Spaces:
Running
Running
Upload 3 files
Browse files- README.md +69 -8
- app.py +57 -649
- pdf2text.py +45 -25
README.md
CHANGED
@@ -1,10 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# DocSummarizer_Jimmy
|
3 |
+
|
4 |
+
🚀 這是一個簡單易用的 PDF 與文字文件摘要工具,支援 OCR 模式與簡單文字轉換模式,提供使用者選擇性處理繁體中文文件,並以 Gradio 介面展示。
|
5 |
+
|
6 |
---
|
7 |
+
|
8 |
+
## 🧰 功能特色
|
9 |
+
|
10 |
+
- ✅ 上傳 PDF,自動擷取文字或使用 OCR(適用掃描圖像型 PDF)
|
11 |
+
- ✅ 上傳 TXT,進行自動摘要
|
12 |
+
- ✅ 提供範例文件供測試(位於 `examples/` 資料夾)
|
13 |
+
- ✅ OCR 模式與簡單模式自由切換
|
14 |
+
- ✅ 中文介面與多語摘要模型支援
|
15 |
+
|
16 |
---
|
17 |
+
|
18 |
+
## 📂 專案結構
|
19 |
+
|
20 |
+
```
|
21 |
+
DocSummarizer_Jimmy/
|
22 |
+
├── app.py # 主程式
|
23 |
+
├── summarize.py # 摘要處理模組
|
24 |
+
├── pdf2text.py # OCR 與 PDF 處理
|
25 |
+
├── utils.py # 工具模組
|
26 |
+
├── requirements.txt # 安裝依賴
|
27 |
+
├── examples/
|
28 |
+
│ └── example1.txt # 範例測試文件
|
29 |
+
```
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## ⚙️ 使用方式
|
34 |
+
|
35 |
+
1. 安裝依賴:
|
36 |
+
|
37 |
+
```bash
|
38 |
+
pip install -r requirements.txt
|
39 |
+
```
|
40 |
+
|
41 |
+
2. 執行 Gradio 應用:
|
42 |
+
|
43 |
+
```bash
|
44 |
+
python app.py
|
45 |
+
```
|
46 |
+
|
47 |
+
3. 開啟瀏覽器後依需求:
|
48 |
+
|
49 |
+
- 選擇上傳 `PDF` 或 `TXT`
|
50 |
+
- 選擇 OCR 模式或簡單模式
|
51 |
+
- 點擊「Generate Summary」生成摘要
|
52 |
+
- 選用範例檔案進行測試(預設載入 example1.txt)
|
53 |
+
|
54 |
+
---
|
55 |
+
|
56 |
+
## 🧠 使用模型
|
57 |
+
|
58 |
+
- 🤖 `pszemraj/bart-large-summary-map-reduce`:適用於長文本摘要
|
59 |
+
- 📄 `doctr`:OCR 模型,用於解析圖像 PDF
|
60 |
+
|
61 |
+
---
|
62 |
+
|
63 |
+
## 📝 備註
|
64 |
+
|
65 |
+
- 本工具針對繁體中文支援,OCR 輸出預設為 UTF-8。
|
66 |
+
- 使用掃描型 PDF 時請務必勾選 OCR 模式。
|
67 |
+
- 若遇模型下載失敗,請檢查網路或手動下載 HuggingFace 模型。
|
68 |
+
|
69 |
+
---
|
70 |
+
|
71 |
+
Jimmy 工程師專案 — 持續優化中。歡迎反饋建議。
|
app.py
CHANGED
@@ -1,667 +1,75 @@
|
|
1 |
-
"""
|
2 |
-
app.py - the main module for the gradio app for summarization
|
3 |
|
4 |
-
Usage:
|
5 |
-
app.py [-h] [--share] [-m MODEL] [-nb ADD_BEAM_OPTION] [-batch TOKEN_BATCH_OPTION]
|
6 |
-
[-level {DEBUG,INFO,WARNING,ERROR}]
|
7 |
-
Details:
|
8 |
-
python app.py --help
|
9 |
-
|
10 |
-
Environment Variables:
|
11 |
-
USE_TORCH (str): whether to use torch (1) or not (0)
|
12 |
-
TOKENIZERS_PARALLELISM (str): whether to use parallelism (true) or not (false)
|
13 |
-
Optional Environment Variables:
|
14 |
-
APP_MAX_WORDS (int): the maximum number of words to use for summarization
|
15 |
-
APP_OCR_MAX_PAGES (int): the maximum number of pages to use for OCR
|
16 |
-
"""
|
17 |
-
|
18 |
-
import argparse
|
19 |
-
import contextlib
|
20 |
-
import gc
|
21 |
-
import logging
|
22 |
import os
|
23 |
-
import pprint as pp
|
24 |
-
import random
|
25 |
-
import time
|
26 |
-
from pathlib import Path
|
27 |
-
|
28 |
-
os.environ["USE_TORCH"] = "1"
|
29 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
30 |
-
|
31 |
-
logging.basicConfig(
|
32 |
-
level=logging.INFO,
|
33 |
-
