+
# Create StudyPlan object
|
759 |
+
study_plan = StudyPlan(
|
760 |
+
event_type='study_plan',
|
761 |
+
years=years_dict
|
762 |
+
)
|
763 |
+
|
764 |
+
return [study_plan]
|
765 |
+
|
766 |
+
@staticmethod
|
767 |
+
def extract_fees(json_data: Dict) -> List[TuitionFee]:
|
768 |
+
"""Extract and structure fee information into TuitionFee objects"""
|
769 |
+
fees_data = json_data.get('fees', {})
|
770 |
+
|
771 |
+
# Parse regular tuition fee
|
772 |
+
regular_fee_str = fees_data.get('tuition', '')
|
773 |
+
regular_amount = float(regular_fee_str.split()[0]) if regular_fee_str else 0
|
774 |
+
|
775 |
+
regular_fee = RegularFee(
|
776 |
+
amount=regular_amount,
|
777 |
+
currency='THB',
|
778 |
+
period='per semester'
|
779 |
+
)
|
780 |
+
|
781 |
+
# Parse late payment fee
|
782 |
+
late_fee_str = fees_data.get('late_payment', '')
|
783 |
+
late_amount = float(late_fee_str.split()[0]) if late_fee_str else 0
|
784 |
+
|
785 |
+
late_payment_fee = LatePaymentFee(
|
786 |
+
amount=late_amount,
|
787 |
+
currency='THB'
|
788 |
+
)
|
789 |
+
|
790 |
+
# Create TuitionFee object
|
791 |
+
tuition_fee = TuitionFee(
|
792 |
+
event_type='tuition_fee',
|
793 |
+
regular_fee=regular_fee,
|
794 |
+
late_payment_fee=late_payment_fee
|
795 |
+
)
|
796 |
+
|
797 |
+
return [tuition_fee]
|
798 |
+
|
799 |
+
class HybridDocumentStore:
|
800 |
+
"""Enhanced document store with hybrid retrieval capabilities"""
|
801 |
|
802 |
def __init__(self, config: PipelineConfig):
|
803 |
self.store = InMemoryDocumentStore()
|
804 |
self.embedder = SentenceTransformersDocumentEmbedder(
|
805 |
model=config.model.embedder_model
|
806 |
)
|
807 |
+
# Initialize BM25 retriever
|
808 |
+
self.bm25_retriever = InMemoryBM25Retriever(
|
809 |
+
document_store=self.store,
|
810 |
+
top_k=config.retriever.top_k
|
811 |
+
)
|
812 |
+
# Initialize embedding retriever
|
813 |
+
self.embedding_retriever = InMemoryEmbeddingRetriever(
|
814 |
+
document_store=self.store,
|
815 |
+
top_k=config.retriever.top_k
|
816 |
+
)
|
817 |
self.cache_manager = CacheManager(
|
818 |
cache_dir=config.cache.cache_dir,
|
819 |
+
ttl=config.cache.ttl
|
820 |
)
|
821 |
|
|
|
822 |
self.embedder.warm_up()
|
823 |
|
824 |
+
# Initialize containers
|
825 |
self.events = []
|
826 |
self.event_type_index = {}
|
827 |
self.semester_index = {}
|
828 |
+
self._document_counter = 0
|
829 |
+
|
830 |
+
# Additional data containers
|
831 |
+
self.course_data = []
|
832 |
+
self.contact_data = []
|
833 |
+
self.study_plan_data = []
|
834 |
+
|
835 |
+
def _generate_unique_id(self) -> str:
|
836 |
+
"""Generate a unique document ID"""
|
837 |
+
self._document_counter += 1
|
838 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
839 |
+
return f"doc_{timestamp}_{self._document_counter}"
|
840 |
|
841 |
def _compute_embedding(self, text: str) -> Any:
|
842 |
"""Compute embedding with caching"""
|
|
|
848 |
embedding = self.embedder.run(documents=[doc])["documents"][0].embedding
|
849 |
self.cache_manager.set_embedding_cache(text, embedding)
|
850 |
return embedding
|
851 |
+
|
852 |
+
def add_document(self, text: str, event_type: str):
|
853 |
+
