import gradio as gr from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import numpy as np import torch # 모델과 feature extractor 로드 model_name = "nvidia/segformer-b0-finetuned-ade-512-512" model = SegformerForSemanticSegmentation.from_pretrained(model_name) feature_extractor = SegformerFeatureExtractor.from_pretrained(model_name) def segment_image(image): # 이미지 처리 inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # 마스크 생성 upsampled_logits = torch.nn.functional.interpolate( outputs.logits, size=image.size[::-1], mode="bilinear", align_corners=False ) upsampled_predictions = upsampled_logits.argmax(dim=1) mask = upsampled_predictions.squeeze().numpy() # 결과 반환 return Image.fromarray(np.uint8(mask * 255)) # 예시 이미지 경로 example_images = ["image1.jpg", "image2.jpg", "image3.jpg"] # Gradio 인터페이스 설정 demo = gr.Interface( fn=segment_image, inputs=gr.inputs.Image(type="pil"), outputs="image", title="머신러닝 7주차 과제_3", examples=example_images ) # 인터페이스 실행 demo.launch()