File size: 30,979 Bytes
9bf9ce7
35b1183
 
 
 
9bf9ce7
 
 
 
 
 
 
1015380
 
9bf9ce7
 
1015380
9bf9ce7
 
 
 
1015380
9bf9ce7
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a58d5a
 
9bf9ce7
 
 
 
 
8a58d5a
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
1015380
9bf9ce7
1015380
 
9bf9ce7
 
aa3a03e
9bf9ce7
 
1015380
 
9bf9ce7
 
1015380
 
9bf9ce7
 
 
 
 
 
 
 
 
 
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
1015380
 
 
 
 
9bf9ce7
 
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015380
9bf9ce7
 
 
1015380
9bf9ce7
1015380
 
 
 
 
 
 
 
 
 
 
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
1015380
9bf9ce7
 
 
 
 
1015380
 
9bf9ce7
 
 
 
 
 
 
 
 
1015380
 
 
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf9ce7
 
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b07e7
 
9bf9ce7
 
 
 
 
65b07e7
9bf9ce7
 
 
 
 
 
 
 
 
 
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015380
 
 
 
 
 
 
9bf9ce7
1015380
 
9bf9ce7
65b07e7
 
9bf9ce7
 
 
65b07e7
9bf9ce7
 
65b07e7
1015380
 
 
 
 
 
 
 
 
 
 
 
 
9bf9ce7
172aac1
 
65b07e7
 
 
9bf9ce7
 
 
 
 
 
 
1015380
9bf9ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
ee9b622
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.47")
os.system("pip install diffusers -U")

import torch
import random
import numpy as np
import gradio as gr
from glob import glob
from datetime import datetime

from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler, LCMScheduler

import torch.nn.functional as F
from PIL import Image,ImageDraw
from utils.masactrl_utils import (AttentionBase,
                                     regiter_attention_editor_diffusers)
from utils.free_lunch_utils import register_upblock2d,register_crossattn_upblock2d,register_free_upblock2d, register_free_crossattn_upblock2d
from utils.style_attn_control import MaskPromptedStyleAttentionControl
from utils.pipeline import MasaCtrlPipeline
from torchvision.utils import save_image
from segment_anything import sam_model_registry, SamPredictor



css = """
.toolbutton {
    margin-buttom: 0em 0em 0em 0em;
    max-width: 2.5em;
    min-width: 2.5em !important;
    height: 2.5em;
}
"""

class GlobalText:
    def __init__(self):
        
        # config dirs
        self.basedir                = os.getcwd()
        self.stable_diffusion_dir   = os.path.join(self.basedir, "models", "StableDiffusion")
        self.personalized_model_dir = './models/Stable-diffusion'
        self.lora_model_dir         = './models/Lora'
        self.savedir                = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
        self.savedir_sample         = os.path.join(self.savedir, "sample")

        self.savedir_mask         = os.path.join(self.savedir, "mask")

        self.stable_diffusion_list   = ["runwayml/stable-diffusion-v1-5",
                                        "latent-consistency/lcm-lora-sdv1-5"]
        self.personalized_model_list = []
        self.lora_model_list = []

        # config models
        self.tokenizer             = None
        self.text_encoder          = None
        self.vae                   = None
        self.unet                  = None
        self.pipeline              = None
        self.lora_loaded           = None
        self.lcm_lora_loaded       = False
        self.personal_model_loaded = None
        self.sam_predictor         = None

        self.lora_model_state_dict = {}
        self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        # self.refresh_stable_diffusion()
        self.refresh_personalized_model()

        

        self.reset_start_code()
    def load_base_pipeline(self, model_path):
        

        print(f'loading {model_path} model')
        scheduler = DDIMScheduler.from_pretrained(model_path,subfolder="scheduler")
        self.pipeline = MasaCtrlPipeline.from_pretrained(model_path,
                                         scheduler=scheduler).to(self.device)
        
    def refresh_stable_diffusion(self):
        
        self.load_base_pipeline(self.stable_diffusion_list[0])
        self.lora_loaded           = None
        self.personal_model_loaded = None
        self.lcm_lora_loaded       = False
        return self.stable_diffusion_list[0]
    
    def refresh_personalized_model(self):
        personalized_model_list = glob(os.path.join(self.personalized_model_dir, "**/*.safetensors"), recursive=True)
        self.personalized_model_list = {os.path.basename(file): file for file in personalized_model_list}
        