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
|
34 |
-
datefmt="%Y-%b-%d %H:%M:%S",
|
35 |
-
)
|
36 |
-
|
37 |
import gradio as gr
|
38 |
-
import
|
39 |
-
|
40 |
-
import
|
41 |
-
from cleantext import clean
|
42 |
-
from doctr.models import ocr_predictor
|
43 |
-
|
44 |
-
from aggregate import BatchAggregator
|
45 |
-
from pdf2text import convert_pdf_to_text
|
46 |
-
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
47 |
-
from utils import (
|
48 |
-
contraction_aware_tokenize,
|
49 |
-
extract_batches,
|
50 |
-
load_example_filenames,
|
51 |
-
remove_stagnant_files,
|
52 |
-
remove_stopwords,
|
53 |
-
saves_summary,
|
54 |
-
textlist2html,
|
55 |
-
truncate_word_count,
|
56 |
-
)
|
57 |
-
|
58 |
-
_here = Path(__file__).parent
|
59 |
-
|
60 |
-
nltk.download("punkt", force=True, quiet=True)
|
61 |
-
nltk.download("popular", force=True, quiet=True)
|
62 |
-
|
63 |
-
# Constants & Globals
|
64 |
-
MODEL_OPTIONS = [
|
65 |
-
"BEE-spoke-data/pegasus-x-base-synthsumm_open-16k",
|
66 |
-
"pszemraj/long-t5-tglobal-base-sci-simplify",
|
67 |
-
"pszemraj/long-t5-tglobal-base-16384-book-summary",
|
68 |
-
"pszemraj/long-t5-tglobal-base-summary-souffle-16384-loD",
|
69 |
-
"pszemraj/pegasus-x-large-book_synthsumm",
|
70 |
-
"pszemraj/pegasus-x-large-book-summary",
|
71 |
-
] # models users can choose from
|
72 |
-
BEAM_OPTIONS = [2, 3, 4] # beam sizes users can choose from
|
73 |
-
TOKEN_BATCH_OPTIONS = [
|
74 |
-
1024,
|
75 |
-
1536,
|
76 |
-
2048,
|
77 |
-
2560,
|
78 |
-
3072,
|
79 |
-
] # token batch sizes users can choose from
|
80 |
-
|
81 |
-
SUMMARY_PLACEHOLDER = "<p><em>Output will appear below:</em></p>"
|
82 |
-
AGGREGATE_MODEL = "pszemraj/bart-large-summary-map-reduce" # map-reduce model
|
83 |
-
|
84 |
-
# if duplicating space: uncomment this line to adjust the max words
|
85 |
-
# os.environ["APP_MAX_WORDS"] = str(2048) # set the max words to 2048
|
86 |
-
# os.environ["APP_OCR_MAX_PAGES"] = str(40) # set the max pages to 40
|
87 |
-
# os.environ["APP_AGG_FORCE_CPU"] = str(1) # force cpu for aggregation
|
88 |
-
|
89 |
-
aggregator = BatchAggregator(
|
90 |
-
AGGREGATE_MODEL, force_cpu=os.environ.get("APP_AGG_FORCE_CPU", False)
|
91 |
-
)
|
92 |
-
|
93 |
-
|
94 |
-
def aggregate_text(
|
95 |
-
summary_text: str,
|
96 |
-
text_file: gr.File = None,
|
97 |
-
) -> str:
|
98 |
-
"""
|
99 |
-
Aggregate the text from the batches.
|
100 |
-
|
101 |
-
NOTE: you should probably include the BatchAggregator object as a fn arg if using this code
|
102 |
-
|
103 |
-
:param batches_html: The batches to aggregate, in html format
|
104 |
-
:param text_file: The text file to append the aggregate summary to
|
105 |
-
:return: The aggregate summary in html format
|
106 |
-
"""
|
107 |
-
if summary_text is None or summary_text == SUMMARY_PLACEHOLDER:
|
108 |
-
logging.error("No text provided. Make sure a summary has been generated first.")