"""Add a single document to the store"""
|
854 |
+
try:
|
855 |
+
# Compute embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
856 |
embedding = self._compute_embedding(text)
|
857 |
|
858 |
+
# Create document with unique ID
|
859 |
doc = Document(
|
860 |
+
id=self._generate_unique_id(),
|
861 |
content=text,
|
862 |
embedding=embedding,
|
863 |
+
meta={'event_type': event_type}
|
|
|
|
|
|
|
|
|
864 |
)
|
865 |
+
|
866 |
+
# Write document
|
867 |
+
self.store.write_documents([doc])
|
868 |
|
869 |
# Cache document
|
870 |
+
self.cache_manager.set_document_cache(doc.id, doc)
|
871 |
+
|
872 |
+
except Exception as e:
|
873 |
+
logger.error(f"Error adding document: {str(e)}")
|
874 |
+
raise
|
875 |
+
|
876 |
+
def add_events(self, events: List[CalendarEvent], contact_details: Optional[List[ContactDetail]] = None,
|
877 |
+
course_structure: Optional[List[CourseStructure]] = None,
|
878 |
+
study_plans: Optional[List[StudyPlan]] = None):
|
879 |
+
"""Add events and additional data with caching"""
|
880 |
+
documents = []
|
881 |
+
added_events = set() # Track added events to prevent duplicates
|
882 |
+
|
883 |
+
# Process calendar events
|
884 |
+
for event in events:
|
885 |
+
event_key = f"{event.date}_{event.activity}_{event.semester}"
|
886 |
+
if event_key not in added_events:
|
887 |
+
added_events.add(event_key)
|
888 |
+
self.events.append(event)
|
889 |
+
event_idx = len(self.events) - 1
|
890 |
+
|
891 |
+
# Update indices
|
892 |
+
if event.event_type not in self.event_type_index:
|
893 |
+
self.event_type_index[event.event_type] = []
|
894 |
+
self.event_type_index[event.event_type].append(event_idx)
|
895 |
+
|
896 |
+
if event.semester not in self.semester_index:
|
897 |
+
self.semester_index[event.semester] = []
|
898 |
+
self.semester_index[event.semester].append(event_idx)
|
899 |
+
|
900 |
+
# Create document
|
901 |
+
text = event.to_searchable_text()
|
902 |
+
embedding = self._compute_embedding(text)
|
903 |
+
doc = Document(
|
904 |
+
id=self._generate_unique_id(),
|
905 |
+
content=text,
|
906 |
+
embedding=embedding,
|
907 |
+
meta={
|
908 |
+
'event_type': event.event_type,
|
909 |
+
'semester': event.semester,
|
910 |
+
'date': event.date,
|
911 |
+
'event_idx': event_idx
|
912 |
+
}
|
913 |
+
)
|
914 |
+
documents.append(doc)
|
915 |
+
self.cache_manager.set_document_cache(str(event_idx), doc)
|
916 |
+
|
917 |
+
# Process contact details
|
918 |
+
if contact_details:
|
919 |
+
for contact in contact_details:
|
920 |
+
self.contact_data.append(contact)
|
921 |
+
text = f"""
|
922 |
+
ข้อมูลการติดต่อ:
|
923 |
+
คณะ: {contact.faculty}
|
924 |
+
ภาควิชา: {contact.department}
|
925 |
+
มหาวิทยาลัย: {contact.university}
|
926 |
+
สถานที่: {contact.location}
|
927 |
+
|
928 |
+
การติดต่อ:
|
929 |
+
อีเมล: {contact.contact.email}
|
930 |
+
Facebook: {json.dumps(contact.contact.facebook, ensure_ascii=False)}
|
931 |
+
|
932 |
+
การเดินทาง:
|
933 |
+
เรือ: {contact.transportation.boat}
|
934 |
+
BTS: {contact.transportation.bts}
|
935 |
+
MRT: {contact.transportation.mrt}
|
936 |
+
Airport Link: {contact.transportation.airport_link}
|
937 |
+
