# Adopted from https://github.com/ddlBoJack/SLAM-LLM/blob/main/src/slam_llm/models/projector.py import torch import torch.nn as nn class EncoderProjectorConcat(nn.Module): def __init__(self, config): super().__init__() self.k = config.speech_encoder_ds_rate self.encoder_dim = config.speech_encoder_hidden_size self.llm_dim = config.hidden_size self.linear1 = nn.Linear(self.encoder_dim * self.k, 2048) self.relu = nn.ReLU() self.linear2 = nn.Linear(2048, config.hidden_size) def forward(self, x): batch_size, seq_len, dim = x.size() num_frames_to_discard = seq_len % self.k if num_frames_to_discard > 0: x = x[:, :-num_frames_to_discard, :] seq_len = x.size(1) x = x.contiguous() x = x.view(batch_size, seq_len // self.k, dim * self.k) x = self.linear1(x) x = self.relu(x) x = self.linear2(x) return x