|
109 |
-
return "Error: No text provided. Make sure a summary has been generated first."
|
110 |
-
|
111 |
-
try:
|
112 |
-
extracted_batches = extract_batches(summary_text)
|
113 |
-
except Exception as e:
|
114 |
-
logging.info(summary_text)
|
115 |
-
logging.info(f"the batches html is: {type(summary_text)}")
|
116 |
-
return f"Error: unable to extract batches - check input: {e}"
|
117 |
-
if not extracted_batches:
|
118 |
-
logging.error("unable to extract batches - check input")
|
119 |
-
return "Error: unable to extract batches - check input"
|
120 |
-
|
121 |
-
out_path = None
|
122 |
-
if text_file is not None:
|
123 |
-
out_path = text_file.name # assuming name attribute stores the file path
|
124 |
-
|
125 |
-
content_batches = [batch["content"] for batch in extracted_batches]
|
126 |
-
full_summary = aggregator.infer_aggregate(content_batches)
|
127 |
-
|
128 |
-
# if a path that exists is provided, append the summary with markdown formatting
|
129 |
-
if out_path:
|
130 |
-
out_path = Path(out_path)
|
131 |
-
|
132 |
-
try:
|
133 |
-
with open(out_path, "a", encoding="utf-8") as f:
|
134 |
-
f.write("\n\n## Aggregate Summary\n\n")
|
135 |
-
f.write(
|
136 |
-
"- This is an instruction-based LLM aggregation of the previous 'summary batches'.\n"
|
137 |
-
)
|
138 |
-
f.write(f"- Aggregation model: {aggregator.model_name}\n\n")
|
139 |
-
f.write(f"{full_summary}\n\n")
|
140 |
-
logging.info(f"Updated {out_path} with aggregate summary")
|
141 |
-
except Exception as e:
|
142 |
-
logging.error(f"unable to update {out_path} with aggregate summary: {e}")
|
143 |
-
|
144 |
-
full_summary_html = f"""
|
145 |
-
<div style="
|
146 |
-
margin-bottom: 20px;
|
147 |
-
font-size: 18px;
|
148 |
-
line-height: 1.5em;
|
149 |
-
color: #333;
|
150 |
-
">
|
151 |
-
<h2 style="font-size: 22px; color: #555;">Aggregate Summary:</h2>
|
152 |
-
<p style="white-space: pre-line;">{full_summary}</p>
|
153 |
-
</div>
|
154 |
-
"""
|
155 |
-
return full_summary_html
|
156 |
-
|
157 |
-
|
158 |
-
def predict(
|
159 |
-
input_text: str,
|
160 |
-
model_name: str,
|
161 |
-
token_batch_length: int = 1024,
|
162 |
-
empty_cache: bool = True,
|
163 |
-
**settings,
|
164 |
-
) -> list:
|
165 |
-
"""
|
166 |
-
predict - helper fn to support multiple models for summarization at once
|
167 |
-
|
168 |
-
:param str input_text: the input text to summarize
|
169 |
-
:param str model_name: model name to use
|
170 |
-
:param int token_batch_length: the length of the token batches to use
|
171 |
-
:param bool empty_cache: whether to empty the cache before loading a new= model
|
172 |
-
:return: list of dicts with keys "summary" and "score"
|
173 |
-
"""
|
174 |
-
if torch.cuda.is_available() and empty_cache:
|
175 |
-
torch.cuda.empty_cache()
|
176 |
-
|
177 |
-
model, tokenizer = load_model_and_tokenizer(model_name)
|
178 |
-
summaries = summarize_via_tokenbatches(
|
179 |
-
input_text,
|
180 |
-
model,
|
181 |
-
tokenizer,
|
182 |
-
batch_length=token_batch_length,
|
183 |
-
**settings,
|
184 |
-
)
|
185 |
-
|
186 |
-
del model
|
187 |
-
del tokenizer
|
188 |
-
gc.collect()
|
189 |
-
|
190 |
-
return summaries
|
191 |
-
|
192 |
-
|
193 |
-
def proc_submission(
|
194 |
-
input_text: str,
|
195 |
-
model_name: str,
|
196 |
-
num_beams: int,
|
197 |
-
token_batch_length: int,
|
198 |
-
length_penalty: float,
|
199 |
-
repetition_penalty: float,
|
200 |
-
no_repeat_ngram_size: int,
|
201 |
-
predrop_stopwords: bool,
|
202 |
-
max_input_length: int = 6144,
|
203 |
-
):
|
204 |
-
"""
|
205 |
-
proc_submission - a helper function for the gradio module to process submissions
|
206 |
-
|
207 |
-
Args:
|
208 |
-
input_text (str): the input text to summarize
|
209 |
-
model_name (str): the hf model tag of the model to use
|
210 |
-
num_beams (int): the number of beams to use
|
211 |
-
token_batch_length (int): the length of the token batches to use
|
212 |
-
length_penalty (float): the length penalty to use
|
213 |
-
repetition_penalty (float): the repetition penalty to use
|
214 |
-
no_repeat_ngram_size (int): the no repeat ngram size to use
|
215 |
-
predrop_stopwords (bool): whether to pre-drop stopwords before truncating/summarizing
|
216 |
-
max_input_length (int, optional): the maximum input length to use. Defaults to 6144.