รถประจำทาง: {json.dumps(contact.transportation.bus, ensure_ascii=False)}
|
938 |
+
"""
|
939 |
+
embedding = self._compute_embedding(text)
|
940 |
+
doc = Document(
|
941 |
+
id=self._generate_unique_id(),
|
942 |
+
content=text,
|
943 |
+
embedding=embedding,
|
944 |
+
meta={'event_type': 'contact'}
|
945 |
+
)
|
946 |
+
documents.append(doc)
|
947 |
+
|
948 |
+
# Process course structure
|
949 |
+
if course_structure:
|
950 |
+
for course in course_structure:
|
951 |
+
self.course_data.append(course)
|
952 |
+
text = f"""
|
953 |
+
โครงสร้างหลักสูตร:
|
954 |
+
ชื่อหลักสูตร: {course.program_name}
|
955 |
+
ภาควิชา: {course.department}
|
956 |
+
หน่วยกิตรวม: {course.total_credits}
|
957 |
+
ระดับการศึกษา: {course.degree_level}
|
958 |
+
|
959 |
+
รายละเอียดโครงสร้าง:
|
960 |
+
"""
|
961 |
+
for category_name, category in course.structure.items():
|
962 |
+
text += f"\n{category_name}:\n"
|
963 |
+
if category.description:
|
964 |
+
text += f"คำอธิบาย: {category.description}\n"
|
965 |
+
text += f"หน่วยกิต: {category.credits}\n"
|
966 |
+
if category.minimum_credits:
|
967 |
+
text += f"หน่วยกิตขั้นต่ำ: {category.minimum_credits}\n"
|
968 |
+
text += "รายวิชา:\n"
|
969 |
+
for course_item in category.courses:
|
970 |
+
text += f"- {course_item.code}: {course_item.title_th} ({course_item.title_en}) - {course_item.credits} หน่วยกิต\n"
|
971 |
+
|
972 |
+
embedding = self._compute_embedding(text)
|
973 |
+
doc = Document(
|
974 |
+
id=self._generate_unique_id(),
|
975 |
+
content=text,
|
976 |
+
embedding=embedding,
|
977 |
+
meta={'event_type': 'curriculum'}
|
978 |
+
)
|
979 |
+
documents.append(doc)
|
980 |
+
|
981 |
+
# Process study plans
|
982 |
+
if study_plans:
|
983 |
+
for plan in study_plans:
|
984 |
+
self.study_plan_data.append(plan)
|
985 |
+
text = "แผนการศึกษา:\n"
|
986 |
+
for year, semesters in plan.years.items():
|
987 |
+
text += f"\nปีที่ {year}:\n"
|
988 |
+
for semester, data in semesters.items():
|
989 |
+
text += f"\n{semester}:\n"
|
990 |
+
if 'metadata' in data and data['metadata']:
|
991 |
+
text += f"ข้อมูลเพิ่มเติม: {json.dumps(data['metadata'], ensure_ascii=False)}\n"
|
992 |
+
if 'courses' in data:
|
993 |
+
for course in data['courses']:
|
994 |
+
text += f"- {course['code']}: {course['title'].get('th', '')} ({course['title'].get('en', '')}) - {course['credits']} หน่วยกิต\n"
|
995 |
+
|
996 |
+
embedding = self._compute_embedding(text)
|
997 |
+
doc = Document(
|
998 |
+
id=self._generate_unique_id(),
|
999 |
+
content=text,
|
1000 |
+
embedding=embedding,
|
1001 |
+
meta={'event_type': 'study_plan'}
|
1002 |
+
)
|
1003 |
+
documents.append(doc)
|
1004 |
+
|
1005 |
+
batch_size = 10
|
1006 |
+
for i in range(0, len(documents), batch_size):
|
1007 |
+
batch = documents[i:i + batch_size]
|
1008 |
+
try:
|
1009 |
+
self.store.write_documents(batch)
|
1010 |
+
except Exception as e:
|
1011 |
+
logger.error(f"Error writing document batch {i//batch_size + 1}: {str(e)}")
|
1012 |
+
for doc in batch:
|
1013 |
+
try:
|
1014 |
+
self.store.write_documents([doc])
|
1015 |
+
except Exception as e2:
|
1016 |
+
logger.error(f"Failed to write document {doc.id}: {str(e2)}")
|
1017 |
+
|
