Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -55,7 +55,7 @@ text_encoder = CLIPTextModel.from_pretrained(
|
|
| 55 |
'JingyeChen22/textdiffuser2-full-ft', subfolder="text_encoder"
|
| 56 |
).cuda().half()
|
| 57 |
tokenizer = CLIPTokenizer.from_pretrained(
|
| 58 |
-
'
|
| 59 |
)
|
| 60 |
|
| 61 |
#### additional tokens are introduced, including coordinate tokens and character tokens
|
|
@@ -71,7 +71,7 @@ for c in alphabet:
|
|
| 71 |
print(len(tokenizer))
|
| 72 |
print('***************')
|
| 73 |
|
| 74 |
-
vae = AutoencoderKL.from_pretrained('
|
| 75 |
unet = UNet2DConditionModel.from_pretrained(
|
| 76 |
'JingyeChen22/textdiffuser2-full-ft', subfolder="unet"
|
| 77 |
).half().cuda()
|
|
@@ -372,7 +372,7 @@ def text_to_image(guest_id, prompt,keywords,positive_prompt,radio,slider_step,sl
|
|
| 372 |
prompts_cond = torch.Tensor(prompts_cond).long().cuda()
|
| 373 |
prompts_nocond = torch.Tensor(prompts_nocond).long().cuda()
|
| 374 |
|
| 375 |
-
scheduler = DDPMScheduler.from_pretrained('
|
| 376 |
scheduler.set_timesteps(slider_step)
|
| 377 |
noise = torch.randn((slider_batch, 4, 64, 64)).to("cuda").half()
|
| 378 |
input = noise
|
|
|
|
| 55 |
'JingyeChen22/textdiffuser2-full-ft', subfolder="text_encoder"
|
| 56 |
).cuda().half()
|
| 57 |
tokenizer = CLIPTokenizer.from_pretrained(
|
| 58 |
+
'stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="tokenizer"
|
| 59 |
)
|
| 60 |
|
| 61 |
#### additional tokens are introduced, including coordinate tokens and character tokens
|
|
|
|
| 71 |
print(len(tokenizer))
|
| 72 |
print('***************')
|
| 73 |
|
| 74 |
+
vae = AutoencoderKL.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="vae").half().cuda()
|
| 75 |
unet = UNet2DConditionModel.from_pretrained(
|
| 76 |
'JingyeChen22/textdiffuser2-full-ft', subfolder="unet"
|
| 77 |
).half().cuda()
|
|
|
|
| 372 |
prompts_cond = torch.Tensor(prompts_cond).long().cuda()
|
| 373 |
prompts_nocond = torch.Tensor(prompts_nocond).long().cuda()
|
| 374 |
|
| 375 |
+
scheduler = DDPMScheduler.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', subfolder="scheduler")
|
| 376 |
scheduler.set_timesteps(slider_step)
|
| 377 |
noise = torch.randn((slider_batch, 4, 64, 64)).to("cuda").half()
|
| 378 |
input = noise
|