|
217 |
-
|
218 |
-
Note:
|
219 |
-
the max_input_length is set to 6144 by default, but can be changed by setting the
|
220 |
-
environment variable APP_MAX_WORDS to a different value.
|
221 |
-
|
222 |
-
Returns:
|
223 |
-
tuple (4): a tuple containing the following:
|
224 |
-
"""
|
225 |
-
|
226 |
-
remove_stagnant_files() # clean up old files
|
227 |
-
settings = {
|
228 |
-
"length_penalty": float(length_penalty),
|
229 |
-
"repetition_penalty": float(repetition_penalty),
|
230 |
-
"no_repeat_ngram_size": int(no_repeat_ngram_size),
|
231 |
-
"encoder_no_repeat_ngram_size": 4,
|
232 |
-
"num_beams": int(num_beams),
|
233 |
-
"min_length": 4,
|
234 |
-
"max_length": int(token_batch_length // 4),
|
235 |
-
"early_stopping": True,
|
236 |
-
"do_sample": False,
|
237 |
-
}
|
238 |
-
max_input_length = int(os.environ.get("APP_MAX_WORDS", max_input_length))
|
239 |
-
logging.info(
|
240 |
-
f"max_input_length set to: {max_input_length}. pre-drop stopwords: {predrop_stopwords}"
|
241 |
-
)
|
242 |
-
|
243 |
-
st = time.perf_counter()
|
244 |
-
history = {}
|
245 |
-
cln_text = clean(input_text, lower=False)
|
246 |
-
parsed_cln_text = remove_stopwords(cln_text) if predrop_stopwords else cln_text
|
247 |
-
logging.info(
|
248 |
-
f"pre-truncation word count: {len(contraction_aware_tokenize(parsed_cln_text))}"
|
249 |
-
)
|
250 |
-
truncation_validated = truncate_word_count(
|
251 |
-
parsed_cln_text, max_words=max_input_length
|
252 |
-
)
|
253 |
-
|
254 |
-
if truncation_validated["was_truncated"]:
|
255 |
-
model_input_text = truncation_validated["processed_text"]
|
256 |
-
# create elaborate HTML warning
|
257 |
-
input_wc = len(contraction_aware_tokenize(parsed_cln_text))
|
258 |
-
msg = f"""
|
259 |
-
<div style="background-color: #FFA500; color: white; padding: 20px;">
|
260 |
-
<h3>Warning</h3>
|
261 |
-
<p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/input_wc:.2f}% of the original text.</p>
|
262 |
-
<p>Dropping stopwords is set to {predrop_stopwords}. If this is not what you intended, please validate the advanced settings.</p>
|
263 |
-
</div>
|
264 |
-
"""
|
265 |
-
logging.warning(msg)
|
266 |
-
history["WARNING"] = msg
|
267 |
-
else:
|
268 |
-
model_input_text = truncation_validated["processed_text"]
|
269 |
-
msg = None
|
270 |
-
|
271 |
-
if len(input_text) < 50:
|
272 |
-
# this is essentially a different case from the above
|
273 |
-
msg = f"""
|
274 |
-
<div style="background-color: #880808; color: white; padding: 20px;">
|
275 |
-
<br>
|
276 |
-
<img src="https://i.imgflip.com/7kadd9.jpg" alt="no text">
|
277 |
-
<br>
|
278 |
-
<h3>Error</h3>
|
279 |
-
<p>Input text is too short to summarize. Detected {len(input_text)} characters.