1018 |
+
def hybrid_search(self,
|
1019 |
+
query: str,
|
1020 |
+
event_type: Optional[str] = None,
|
1021 |
+
semester: Optional[str] = None,
|
1022 |
+
top_k: int = 10,
|
1023 |
+
weight_semantic: float = 0.5) -> List[Document]:
|
1024 |
+
"""Hybrid search combining semantic and lexical search results"""
|
1025 |
+
|
1026 |
cache_key = json.dumps({
|
1027 |
'query': query,
|
1028 |
'event_type': event_type,
|
1029 |
'semester': semester,
|
1030 |
+
'top_k': top_k,
|
1031 |
+
'weight_semantic': weight_semantic
|
1032 |
})
|
1033 |
+
|
1034 |
cached_results = self.cache_manager.get_query_cache(cache_key)
|
1035 |
if cached_results is not None:
|
1036 |
return cached_results
|
1037 |
+
|
1038 |
+
# Get semantic search results
|
1039 |
query_embedding = self._compute_embedding(query)
|
1040 |
+
semantic_results = self.embedding_retriever.run(
|
1041 |
+
query_embedding=query_embedding
|
1042 |
+
)["documents"]
|
1043 |
|
1044 |
+
# Get BM25 results
|
1045 |
+
bm25_results = self.bm25_retriever.run(
|
1046 |
+
query=query
|
1047 |
+
)["documents"]
|
|
|
1048 |
|
1049 |
+
# Combine results using score fusion
|
1050 |
+
combined_results = self._merge_results(
|
1051 |
+
semantic_results=semantic_results,
|
1052 |
+
bm25_results=bm25_results,
|
1053 |
+
weight_semantic=weight_semantic,
|
1054 |
+
top_k=top_k
|
1055 |
+
)
|
1056 |
|
1057 |
+
# Filter results based on metadata
|
1058 |
filtered_results = []
|
1059 |
+
for doc in combined_results:
|
1060 |
+
if event_type and doc.meta.get('event_type') != event_type:
|
1061 |
continue
|
1062 |
+
if semester and doc.meta.get('semester') != semester:
|
1063 |
continue
|
1064 |
filtered_results.append(doc)
|
1065 |
|
1066 |
final_results = filtered_results[:top_k]
|
|
|
|
|
1067 |
self.cache_manager.set_query_cache(cache_key, final_results)
|
1068 |
|
1069 |
return final_results
|
1070 |
+
|
1071 |
+
def _merge_results(self,
|
1072 |
+
semantic_results: List[Document],
|
1073 |
+
bm25_results: List[Document],
|
1074 |
+
weight_semantic: float,
|
1075 |
+
top_k: int) -> List[Document]:
|
1076 |
+
"""Merge semantic and BM25 results using weighted score fusion"""
|
1077 |
+
|
1078 |
+
# Create dictionaries to store normalized scores
|
1079 |
+
semantic_scores = {}
|
1080 |
+
bm25_scores = {}
|
1081 |
+
|
1082 |
+
# Normalize semantic scores
|
1083 |
+
max_semantic_score = max(doc.score for doc in semantic_results) if semantic_results else 1.0
|
1084 |
+
for doc in semantic_results:
|
1085 |
+
semantic_scores[doc.id] = doc.score / max_semantic_score if max_semantic_score > 0 else 0
|
1086 |
+
|
1087 |
+
# Normalize BM25 scores
|
1088 |
+
max_bm25_score = max(doc.score for doc in bm25_results) if bm25_results else 1.0
|
1089 |
+
for doc in bm25_results:
|
1090 |
+
bm25_scores[doc.id] = doc.score / max_bm25_score if max_bm25_score > 0 else 0
|
1091 |
+
|
1092 |
+
# Combine scores
|
1093 |
+
combined_scores = {}
|
1094 |
+
all_docs = {doc.id: doc for doc in semantic_results + bm25_results}
|
1095 |
+
|
1096 |
+
for doc_id in all_docs:
|
1097 |
+
semantic_score = semantic_scores.get(doc_id, 0)
|
1098 |
+
bm25_score = bm25_scores.get(doc_id, 0)
|
1099 |
