Spaces:
Runtime error
Runtime error
File size: 30,979 Bytes
9bf9ce7 35b1183 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 8a58d5a 9bf9ce7 8a58d5a 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 aa3a03e 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 65b07e7 9bf9ce7 65b07e7 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 1015380 9bf9ce7 65b07e7 9bf9ce7 65b07e7 9bf9ce7 65b07e7 1015380 9bf9ce7 172aac1 65b07e7 9bf9ce7 1015380 9bf9ce7 ee9b622 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.47")
os.system("pip install diffusers -U")
import torch
import random
import numpy as np
import gradio as gr
from glob import glob
from datetime import datetime
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler, LCMScheduler
import torch.nn.functional as F
from PIL import Image,ImageDraw
from utils.masactrl_utils import (AttentionBase,
regiter_attention_editor_diffusers)
from utils.free_lunch_utils import register_upblock2d,register_crossattn_upblock2d,register_free_upblock2d, register_free_crossattn_upblock2d
from utils.style_attn_control import MaskPromptedStyleAttentionControl
from utils.pipeline import MasaCtrlPipeline
from torchvision.utils import save_image
from segment_anything import sam_model_registry, SamPredictor
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
class GlobalText:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.personalized_model_dir = './models/Stable-diffusion'
self.lora_model_dir = './models/Lora'
self.savedir = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample")
self.savedir_mask = os.path.join(self.savedir, "mask")
self.stable_diffusion_list = ["runwayml/stable-diffusion-v1-5",
"latent-consistency/lcm-lora-sdv1-5"]
self.personalized_model_list = []
self.lora_model_list = []
# config models
self.tokenizer = None
self.text_encoder = None
self.vae = None
self.unet = None
self.pipeline = None
self.lora_loaded = None
self.lcm_lora_loaded = False
self.personal_model_loaded = None
self.sam_predictor = None
self.lora_model_state_dict = {}
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# self.refresh_stable_diffusion()
self.refresh_personalized_model()
self.reset_start_code()
def load_base_pipeline(self, model_path):
print(f'loading {model_path} model')
scheduler = DDIMScheduler.from_pretrained(model_path,subfolder="scheduler")
self.pipeline = MasaCtrlPipeline.from_pretrained(model_path,
scheduler=scheduler).to(self.device)
def refresh_stable_diffusion(self):
self.load_base_pipeline(self.stable_diffusion_list[0])
self.lora_loaded = None
self.personal_model_loaded = None
self.lcm_lora_loaded = False
return self.stable_diffusion_list[0]
def refresh_personalized_model(self):
personalized_model_list = glob(os.path.join(self.personalized_model_dir, "**/*.safetensors"), recursive=True)
self.personalized_model_list = {os.path.basename(file): file for file in personalized_model_list}
lora_model_list = glob(os.path.join(self.lora_model_dir, "**/*.safetensors"), recursive=True)
self.lora_model_list = {os.path.basename(file): file for file in lora_model_list}
def update_stable_diffusion(self, stable_diffusion_dropdown):
if stable_diffusion_dropdown == 'latent-consistency/lcm-lora-sdv1-5':
self.load_lcm_lora()
else:
self.load_base_pipeline(stable_diffusion_dropdown)
self.lora_loaded = None
self.personal_model_loaded = None
return gr.Dropdown()
def update_base_model(self, base_model_dropdown):
if self.pipeline is None:
gr.Info(f"Please select a pretrained model path.")
return None
else:
base_model = self.personalized_model_list[base_model_dropdown]
mid_model = StableDiffusionPipeline.from_single_file(base_model)
self.pipeline.vae = mid_model.vae
self.pipeline.unet = mid_model.unet
self.pipeline.text_encoder = mid_model.text_encoder
self.pipeline.to(self.device)
self.personal_model_loaded = base_model_dropdown.split('.')[0]
print(f'load {base_model_dropdown} model success!')
return gr.Dropdown()
def update_lora_model(self, lora_model_dropdown,lora_alpha_slider):
if self.pipeline is None:
gr.Info(f"Please select a pretrained model path.")
return None
else:
if lora_model_dropdown == "none":
self.pipeline.unfuse_lora()
self.pipeline.unload_lora_weights()
self.lora_loaded = None
print("Restore lora.")
else:
lora_model_path = self.lora_model_list[lora_model_dropdown]
self.pipeline.load_lora_weights(lora_model_path)
self.pipeline.fuse_lora(lora_alpha_slider)
self.lora_loaded = lora_model_dropdown.split('.')[0]
print(f'load {lora_model_dropdown} LoRA Model Success!')