|
280 |
-
Please load text by selecting an example from the dropdown menu or by pasting text into the text box.</p>
|
281 |
-
</div>
|
282 |
-
"""
|
283 |
-
logging.warning(msg)
|
284 |
-
logging.warning("RETURNING EMPTY STRING")
|
285 |
-
history["WARNING"] = msg
|
286 |
-
|
287 |
-
return msg, "<strong>No summary generated.</strong>", "", []
|
288 |
-
|
289 |
-
_summaries = predict(
|
290 |
-
input_text=model_input_text,
|
291 |
-
model_name=model_name,
|
292 |
-
token_batch_length=token_batch_length,
|
293 |
-
**settings,
|
294 |
-
)
|
295 |
-
sum_text = [s["summary"][0].strip() + "\n" for s in _summaries]
|
296 |
-
sum_scores = [
|
297 |
-
f" - Batch Summary {i}: {round(s['summary_score'],4)}"
|
298 |
-
for i, s in enumerate(_summaries)
|
299 |
-
]
|
300 |
-
|
301 |
-
full_summary = textlist2html(sum_text)
|
302 |
-
history["Summary Scores"] = "<br><br>"
|
303 |
-
scores_out = "\n".join(sum_scores)
|
304 |
-
rt = round((time.perf_counter() - st) / 60, 2)
|
305 |
-
logging.info(f"Runtime: {rt} minutes")
|
306 |
-
html = ""
|
307 |
-
html += f"<p>Runtime: {rt} minutes with model: {model_name}</p>"
|
308 |
-
if msg is not None:
|
309 |
-
html += msg
|
310 |
-
|
311 |
-
html += ""
|
312 |
-
|
313 |
-
settings["remove_stopwords"] = predrop_stopwords
|
314 |
-
settings["model_name"] = model_name
|
315 |
-
saved_file = saves_summary(summarize_output=_summaries, outpath=None, **settings)
|
316 |
-
return html, full_summary, scores_out, saved_file
|
317 |
-
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
max_pages: int = 20,
|
322 |
-
) -> str:
|
323 |
-
"""
|
324 |
-
load_single_example_text - loads a single example text file
|
325 |
|
326 |
-
|
327 |
-
:param int max_pages: the maximum number of pages to load from a PDF
|
328 |
-
:return str: the text of the example
|
329 |
-
"""
|
330 |
-
global name_to_path, ocr_model
|
331 |
-
full_ex_path = name_to_path[example_path]
|
332 |
-
full_ex_path = Path(full_ex_path)
|
333 |
-
if full_ex_path.suffix in [".txt", ".md"]:
|
334 |
-
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
|
335 |
-
raw_text = f.read()
|
336 |
-
text = clean(raw_text, lower=False)
|
337 |
-
elif full_ex_path.suffix == ".pdf":
|
338 |
-
logging.info(f"Loading PDF file {full_ex_path}")
|
339 |
-
max_pages = int(os.environ.get("APP_OCR_MAX_PAGES", max_pages))
|
340 |
-
logging.info(f"max_pages set to: {max_pages}")
|
341 |
-
conversion_stats = convert_PDF_to_Text(
|
342 |
-
full_ex_path,
|
343 |
-
ocr_model=ocr_model,
|
344 |
-
max_pages=max_pages,
|
345 |
-
)
|
346 |
-
text = conversion_stats["converted_text"]
|
347 |
-
else:
|
348 |
-
logging.error(f"Unknown file type {full_ex_path.suffix}")
|
349 |
-
text = "ERROR - check example path"
|
350 |
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
-
|
355 |
-
"""
|
356 |
-
load_uploaded_file - loads a file uploaded by the user
|
357 |
|
358 |
-
|
359 |
-
:param int max_pages: the maximum number of pages to load from a PDF
|
360 |
-
:param bool lower: whether to lowercase the text
|
361 |
-
:return str: the text of the file
|
362 |
-
"""
|
363 |
-
global ocr_model
|
364 |
-
logger = logging.getLogger(__name__)
|
365 |
-
# check if mysterious file object is a list
|
366 |
-
if isinstance(file_obj, list):
|
367 |
-
file_obj = file_obj[0]
|
368 |
-
file_path = Path(file_obj.name)
|
369 |
try:
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
elif file_path.suffix == ".pdf":
|
376 |
-
logger.info(f"loading a PDF file: {file_path.name}")
|
377 |
-
max_pages = int(os.environ.get("APP_OCR_MAX_PAGES", max_pages))
|
378 |
-
logger.info(f"max_pages is: {max_pages}. Starting conversion...")