+
|
1100 |
+
# Weighted combination
|
1101 |
+
combined_scores[doc_id] = (
|
1102 |
+
weight_semantic * semantic_score +
|
1103 |
+
(1 - weight_semantic) * bm25_score
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
# Sort by combined score and return top_k results
|
1107 |
+
sorted_docs = sorted(
|
1108 |
+
all_docs.values(),
|
1109 |
+
key=lambda x: combined_scores[x.id],
|
1110 |
+
reverse=True
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
return sorted_docs[:top_k]
|
1114 |
|
1115 |
class AdvancedQueryProcessor:
|
1116 |
"""Process queries with better understanding"""
|
|
|
1122 |
)
|
1123 |
self.prompt_builder = PromptBuilder(
|
1124 |
template="""
|
1125 |
+
วิเคราะห์คำถามที่เกี่ยวข้องกับปฏิทินการศึกษา (ภาษาไทย):
|
1126 |
+
คำถาม: {{query}}
|
1127 |
|
1128 |
+
ระบุ:
|
1129 |
+
1. ประเภทของข้อมูลที่ต้องการค้นหา
|
1130 |
+
2. ภาคการศึกษาที่ระบุไว้ (ถ้ามี)
|
1131 |
+
3. คำสำคัญที่เกี่ยวข้อง
|
1132 |
|
1133 |
+
ให้ผลลัพธ์ในรูปแบบ JSON:
|
1134 |
{
|
1135 |
+
"event_type": "ลงทะเบียน|กำหนดเวลา|การสอบ|วิชาการ|วันหยุด",
|
1136 |
+
"semester": "ภาคการศึกษาที่ระบุ หรือ null",
|
1137 |
+
"key_terms": ["คำสำคัญ 3 คำที่สำคัญที่สุด"],
|
1138 |
+
"response_format": "รายการ|คำตอบเดียว|คำตอบละเอียด"
|
1139 |
}
|
1140 |
+
"""
|
1141 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1142 |
|
1143 |
def _get_default_analysis(self, query: str) -> Dict[str, Any]:
|
1144 |
"""Return default analysis when processing fails"""
|
|
|
1150 |
"key_terms": [],
|
1151 |
"response_format": "detailed"
|
1152 |
}
|
1153 |
+
|
1154 |
+
def process_query(self, query: str) -> Dict[str, Any]:
|
1155 |
+
"""Enhanced query processing with better error handling."""
|
1156 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1157 |
try:
|
1158 |
+
result = self.prompt_builder.run(query=query)
|
1159 |
+
response = self.generator.run(prompt=result["prompt"])
|
1160 |
+
|
1161 |
+
if not response or not response.get("replies") or not response["replies"][0]:
|
1162 |
+
logger.warning("Received empty response from OpenAI")
|
1163 |
+
return self._get_default_analysis(query)
|
1164 |
+
|
1165 |
+
try:
|
1166 |
+
analysis = json.loads(response["replies"][0])
|
1167 |
+
except json.JSONDecodeError as je:
|
1168 |
+
return self._get_default_analysis(query)
|
1169 |
+
|
1170 |
+
# **Ensure course-related queries retrieve study plans & curricula**
|
1171 |
+
course_keywords = ['หน่วยกิต', 'วิชา', 'หลักสูตร', 'แผนการเรียน', 'วิชาเลือก', 'วิชาบังคับ', 'วิชาการค้นคว้า', 'วิชาหลัก']
|
1172 |
+
if any(keyword in query for keyword in course_keywords):
|
1173 |
+
analysis['event_type'] = 'curriculum'
|
1174 |
+
|
1175 |
+
# **Ensure fee-related queries retrieve tuition fee documents**
|
1176 |
+
fee_keywords = ['ค่าเทอม', 'ค่าธรรมเนียม', 'ค่าเรียน', 'ค่าปรับ']
|
1177 |
+
if any(keyword in query for keyword in fee_keywords):
|
1178 |
+
analysis['event_type'] = 'fees'
|
1179 |
+
|
1180 |
+
return {
|
1181 |
+
"original_query": query,
|
1182 |
+
**analysis
|
1183 |
}
|
1184 |
+
|
1185 |
+
except Exception as e:
|
1186 |
+
logger.error(f"Query processing failed: {str(e)}")
|
1187 |
+