return gr.Dropdown()
def load_lcm_lora(self, lora_alpha_slider=1.0):
# set scheduler
self.pipeline = MasaCtrlPipeline.from_pretrained(self.stable_diffusion_list[0]).to(self.device)
self.pipeline.scheduler = LCMScheduler.from_config(self.pipeline.scheduler.config)
# load LCM-LoRA
self.pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
self.pipeline.fuse_lora(lora_alpha_slider)
self.lcm_lora_loaded = True
print(f'load LCM-LoRA model success!')
def generate(self, source, style, source_mask, style_mask,
start_step, start_layer, Style_attn_step,
Method, Style_Guidance, ddim_steps, scale, seed, de_bug,
target_prompt, negative_prompt_textbox,
inter_latents,
freeu, b1, b2, s1, s2,
width_slider,height_slider,
):
os.makedirs(self.savedir, exist_ok=True)
os.makedirs(self.savedir_sample, exist_ok=True)
os.makedirs(self.savedir_mask, exist_ok=True)
model = self.pipeline
if seed != -1 and seed != "": torch.manual_seed(int(seed))
else: torch.seed()
seed = torch.initial_seed()
sample_count = len(os.listdir(self.savedir_sample))
os.makedirs(os.path.join(self.savedir_mask, f"results_{sample_count}"), exist_ok=True)
# ref_prompt = [source_prompt, target_prompt]
# prompts = ref_prompt+['']
ref_prompt = [target_prompt, target_prompt]
prompts = ref_prompt+[target_prompt]
source_image,style_image,source_mask,style_mask = load_mask_images(source,style,source_mask,style_mask,self.device,width_slider,height_slider,out_dir=os.path.join(self.savedir_mask, f"results_{sample_count}"))
# global START_CODE, LATENTS_LIST
with torch.no_grad():
#import pdb;pdb.set_trace()
#prev_source
if self.start_code is None and self.latents_list is None:
content_style = torch.cat([style_image, source_image], dim=0)
editor = AttentionBase()
regiter_attention_editor_diffusers(model, editor)
st_code, latents_list = model.invert(content_style,
ref_prompt,
guidance_scale=scale,
num_inference_steps=ddim_steps,
return_intermediates=True)
start_code = torch.cat([st_code, st_code[1:]], dim=0)
self.start_code = start_code
self.latents_list = latents_list
else:
start_code = self.start_code
latents_list = self.latents_list
print('------------------------------------------ Use previous latents ------------------------------------------ ')
#["Without mask", "Only masked region", "Seperate Background Foreground"]
if Method == "Without mask":
style_mask = None
source_mask = None
only_masked_region = False
elif Method == "Only masked region":
assert style_mask is not None and source_mask is not None
only_masked_region = True
else:
assert style_mask is not None and source_mask is not None
only_masked_region = False
controller = MaskPromptedStyleAttentionControl(start_step, start_layer,
style_attn_step=Style_attn_step,
style_guidance=Style_Guidance,
style_mask=style_mask,
source_mask=source_mask,
only_masked_region=only_masked_region,
guidance=scale,
de_bug=de_bug,
)
if freeu:
# model.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
print(f'++++++++++++++++++ Run with FreeU {b1}_{b2}_{s1}_{s2} ++++++++++++++++')
if Method != "Without mask":
register_free_upblock2d(model, b1=b1, b2=b2, s1=s1, s2=s1,source_mask=source_mask)
register_free_crossattn_upblock2d(model, b1=b1, b2=b2, s1=s1, s2=s1,source_mask=source_mask)
else:
register_free_upblock2d(model, b1=b1, b2=b2, s1=s1, s2=s1,source_mask=None)
register_free_crossattn_upblock2d(model, b1=b1, b2=b2, s1=s1, s2=s1,source_mask=None)
else:
print(f'++++++++++++++++++ Run without FreeU ++++++++++++++++')
# model.disable_freeu()
register_upblock2d(model)
register_crossattn_upblock2d(model)
regiter_attention_editor_diffusers(model, controller)
# inference the synthesized image
generate_image= model(prompts,
width=width_slider,
height=height_slider,
latents=start_code,
guidance_scale=scale,
num_inference_steps=ddim_steps,
ref_intermediate_latents=latents_list if inter_latents else None,
neg_prompt=negative_prompt_textbox,
return_intermediates=False,
lcm_lora=self.lcm_lora_loaded,
de_bug=de_bug,)
# os.makedirs(os.path.join(output_dir, f"results_{sample_count}"))
save_file_name = f"results_{sample_count}_step{start_step}_layer{start_layer}SG{Style_Guidance}_style_attn_step{Style_attn_step}.jpg"