        lora_model_list = glob(os.path.join(self.lora_model_dir, "**/*.safetensors"), recursive=True)
        self.lora_model_list = {os.path.basename(file): file for file in lora_model_list}
        
    def update_stable_diffusion(self, stable_diffusion_dropdown):
        
        if stable_diffusion_dropdown == 'latent-consistency/lcm-lora-sdv1-5':
            self.load_lcm_lora()
        else:
            self.load_base_pipeline(stable_diffusion_dropdown)
        self.lora_loaded           = None
        self.personal_model_loaded = None
        return gr.Dropdown()
    
    def update_base_model(self, base_model_dropdown):
        if self.pipeline is None:
            gr.Info(f"Please select a pretrained model path.")
            return None
        else:
            base_model = self.personalized_model_list[base_model_dropdown]
            mid_model = StableDiffusionPipeline.from_single_file(base_model)
            self.pipeline.vae = mid_model.vae
            self.pipeline.unet = mid_model.unet
            self.pipeline.text_encoder = mid_model.text_encoder
            self.pipeline.to(self.device)
            self.personal_model_loaded = base_model_dropdown.split('.')[0]
            print(f'load {base_model_dropdown} model success!')
            
            return gr.Dropdown()

    
    def update_lora_model(self, lora_model_dropdown,lora_alpha_slider):
        
        if self.pipeline is None:
            gr.Info(f"Please select a pretrained model path.")
            return None
        else:
            if lora_model_dropdown == "none":
                self.pipeline.unfuse_lora()
                self.pipeline.unload_lora_weights()
                self.lora_loaded           = None
                print("Restore lora.")
            else:
                
                lora_model_path = self.lora_model_list[lora_model_dropdown]
                self.pipeline.load_lora_weights(lora_model_path)
                self.pipeline.fuse_lora(lora_alpha_slider)
                self.lora_loaded = lora_model_dropdown.split('.')[0]
                print(f'load {lora_model_dropdown} LoRA Model Success!')
        return gr.Dropdown()
    
    def load_lcm_lora(self, lora_alpha_slider=1.0):
        # set scheduler
        self.pipeline = MasaCtrlPipeline.from_pretrained(self.stable_diffusion_list[0]).to(self.device)
        self.pipeline.scheduler = LCMScheduler.from_config(self.pipeline.scheduler.config)
        # load LCM-LoRA
        self.pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
        self.pipeline.fuse_lora(lora_alpha_slider)
        self.lcm_lora_loaded = True
        print(f'load LCM-LoRA model success!')
        
    def generate(self, source, style, source_mask, style_mask,  
                       start_step, start_layer, Style_attn_step,
                       Method, Style_Guidance, ddim_steps, scale, seed, de_bug,
                       target_prompt, negative_prompt_textbox,
                       inter_latents,
                       freeu, b1, b2, s1, s2,
                       width_slider,height_slider,
                       ):
        os.makedirs(self.savedir, exist_ok=True)
        os.makedirs(self.savedir_sample, exist_ok=True)
        os.makedirs(self.savedir_mask, exist_ok=True)
        model = self.pipeline

        if seed != -1 and seed != "": torch.manual_seed(int(seed))
        else: torch.seed()
        seed = torch.initial_seed()
        sample_count = len(os.listdir(self.savedir_sample))
        os.makedirs(os.path.join(self.savedir_mask, f"results_{sample_count}"), exist_ok=True)

        # ref_prompt = [source_prompt, target_prompt]
        # prompts = ref_prompt+['']
        ref_prompt = [target_prompt, target_prompt]
        prompts = ref_prompt+[target_prompt]    
        source_image,style_image,source_mask,style_mask = load_mask_images(source,style,source_mask,style_mask,self.device,width_slider,height_slider,out_dir=os.path.join(self.savedir_mask, f"results_{sample_count}"))

        
        # global START_CODE, LATENTS_LIST

        with torch.no_grad():
            #import pdb;pdb.set_trace()

            #prev_source
            if self.start_code is None and self.latents_list is None:
                content_style = torch.cat([style_image, source_image], dim=0)
                editor = AttentionBase()
                regiter_attention_editor_diffusers(model, editor)  
                st_code, latents_list = model.invert(content_style,
                                                        ref_prompt,
                                                        guidance_scale=scale,
                                                        num_inference_steps=ddim_steps,
                                                        return_intermediates=True)
                start_code = torch.cat([st_code, st_code[1:]], dim=0)
                self.start_code = start_code
                self.latents_list = latents_list
            else:
                start_code = self.start_code
                latents_list = self.latents_list
                print('------------------------------------------  Use previous latents ------------------------------------------  ')
            