return self._get_default_analysis(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1188 |
|
1189 |
class ResponseGenerator:
|
1190 |
"""Generate responses with better context utilization"""
|
|
|
1196 |
)
|
1197 |
self.prompt_builder = PromptBuilder(
|
1198 |
template="""
|
1199 |
+
คุณเป็นที่ปรึกษาทางวิชาการ กรุณาตอบคำถามต่อไปนี้โดยใช้ข้อมูลจากปฏิทินการศึกษาที่ให้มา
|
1200 |
+
|
1201 |
+
คำถาม: {{query}}
|
1202 |
+
|
1203 |
+
ข้อมูลที่เกี่ยวข้องจากปฏิทินการศึกษา:
|
1204 |
{% for doc in context %}
|
1205 |
+
---
|
1206 |
{{doc.content}}
|
1207 |
{% endfor %}
|
1208 |
|
1209 |
+
**ห้ามเดาข้อมูลเอง ถ้าไม่มีข้อมูลให้ตอบว่า "ไม่มีข้อมูลที่ตรงกับคำถาม"**
|
1210 |
+
|
1211 |
+
กรุณาตอบเป็นภาษาไทย:
|
1212 |
+
|
1213 |
+
ต้องบอกเสมอว่า **หากมีข้อสงสัยเพิ่มเติมสามารถสอบถามได้**
|
1214 |
+
"""
|
1215 |
+
)
|
1216 |
+
|
|
|
|
|
|
|
1217 |
def generate_response(self,
|
1218 |
query: str,
|
1219 |
documents: List[Document],
|
|
|
1234 |
return "ขออภัย ไม่สามารถประมวลผลคำตอบได้ในขณะนี้"
|
1235 |
|
1236 |
class AcademicCalendarRAG:
|
1237 |
+
"""Enhanced RAG system for academic calendar and program information"""
|
1238 |
|
1239 |
def __init__(self, config: PipelineConfig):
|
1240 |
self.config = config
|
1241 |
+
self.document_store = HybridDocumentStore(config) # Use the new hybrid store
|
1242 |
self.query_processor = AdvancedQueryProcessor(config)
|
1243 |
self.response_generator = ResponseGenerator(config)
|
1244 |
+
self.data_processor = CalendarDataProcessor()
|
1245 |
+
|
1246 |
+
# Initialize data containers
|
1247 |
+
self.calendar_events = []
|
1248 |
+
self.program_details = []
|
1249 |
+
self.contact_details = []
|
1250 |
+
self.course_structure = []
|
1251 |
+
self.study_plans = []
|
1252 |
+
self.tuition_fees = []
|
1253 |
+
|
1254 |
+
def load_data(self, json_data: Dict):
|
1255 |
+
"""Load and process all data sources"""
|
1256 |
+
try:
|
1257 |
+
raw_events = self.data_processor.parse_calendar_json(json_data)
|
1258 |
+
for event in raw_events:
|
1259 |
+
if not event.event_type:
|
1260 |
+
event.event_type = CalendarEvent.classify_event_type(event.activity)
|
1261 |
+
self.calendar_events.append(event)
|
1262 |
+
|
1263 |
+
# Process other data types
|
1264 |
+
self.program_details = self.data_processor.extract_program_details(json_data)
|
1265 |
+
self.contact_details = self.data_processor.extract_contact_details(json_data)
|
1266 |
+
self.course_structure = self.data_processor.extract_course_structure(json_data)
|
1267 |
+
self.study_plans = self.data_processor.extract_program_study_plan(json_data)
|
1268 |
+
self.tuition_fees = self.data_processor.extract_fees(json_data)
|
1269 |
+
|
1270 |
+
self._add_calendar_events()
|
1271 |
+
self._add_program_info()
|
1272 |
+
|
1273 |
+
except Exception as e:
|
1274 |
+
logger.error(f"Error loading data: {str(e)}")
|
1275 |
+
raise
|
1276 |
+
|
1277 |
+
def _add_calendar_events(self):
|
1278 |
+
"""Add calendar events and other data to document store"""
|
1279 |
+
if self.calendar_events:
|
1280 |
+
self.document_store.add_events(
|
1281 |
+
events=self.calendar_events,
|
1282 |
+
contact_details=self.contact_details,
|
1283 |
+
course_structure=self.course_structure,