if self.lora_loaded != None:
save_file_name = f"lora_{self.lora_loaded}_" + save_file_name
if self.personal_model_loaded != None:
save_file_name = f"personal_{self.personal_model_loaded}_" + save_file_name
#f"results_{sample_count}_step{start_step}_layer{start_layer}SG{Style_Guidance}_style_attn_step{Style_attn_step}_lora_{self.lora_loaded}.jpg"
save_file_path = os.path.join(self.savedir_sample, save_file_name)
#save_file_name = os.path.join(output_dir, f"results_style_{style_name}", f"{content_name}.jpg")
save_image(torch.cat([source_image/2 + 0.5, style_image/2 + 0.5, generate_image[2:]], dim=0), save_file_path, nrow=3, padding=0)
# global OUTPUT_RESULT
# OUTPUT_RESULT = save_file_name
generate_image = generate_image.cpu().permute(0, 2, 3, 1).numpy()
#save_gif(latents_list, os.path.join(output_dir, f"results_{sample_count}",'output_latents_list.gif'))
# import pdb;pdb.set_trace()
#gif_dir = os.path.join(output_dir, f"results_{sample_count}",'output_latents_list.gif')
return [
generate_image[0],
generate_image[1],
generate_image[2],
]
def reset_start_code(self,):
self.start_code = None
self.latents_list = None
def lora_sam_predictor(self, sam_path):
sam_checkpoint = sam_path
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=self.device)
self.sam_predictor = SamPredictor(sam)
self.sam_point = []
self.sam_point_label = []
def get_points_with_draw(self, image, image_with_points, label, evt: gr.SelectData):
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
self.sam_point.append([x, y])
self.sam_point_label.append(1 if label == 'Add Mask' else 0)
print(x, y, label == 'Add Mask')
if image_with_points is None:
draw = ImageDraw.Draw(image)
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
return image
else:
draw = ImageDraw.Draw(image_with_points)
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
return image_with_points
def reset_sam_points(self,):
self.sam_point = []
self.sam_point_label = []
print('reset all points')
return None
def obtain_mask(self, image,sam_path):
if self.sam_predictor is None:
self.lora_sam_predictor(sam_path)
print("+++++++++++++++++++ Obtain Mask by SAM ++++++++++++++++++++++")
input_point = np.array(self.sam_point)
input_label = np.array(self.sam_point_label)
predictor = self.sam_predictor
image = np.array(image)
predictor.set_image(image)
# input_point = np.array([[500, 375]])
# input_label = np.array([1])
masks, scores, logits = predictor.predict(point_coords=input_point,point_labels=input_label,multimask_output=False)
# import pdb; pdb.set_trace()
masks = masks.astype(np.uint8)
masks = masks * 255
masks = masks.transpose(1,2,0)
masks = masks.repeat(3, axis=2)
return masks
global_text = GlobalText()
def load_mask_images(source,style,source_mask,style_mask,device,width,height,out_dir=None):
# invert the image into noise map
if isinstance(source['image'], np.ndarray):
source_image = torch.from_numpy(source['image']).to(device) / 127.5 - 1.
else:
source_image = torch.from_numpy(np.array(source['image'])).to(device) / 127.5 - 1.
source_image = source_image.unsqueeze(0).permute(0, 3, 1, 2)
source_image = F.interpolate(source_image, (height,width ))
if out_dir is not None and source_mask is None:
source['mask'].save(os.path.join(out_dir,'source_mask.jpg'))
else:
Image.fromarray(source_mask).save(os.path.join(out_dir,'source_mask.jpg'))
if out_dir is not None and style_mask is None:
style['mask'].save(os.path.join(out_dir,'style_mask.jpg'))
else:
Image.fromarray(style_mask).save(os.path.join(out_dir,'style_mask.jpg'))
source_mask = torch.from_numpy(np.array(source['mask']) if source_mask is None else source_mask).to(device) / 255.
source_mask = source_mask.unsqueeze(0).permute(0, 3, 1, 2)[:,:1]
source_mask = F.interpolate(source_mask, (height//8,width//8))
if isinstance(source['image'], np.ndarray):
style_image = torch.from_numpy(style['image']).to(device) / 127.5 - 1.
else:
style_image = torch.from_numpy(np.array(style['image'])).to(device) / 127.5 - 1.
