File size: 1,259 Bytes
a87c3be
6038241
9c81346
6038241
9c81346
6038241
 
 
9c81346
6038241
 
 
9c81346
 
 
6038241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c81346
6038241
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import numpy as np

# 모델과 특징 추출기 불러오기
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")

def segment_image(image):
    # 이미지를 처리하고 모델에 전달하기
    inputs = feature_extractor(images=image, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits

    # 결과 처리 및 이미지로 변환
    result = logits.argmax(dim=1)[0]
    result = result.cpu().detach().numpy()
    result_image = Image.fromarray(result.astype(np.uint8), mode="P")

    # 결과 이미지 반환
    return result_image

# Gradio 인터페이스 정의
iface = gr.Interface(
    fn=segment_image,
    inputs=gr.inputs.Image(type="pil"),
    examples = ['image1.jpg', 'image2.jpg', 'image3.jpg'],
    outputs="image",
    title="SegFormer Image Segmentation",
    description="Upload an image to segment it using the SegFormer model trained on Cityscapes dataset."
)

# 인터페이스 실행
iface.launch()