|
1284 |
+
study_plans=self.study_plans
|
1285 |
+
)
|
1286 |
+
|
1287 |
+
def _add_program_info(self):
|
1288 |
+
"""Enhanced method to add program-related information to document store"""
|
1289 |
+
if self.program_details:
|
1290 |
+
for detail in self.program_details:
|
1291 |
+
text = f"""
|
1292 |
+
ข้อมูลการสมัคร:
|
1293 |
+
เว็บไซต์รับสมัคร: {detail.application_info.application_portal}
|
1294 |
+
อีเมล: {detail.application_info.program_email}
|
1295 |
+
|
1296 |
+
เอกสารที่ต้องใช้:
|
1297 |
+
{self._format_required_docs(detail.required_documents)}
|
1298 |
+
|
1299 |
+
ขั้นตอนการส่งเอกสาร:
|
1300 |
+
{detail.submission_process}
|
1301 |
+
|
1302 |
+
ขั้นตอนการคัดเลือก:
|
1303 |
+
{self._format_selection_steps(detail.selection_process)}
|
1304 |
+
"""
|
1305 |
+
self.document_store.add_document(text, "program_details")
|
1306 |
|
1307 |
+
if self.tuition_fees:
|
1308 |
+
for fee in self.tuition_fees:
|
1309 |
+
text = f"""
|
1310 |
+
ค่าธรรมเนียมการศึกษา:
|
1311 |
+
ค่าเล่าเรียนปกติ: {fee.regular_fee.amount:,.2f} {fee.regular_fee.currency} {fee.regular_fee.period}
|
1312 |
+
ค่าปรับชำระล่าช้า: {fee.late_payment_fee.amount:,.2f} {fee.late_payment_fee.currency}
|
1313 |
+
"""
|
1314 |
+
self.document_store.add_document(text, "fees")
|
1315 |
+
|
1316 |
+
def _format_required_docs(self, docs: Dict) -> str:
|
1317 |
+
"""Format required documents information with detailed English proficiency requirements"""
|
1318 |
+
result = []
|
1319 |
|
1320 |
+
if 'mandatory' in docs:
|
1321 |
+
result.append("เอกสารที่ต้องใช้:")
|
1322 |
+
for doc in docs['mandatory'].values():
|
1323 |
+
result.append(f"- {doc.name}: {doc.description}")
|
1324 |
+
|
1325 |
+
if 'optional' in docs:
|
1326 |
+
result.append("\nเอกสารเพิ่มเติม:")
|
1327 |
+
for doc_key, doc in docs['optional'].items():
|
1328 |
+
if doc_key == 'english_proficiency':
|
1329 |
+
result.append(f"- {doc.name}")
|
1330 |
+
# Parse and format the accepted tests
|
1331 |
+
try:
|
1332 |
+
accepted_tests = eval(doc.description)
|
1333 |
+
result.append(" เกณฑ์คะแนนที่ยอมรับ:")
|
1334 |
+
for test, requirement in accepted_tests.items():
|
1335 |
+
result.append(f" * {test}: {requirement}")
|
1336 |
+
except:
|
1337 |
+
result.append(f" {doc.description}")
|
1338 |
+
|
1339 |
+
if doc.conditions:
|
1340 |
+
conditions = doc.conditions.split(', ')
|
1341 |
+
for condition in conditions:
|
1342 |
+
result.append(f" {condition}")
|
1343 |
+
else:
|
1344 |
+
desc = f"- {doc.name}"
|
1345 |
+
if doc.conditions:
|
1346 |
+
desc += f" ({doc.conditions})"
|
1347 |
+
result.append(desc)
|
1348 |
+
|
1349 |
+
return "\n".join(result)
|
1350 |
+
|
1351 |
+
def _format_selection_steps(self, steps: List[SelectionStep]) -> str:
|
1352 |
+
"""Format selection process steps"""
|
1353 |
+
return "\n".join(f"{step.step_number}. {step.description}" for step in steps)
|
1354 |
+
|
1355 |
+
def _get_fee_documents(self) -> List[Document]:
|
1356 |
+
"""Get fee-related documents"""
|
1357 |
+
if not self.tuition_fees:
|
1358 |
+
return []
|
1359 |
+
|
1360 |
+
documents = []
|
1361 |
+
for fee in self.tuition_fees:
|
1362 |
+
text = f"""
|
1363 |
+