style_image = style_image.unsqueeze(0).permute(0, 3, 1, 2)
style_image = F.interpolate(style_image, (height,width))
style_mask = torch.from_numpy(np.array(style['mask']) if style_mask is None else style_mask ).to(device) / 255.
style_mask = style_mask.unsqueeze(0).permute(0, 3, 1, 2)[:,:1]
style_mask = F.interpolate(style_mask, (height//8,width//8))
return source_image,style_image,source_mask,style_mask
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# [Portrait Diffusion: Training-free Face Stylization with Chain-of-Painting](https://arxiv.org/abs/00000)
Jin Liu, Huaibo Huang, Chao Jin, Ran He* (*Corresponding Author)<br>
[Arxiv Report](https://arxiv.org/abs/2312.02212) | [Github](https://github.com/liujin112/PortraitDiffusion)
"""
)
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 1. Select a pretrained model.
"""
)
with gr.Row():
stable_diffusion_dropdown = gr.Dropdown(
label="Pretrained Model Path",
choices=global_text.stable_diffusion_list,
interactive=True,
allow_custom_value=True
)
stable_diffusion_dropdown.change(fn=global_text.update_stable_diffusion, inputs=[stable_diffusion_dropdown], outputs=[stable_diffusion_dropdown])
stable_diffusion_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_stable_diffusion():
global_text.refresh_stable_diffusion()
stable_diffusion_refresh_button.click(fn=update_stable_diffusion, inputs=[], outputs=[])
base_model_dropdown = gr.Dropdown(
label="Select a ckpt model (optional)",
choices=sorted(list(global_text.personalized_model_list.keys())),
interactive=True,
allow_custom_value=True,
)
base_model_dropdown.change(fn=global_text.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
lora_model_dropdown = gr.Dropdown(
label="Select a LoRA model (optional)",
choices=["none"] + sorted(list(global_text.lora_model_list.keys())),
value="none",
interactive=True,
allow_custom_value=True,
)
lora_alpha_slider = gr.Slider(label="LoRA alpha", value=0.8, minimum=0, maximum=2, interactive=True)
lora_model_dropdown.change(fn=global_text.update_lora_model, inputs=[lora_model_dropdown,lora_alpha_slider], outputs=[lora_model_dropdown])
personalized_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_personalized_model():
global_text.refresh_personalized_model()
return [
gr.Dropdown(choices=sorted(list(global_text.personalized_model_list.keys()))),
gr.Dropdown(choices=["none"] + sorted(list(global_text.lora_model_list.keys())))
]
personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[base_model_dropdown, lora_model_dropdown])
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 2. Configs for PortraitDiff.
"""
)
with gr.Tab("Configs"):
with gr.Row():
source_image = gr.Image(label="Source Image", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGB", height=512)
style_image = gr.Image(label="Style Image", elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGB", height=512)
with gr.Row():
prompt_textbox = gr.Textbox(label="Prompt", value='head', lines=1)
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=1)
# output_dir = gr.Textbox(label="output_dir", value='./results/')
with gr.Row().style(equal_height=False):
with gr.Column():
width_slider = gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64)
height_slider = gr.Slider(label="Height", value=512, minimum=256, maximum=1024, step=64)
Method = gr.Dropdown(
["Without mask", "Only masked region", "Seperate Background Foreground"],
value="Without mask",
label="Mask", info="Select how to use masks")
with gr.Tab('Base Configs'):
with gr.Row():
# sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
ddim_steps = gr.Slider(label="DDIM Steps", value=50, minimum=0, maximum=100, step=1)
Style_attn_step = gr.Slider(label="Step of Style Attention Control",
minimum=0,
maximum=50,
value=35,
step=1)
start_step = gr.Slider(label="Step of Attention Control",
minimum=0,
maximum=150,
value=0,
step=1)
start_layer = gr.Slider(label="Layer of Style Attention Control",
minimum=0,
maximum=16,
value=10,
step=1)
Style_Guidance = gr.Slider(label="Style Guidance Scale",
minimum=0,
maximum=4,
value=1.2,
step=0.05)
cfg_scale_slider = gr.Slider(label="CFG Scale", value=0, minimum=0, maximum=20)
with gr.Tab('FreeU'):
with gr.Row():
freeu = gr.Checkbox(label="Free Upblock", value=False)