            #["Without mask", "Only masked region", "Seperate Background Foreground"]
            
            if Method == "Without mask":
                style_mask = None
                source_mask = None
                only_masked_region = False
            elif Method == "Only masked region":
                assert style_mask is not None and source_mask is not None
                only_masked_region = True
            else:
                assert style_mask is not None and source_mask is not None
                only_masked_region = False
            
            controller = MaskPromptedStyleAttentionControl(start_step, start_layer,
                                                        style_attn_step=Style_attn_step,
                                                        style_guidance=Style_Guidance, 
                                                        style_mask=style_mask,
                                                        source_mask=source_mask,
                                                        only_masked_region=only_masked_region, 
                                                        guidance=scale,
                                                        de_bug=de_bug,
                                                        )
            if freeu:
                # model.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
                print(f'++++++++++++++++++ Run with FreeU {b1}_{b2}_{s1}_{s2} ++++++++++++++++')
                if Method != "Without mask":
                    register_free_upblock2d(model, b1=b1, b2=b2, s1=s1, s2=s1,source_mask=source_mask)
                    register_free_crossattn_upblock2d(model, b1=b1, b2=b2, s1=s1, s2=s1,source_mask=source_mask)
                else:
                    register_free_upblock2d(model, b1=b1, b2=b2, s1=s1, s2=s1,source_mask=None)
                    register_free_crossattn_upblock2d(model, b1=b1, b2=b2, s1=s1, s2=s1,source_mask=None)
                
            else:
                print(f'++++++++++++++++++ Run without FreeU ++++++++++++++++')
                # model.disable_freeu()
                register_upblock2d(model)
                register_crossattn_upblock2d(model)
            
            regiter_attention_editor_diffusers(model, controller)

            

            # inference the synthesized image
            generate_image= model(prompts,
                                width=width_slider,
                                height=height_slider,
                                latents=start_code,
                                guidance_scale=scale,
                                num_inference_steps=ddim_steps,
                                ref_intermediate_latents=latents_list if inter_latents else None,
                                neg_prompt=negative_prompt_textbox,
                                return_intermediates=False,
                                lcm_lora=self.lcm_lora_loaded,
                                de_bug=de_bug,)
            
            # os.makedirs(os.path.join(output_dir, f"results_{sample_count}"))
            save_file_name = f"results_{sample_count}_step{start_step}_layer{start_layer}SG{Style_Guidance}_style_attn_step{Style_attn_step}.jpg"
            if self.lora_loaded != None:
                save_file_name = f"lora_{self.lora_loaded}_" + save_file_name
            if self.personal_model_loaded != None:
                save_file_name = f"personal_{self.personal_model_loaded}_" + save_file_name
                #f"results_{sample_count}_step{start_step}_layer{start_layer}SG{Style_Guidance}_style_attn_step{Style_attn_step}_lora_{self.lora_loaded}.jpg"
            save_file_path = os.path.join(self.savedir_sample, save_file_name)
            #save_file_name = os.path.join(output_dir, f"results_style_{style_name}", f"{content_name}.jpg")
                    
            save_image(torch.cat([source_image/2 + 0.5, style_image/2 + 0.5, generate_image[2:]], dim=0), save_file_path, nrow=3, padding=0)
                    

            
            # global OUTPUT_RESULT
            # OUTPUT_RESULT = save_file_name

            generate_image = generate_image.cpu().permute(0, 2, 3, 1).numpy()
            #save_gif(latents_list, os.path.join(output_dir, f"results_{sample_count}",'output_latents_list.gif'))
        # import pdb;pdb.set_trace()
            #gif_dir = os.path.join(output_dir, f"results_{sample_count}",'output_latents_list.gif')
            
        return [
            generate_image[0],
            generate_image[1],
            generate_image[2],
            ]
        
    def reset_start_code(self,):
        self.start_code = None
        self.latents_list = None

    def lora_sam_predictor(self, sam_path):
        sam_checkpoint = sam_path
        model_type = "vit_h"
        sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
        sam.to(device=self.device)
        self.sam_predictor = SamPredictor(sam)
        self.sam_point = []
        self.sam_point_label = []
        
    def get_points_with_draw(self, image, image_with_points, label, evt: gr.SelectData):