ค่าธรรมเนียมการศึกษา:
|
1364 |
+
- ค่าเล่าเรียน: {fee.regular_fee.amount:,.2f} {fee.regular_fee.currency} {fee.regular_fee.period}
|
1365 |
+
- ค่าปรับชำระล่าช้า: {fee.late_payment_fee.amount:,.2f} {fee.late_payment_fee.currency}
|
1366 |
+
"""
|
1367 |
+
doc = Document(
|
1368 |
+
content=text,
|
1369 |
+
meta={"event_type": "fees"}
|
1370 |
+
)
|
1371 |
+
documents.append(doc)
|
1372 |
+
|
1373 |
+
return documents
|
1374 |
+
|
1375 |
+
def process_query(self, query: str, weight_semantic: float = 0.5) -> Dict[str, Any]:
|
1376 |
+
"""Process user query using hybrid retrieval"""
|
1377 |
try:
|
1378 |
# Analyze query
|
1379 |
query_info = self.query_processor.process_query(query)
|
1380 |
|
1381 |
+
# Get relevant documents using hybrid search
|
1382 |
+
documents = self.document_store.hybrid_search(
|
1383 |
query=query,
|
1384 |
+
event_type=query_info.get("event_type"),
|
1385 |
+
semester=query_info.get("semester"),
|
1386 |
+
top_k=self.config.retriever.top_k,
|
1387 |
+
weight_semantic=weight_semantic
|
1388 |
)
|
1389 |
|
1390 |
+
# Add fee information for fee-related queries
|
1391 |
+
if query_info.get("event_type") == "fees" and self.tuition_fees:
|
1392 |
+
fee_docs = self._get_fee_documents()
|
1393 |
+
documents.extend(fee_docs)
|
1394 |
+
|
1395 |
# Generate response
|
1396 |
response = self.response_generator.generate_response(
|
1397 |
query=query,
|
|
|
1400 |
)
|
1401 |
|
1402 |
return {
|
1403 |
+
"query": query,
|
1404 |
"answer": response,
|
1405 |
+
"relevant_docs": documents,
|
1406 |
"query_info": query_info
|
1407 |
}
|
1408 |
|
1409 |
except Exception as e:
|
1410 |
+
logger.error(f"Error processing query: {str(e)}")
|
1411 |
return {
|
1412 |
+
"query": query,
|
1413 |
+
"answer": "ขออภัย ไม่สามารถประมวลผลคำตอบได้ในขณะนี้",
|
1414 |
+
"error": str(e)
|
1415 |
}
|
|
|
1416 |
# def main():
|
1417 |
+
# """Main function demonstrating hybrid retrieval"""
|
1418 |
# try:
|
1419 |
# # Load API key
|
1420 |
# with open("key.txt", "r") as f:
|
1421 |
# openai_api_key = f.read().strip()
|
1422 |
|
1423 |
+
# # Create config with hybrid retrieval settings
|
1424 |
# config = create_default_config(openai_api_key)
|
|
|
|
|
1425 |
# config.localization.enable_thai_normalization = True
|
1426 |
+
# config.retriever.top_k = 5
|
1427 |
+
# config.model.temperature = 0.3
|
1428 |
|
|
|
1429 |
# pipeline = AcademicCalendarRAG(config)
|
1430 |
|
1431 |
+
# # Load and process data
|
1432 |
+
# with open("raw-data.json", "r", encoding="utf-8") as f:
|
1433 |
+
# raw_data = json.load(f)
|
|
|
1434 |
|
1435 |
+
# pipeline.load_data(raw_data)
|
1436 |
+
|
1437 |
+
# # Test queries with different semantic weights
|
1438 |
+
# queries = ["เปิดเทอมวันเเรกวันไหน"]
|
1439 |
|
|
|
1440 |
# print("=" * 80)
|
1441 |
|
1442 |
# for query in queries:
|
|
|
1443 |
# print(f"\nQuery: {query}")
|
1444 |
+
# result = pipeline.process_query(query, weight_semantic=0.3)
|
1445 |
# print(f"Answer: {result['answer']}")
|
1446 |
+
# print("-" * 40)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1447 |
|
1448 |
# except Exception as e:
|
1449 |
# logger.error(f"Pipeline execution failed: {str(e)}")
|