de_bug = gr.Checkbox(value=False,label='DeBug')
inter_latents = gr.Checkbox(value=True,label='Use intermediate latents')
with gr.Row():
b1 = gr.Slider(label='b1:',
minimum=-1,
maximum=2,
step=0.01,
value=1.3)
b2 = gr.Slider(label='b2:',
minimum=-1,
maximum=2,
step=0.01,
value=1.5)
with gr.Row():
s1 = gr.Slider(label='s1: ',
minimum=0,
maximum=2,
step=0.1,
value=1.0)
s2 = gr.Slider(label='s2:',
minimum=0,
maximum=2,
step=0.1,
value=1.0)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: random.randint(1, 1e8), inputs=[], outputs=[seed_textbox])
with gr.Column():
generate_button = gr.Button(value="Generate", variant='primary')
generate_image = gr.Image(label="Image with PortraitDiff", interactive=False, type='numpy', height=512,)
with gr.Row():
recons_content = gr.Image(label="reconstructed content", type="pil", image_mode="RGB", height=256)
recons_style = gr.Image(label="reconstructed style", type="pil", image_mode="RGB", height=256)
with gr.Tab("SAM"):
with gr.Column():
with gr.Row():
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)")
sam_path = gr.Textbox(label="Sam Model path", value='')
load_sam_btn = gr.Button(value="Lora SAM form path")
with gr.Row():
send_source_btn = gr.Button(value="Send Source Image from PD Tab")
sam_source_btn = gr.Button(value="Segment Source")
send_style_btn = gr.Button(value="Send Style Image from PD Tab")
sam_style_btn = gr.Button(value="Segment Style")
with gr.Row():
source_image_sam = gr.Image(label="Source Image SAM", elem_id="SourceimgSAM", source="upload", interactive=True, type="pil", image_mode="RGB", height=512)
style_image_sam = gr.Image(label="Style Image SAM", elem_id="StyleimgSAM", source="upload", interactive=True, type="pil", image_mode="RGB", height=512)
with gr.Row():
source_image_with_points = gr.Image(label="source Image with points", elem_id="style_image_with_points", type="pil", image_mode="RGB", height=256)
source_mask = gr.Image(label="Source Mask", elem_id="img2maskimg", source="upload", interactive=True, type="numpy", image_mode="RGB", height=256)
style_image_with_points = gr.Image(label="Style Image with points", elem_id="style_image_with_points", type="pil", image_mode="RGB", height=256)
style_mask = gr.Image(label="Style Mask", elem_id="img2maskimg", source="upload", interactive=True, type="numpy", image_mode="RGB", height=256)
load_sam_btn.click(global_text.lora_sam_predictor,inputs=[sam_path],outputs=[])
source_image_sam.select(global_text.get_points_with_draw, [source_image_sam, source_image_with_points, add_or_remove], source_image_with_points)
style_image_sam.select(global_text.get_points_with_draw, [style_image_sam, style_image_with_points, add_or_remove], style_image_with_points)
send_source_btn.click(lambda x: (x['image'], None), inputs=[source_image], outputs=[source_image_sam, source_image_with_points])
send_style_btn.click(lambda x: (x['image'], None), inputs=[style_image], outputs=[style_image_sam, style_image_with_points])
style_image_sam.change(global_text.reset_sam_points, inputs=[], outputs=[style_image_with_points])
source_image_sam.change(global_text.reset_sam_points, inputs=[], outputs=[source_image_with_points])
sam_source_btn.click(global_text.obtain_mask,[source_image_sam, sam_path],[source_mask])
sam_style_btn.click(global_text.obtain_mask,[style_image_sam, sam_path],[style_mask])
gr.Examples(
[[os.path.join(os.path.dirname(__file__), "images/content/1.jpg"),
os.path.join(os.path.dirname(__file__), "images/style/1.jpg")],
],
[source_image, style_image]
)
inputs = [
source_image, style_image, source_mask, style_mask,
start_step, start_layer, Style_attn_step,
Method, Style_Guidance,ddim_steps, cfg_scale_slider, seed_textbox, de_bug,
prompt_textbox, negative_prompt_textbox, inter_latents,
freeu, b1, b2, s1, s2,
width_slider,height_slider
]
generate_button.click(
fn=global_text.generate,
inputs=inputs,
outputs=[recons_style,recons_content,generate_image]
)
source_image.upload(global_text.reset_start_code, inputs=[], outputs=[])
style_image.upload(global_text.reset_start_code, inputs=[], outputs=[])
ddim_steps.change(fn=global_text.reset_start_code, inputs=[], outputs=[])
return demo
if __name__ == "__main__":
demo = ui()
demo.launch() |