        x, y = evt.index[0], evt.index[1]
        point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
        self.sam_point.append([x, y])
        self.sam_point_label.append(1 if label == 'Add Mask' else 0)
        
        print(x, y, label == 'Add Mask')
        
        if image_with_points is None:
            draw = ImageDraw.Draw(image)
            draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
            return image
        else:
        
            draw = ImageDraw.Draw(image_with_points)
            draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
            return image_with_points
    def reset_sam_points(self,):
        self.sam_point = []
        self.sam_point_label = []
        print('reset all points')
        return None
    def obtain_mask(self, image,sam_path):
        if self.sam_predictor is None:
            self.lora_sam_predictor(sam_path)
        
        print("+++++++++++++++++++ Obtain Mask by SAM ++++++++++++++++++++++")
        input_point = np.array(self.sam_point)
        input_label = np.array(self.sam_point_label)
        predictor = self.sam_predictor
        image = np.array(image)
        predictor.set_image(image)

        # input_point = np.array([[500, 375]])
        # input_label = np.array([1])

        masks, scores, logits = predictor.predict(point_coords=input_point,point_labels=input_label,multimask_output=False)   
        
        # import pdb; pdb.set_trace()
        masks = masks.astype(np.uint8)
        masks = masks * 255
        masks = masks.transpose(1,2,0)
        masks = masks.repeat(3, axis=2)
        return masks

global_text = GlobalText()


def load_mask_images(source,style,source_mask,style_mask,device,width,height,out_dir=None):
    # invert the image into noise map
    if isinstance(source['image'], np.ndarray):
        source_image = torch.from_numpy(source['image']).to(device) / 127.5 - 1.
    else:
        source_image = torch.from_numpy(np.array(source['image'])).to(device) / 127.5 - 1.
    source_image = source_image.unsqueeze(0).permute(0, 3, 1, 2)

    source_image = F.interpolate(source_image, (height,width ))

    if out_dir is not None and source_mask is None:
        
        source['mask'].save(os.path.join(out_dir,'source_mask.jpg'))
    else:
        Image.fromarray(source_mask).save(os.path.join(out_dir,'source_mask.jpg'))
    if out_dir is not None and style_mask is None:
        
        style['mask'].save(os.path.join(out_dir,'style_mask.jpg'))
    else:
        Image.fromarray(style_mask).save(os.path.join(out_dir,'style_mask.jpg'))
    
    source_mask = torch.from_numpy(np.array(source['mask']) if source_mask is None else source_mask).to(device) / 255.
    source_mask = source_mask.unsqueeze(0).permute(0, 3, 1, 2)[:,:1]
    source_mask = F.interpolate(source_mask, (height//8,width//8))

    if isinstance(source['image'], np.ndarray):
        style_image = torch.from_numpy(style['image']).to(device) / 127.5 - 1.
    else:
        style_image = torch.from_numpy(np.array(style['image'])).to(device) / 127.5 - 1.
    style_image = style_image.unsqueeze(0).permute(0, 3, 1, 2)
    style_image = F.interpolate(style_image, (height,width))
    
    style_mask = torch.from_numpy(np.array(style['mask']) if style_mask is None else style_mask ).to(device) / 255.
    style_mask = style_mask.unsqueeze(0).permute(0, 3, 1, 2)[:,:1]
    style_mask = F.interpolate(style_mask, (height//8,width//8))

    
    return source_image,style_image,source_mask,style_mask


def ui():
    with gr.Blocks(css=css) as demo:
        gr.Markdown(
            """
            # [Portrait Diffusion: Training-free Face Stylization with Chain-of-Painting](https://arxiv.org/abs/00000)
            Jin Liu, Huaibo Huang, Chao Jin, Ran He* (*Corresponding Author)<br>
            [Arxiv Report](https://arxiv.org/abs/2312.02212) | [Github](https://github.com/liujin112/PortraitDiffusion)
            """
        )
        with gr.Column(variant="panel"):
            gr.Markdown(
                """
                ### 1. Select a pretrained model.
                """
            )
            with gr.Row():
                stable_diffusion_dropdown = gr.Dropdown(
                    label="Pretrained Model Path",
                    choices=global_text.stable_diffusion_list,
                    interactive=True,
                    allow_custom_value=True
                )
                stable_diffusion_dropdown.change(fn=global_text.update_stable_diffusion, inputs=[stable_diffusion_dropdown], outputs=[stable_diffusion_dropdown])
                
                stable_diffusion_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
                def update_stable_diffusion():
                    global_text.refresh_stable_diffusion()
                    
                stable_diffusion_refresh_button.click(fn=update_stable_diffusion, inputs=[], outputs=[])

                base_model_dropdown = gr.Dropdown(
                    label="Select a ckpt model (optional)",
                    choices=sorted(list(global_text.personalized_model_list.keys())),
                    interactive=True,
                    allow_custom_value=True,
                )
                base_model_dropdown.change(fn=global_text.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
                
                lora_model_dropdown = gr.Dropdown(
                    label="Select a LoRA model (optional)",
                    choices=["none"] + sorted(list(global_text.lora_model_list.keys())),
                    value="none",
                    interactive=True,
                    allow_custom_value=True,
                )
                lora_alpha_slider = gr.Slider(label="LoRA alpha", value=0.8, minimum=0, maximum=2, interactive=True)
                lora_model_dropdown.change(fn=global_text.update_lora_model, inputs=[lora_model_dropdown,lora_alpha_slider], outputs=[lora_model_dropdown])
                
                
                
                personalized_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
                
                def update_personalized_model():
                    global_text.refresh_personalized_model()
                    return [
                        gr.Dropdown(choices=sorted(list(global_text.personalized_model_list.keys()))),
                        gr.Dropdown(choices=["none"] + sorted(list(global_text.lora_model_list.keys())))
                    ]
                personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[base_model_dropdown, lora_model_dropdown])


        with gr.Column(variant="panel"):
            gr.Markdown(
                """
                ### 2. Configs for PortraitDiff.
                """
            )
            with gr.Tab("Configs"):

                with gr.Row():
                    source_image = gr.Image(label="Source Image",  elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGB", height=512)
                    style_image = gr.Image(label="Style Image", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGB", height=512)
                with gr.Row():
                    prompt_textbox = gr.Textbox(label="Prompt", value='head', lines=1)
                    negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=1)
                    # output_dir = gr.Textbox(label="output_dir", value='./results/')

                with gr.Row().style(equal_height=False):
                    with gr.Column():
                        width_slider     = gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64)
                        height_slider    = gr.Slider(label="Height", value=512, minimum=256, maximum=1024, step=64)
                        Method = gr.Dropdown(
                                    ["Without mask", "Only masked region", "Seperate Background Foreground"],
                                    value="Without mask",
                                    label="Mask", info="Select how to use masks")
                        with gr.Tab('Base Configs'):
                            with gr.Row():
                                # sampler_dropdown   = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
                                ddim_steps = gr.Slider(label="DDIM Steps", value=50, minimum=0, maximum=100, step=1)
                                
                                Style_attn_step = gr.Slider(label="Step of Style Attention Control",
                                                        minimum=0,
                                                        maximum=50,
                                                        value=35,
                                                        step=1)
                                start_step = gr.Slider(label="Step of Attention Control",
                                                        minimum=0,
                                                        maximum=150,
                                                        value=0,
                                                        step=1)
                                start_layer = gr.Slider(label="Layer of Style Attention Control",
                                                        minimum=0,
                                                        maximum=16,
                                                        value=10,
                                                        step=1)
                                Style_Guidance = gr.Slider(label="Style Guidance Scale",
                                                minimum=0,
                                                maximum=4,
                                                value=1.2,
                                                step=0.05)
                                cfg_scale_slider = gr.Slider(label="CFG Scale",        value=0, minimum=0,   maximum=20)

                                
                        with gr.Tab('FreeU'):
                            with gr.Row():
                                freeu = gr.Checkbox(label="Free Upblock", value=False)
                                de_bug = gr.Checkbox(value=False,label='DeBug')
                                inter_latents = gr.Checkbox(value=True,label='Use intermediate latents')
                            with gr.Row():
                                b1 = gr.Slider(label='b1:',
                                                        minimum=-1,
                                                        maximum=2,
                                                        step=0.01,
                                                        value=1.3)
                                b2 = gr.Slider(label='b2:',
                                                        minimum=-1,
                                                        maximum=2,
                                                        step=0.01,
                                                        value=1.5)
                            with gr.Row():
                                s1 = gr.Slider(label='s1: ',
                                                        minimum=0,
                                                        maximum=2,
                                                        step=0.1,
                                                        value=1.0)
                                s2 = gr.Slider(label='s2:',
                                                        minimum=0,
                                                        maximum=2,
                                                        step=0.1,
                                                        value=1.0)
                        with gr.Row():
                            seed_textbox = gr.Textbox(label="Seed", value=-1)
                            seed_button  = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
                            seed_button.click(fn=lambda: random.randint(1, 1e8), inputs=[], outputs=[seed_textbox])

                    with gr.Column():
                        generate_button = gr.Button(value="Generate", variant='primary')

                        generate_image = gr.Image(label="Image with PortraitDiff", interactive=False, type='numpy', height=512,)

                        with gr.Row():
                            recons_content = gr.Image(label="reconstructed content", type="pil", image_mode="RGB", height=256)
                            recons_style = gr.Image(label="reconstructed style", type="pil", image_mode="RGB", height=256)

            with gr.Tab("SAM"):
                with gr.Column():
                    with gr.Row():
                        add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)")
                        sam_path = gr.Textbox(label="Sam Model path", value='')
                        load_sam_btn = gr.Button(value="Lora SAM form path")
                    with gr.Row():
                        
                        send_source_btn = gr.Button(value="Send Source Image from PD Tab")
                        sam_source_btn = gr.Button(value="Segment Source")
                        
                        send_style_btn = gr.Button(value="Send Style Image from PD Tab")
                        sam_style_btn = gr.Button(value="Segment Style")
                    with gr.Row():
                        source_image_sam = gr.Image(label="Source Image SAM",  elem_id="SourceimgSAM", source="upload", interactive=True, type="pil", image_mode="RGB", height=512)
                        style_image_sam = gr.Image(label="Style Image SAM", elem_id="StyleimgSAM", source="upload", interactive=True, type="pil", image_mode="RGB", height=512)

                    with gr.Row():
                        source_image_with_points = gr.Image(label="source Image with points", elem_id="style_image_with_points", type="pil", image_mode="RGB", height=256)
                        source_mask = gr.Image(label="Source Mask",  elem_id="img2maskimg", source="upload", interactive=True, type="numpy", image_mode="RGB", height=256)

                        style_image_with_points = gr.Image(label="Style Image with points", elem_id="style_image_with_points", type="pil", image_mode="RGB", height=256)
                        style_mask = gr.Image(label="Style Mask", elem_id="img2maskimg", source="upload", interactive=True, type="numpy", image_mode="RGB", height=256)
                load_sam_btn.click(global_text.lora_sam_predictor,inputs=[sam_path],outputs=[])
                source_image_sam.select(global_text.get_points_with_draw, [source_image_sam, source_image_with_points, add_or_remove], source_image_with_points)
                style_image_sam.select(global_text.get_points_with_draw, [style_image_sam, style_image_with_points, add_or_remove], style_image_with_points)
                send_source_btn.click(lambda x: (x['image'], None), inputs=[source_image], outputs=[source_image_sam, source_image_with_points])
                send_style_btn.click(lambda x: (x['image'], None), inputs=[style_image], outputs=[style_image_sam, style_image_with_points])
                
                style_image_sam.change(global_text.reset_sam_points, inputs=[], outputs=[style_image_with_points])
                source_image_sam.change(global_text.reset_sam_points, inputs=[], outputs=[source_image_with_points])
                
                
                sam_source_btn.click(global_text.obtain_mask,[source_image_sam, sam_path],[source_mask])
                sam_style_btn.click(global_text.obtain_mask,[style_image_sam, sam_path],[style_mask])

        gr.Examples(
            [[os.path.join(os.path.dirname(__file__), "images/content/1.jpg"),
              os.path.join(os.path.dirname(__file__), "images/style/1.jpg")],
            
            ],
            [source_image, style_image]
        )
        inputs = [
            source_image, style_image, source_mask, style_mask,
            start_step, start_layer, Style_attn_step, 
            Method, Style_Guidance,ddim_steps, cfg_scale_slider, seed_textbox, de_bug,  
            prompt_textbox, negative_prompt_textbox, inter_latents,
            freeu, b1, b2, s1, s2,
            width_slider,height_slider
        ]

        generate_button.click(
            fn=global_text.generate,
            inputs=inputs,
            outputs=[recons_style,recons_content,generate_image]
        )
        source_image.upload(global_text.reset_start_code, inputs=[], outputs=[])
        style_image.upload(global_text.reset_start_code, inputs=[], outputs=[])
        ddim_steps.change(fn=global_text.reset_start_code, inputs=[], outputs=[])
    return demo

if __name__ == "__main__":
    demo = ui()
    demo.launch()