|
379 |
-
conversion_stats = convert_PDF_to_Text(
|
380 |
-
file_path,
|
381 |
-
ocr_model=ocr_model,
|
382 |
-
max_pages=max_pages,
|
383 |
-
)
|
384 |
-
text = conversion_stats["converted_text"]
|
385 |
else:
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
return text
|
390 |
except Exception as e:
|
391 |
-
logger.
|
392 |
-
return f"
|
393 |
-
|
394 |
-
|
395 |
-
def parse_args():
|
396 |
-
"""arguments for the command line interface"""
|
397 |
-
parser = argparse.ArgumentParser(
|
398 |
-
description="Document Summarization with Long-Document Transformers - Demo",
|
399 |
-
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
400 |
-
epilog="Runs a local-only web UI to summarize documents. pass --share for a public link to share.",
|
401 |
-
)
|
402 |
-
|
403 |
-
parser.add_argument(
|
404 |
-
"--share",
|
405 |
-
dest="share",
|
406 |
-
action="store_true",
|
407 |
-
help="Create a public link to share",
|
408 |
-
)
|
409 |
-
parser.add_argument(
|
410 |
-
"-m",
|
411 |
-
"--model",
|
412 |
-
type=str,
|
413 |
-
default=None,
|
414 |
-
help=f"Add a custom model to the list of models: {pp.pformat(MODEL_OPTIONS, compact=True)}",
|
415 |
-
)
|
416 |
-
parser.add_argument(
|
417 |
-
"-nb",
|
418 |
-
"--add_beam_option",
|
419 |
-
type=int,
|
420 |
-
default=None,
|
421 |
-
help=f"Add a beam search option to the demo UI options, default: {pp.pformat(BEAM_OPTIONS, compact=True)}",
|
422 |
-
)
|
423 |
-
parser.add_argument(
|
424 |
-
"-batch",
|
425 |
-
"--token_batch_option",
|
426 |
-
type=int,
|
427 |
-
default=None,
|
428 |
-
help=f"Add a token batch size to the demo UI options, default: {pp.pformat(TOKEN_BATCH_OPTIONS, compact=True)}",
|
429 |
-
)
|
430 |
-
parser.add_argument(
|
431 |
-
"-max_agg",
|
432 |
-
"-2x",
|
433 |
-
"--aggregator_beam_boost",
|
434 |
-
dest="aggregator_beam_boost",
|
435 |
-
action="store_true",
|
436 |
-
help="Double the number of beams for the aggregator during beam search",
|
437 |
-
)
|
438 |
-
parser.add_argument(
|
439 |
-
"-level",
|
440 |
-
"--log_level",
|
441 |
-
type=str,
|
442 |
-
default="INFO",
|
443 |
-
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
|
444 |
-
help="Set the logging level",
|
445 |
-
)
|
446 |
-
|
447 |
-
return parser.parse_args()
|
448 |
|
|
|
|
|
449 |
|
450 |
-
|
451 |
-
"
|
452 |
-
|
453 |
-
args = parse_args()
|
454 |
-
logger.setLevel(args.log_level)
|
455 |
-
logger.info(f"args: {pp.pformat(args.__dict__, compact=True)}")
|
456 |
|
457 |
-
|
458 |
-
|
459 |
-
logger.info(f"Adding model {args.model} to the list of models")
|
460 |
-
MODEL_OPTIONS.append(args.model)
|
461 |
-
if args.add_beam_option is not None:
|
462 |
-
logger.info(f"Adding beam search option {args.add_beam_option} to the list")
|
463 |
-
BEAM_OPTIONS.append(args.add_beam_option)
|
464 |
-
if args.token_batch_option is not None:
|
465 |
-
logger.info(f"Adding token batch option {args.token_batch_option} to the list")
|
466 |
-
TOKEN_BATCH_OPTIONS.append(args.token_batch_option)
|
467 |
-
|
468 |
-
if args.aggregator_beam_boost:
|
469 |
-
logger.info("Doubling aggregator num_beams")
|
470 |
-
_agg_cfg = aggregator.get_generation_config()
|
471 |
-
_agg_cfg["num_beams"] = _agg_cfg["num_beams"] * 2
|
472 |
-
aggregator.update_generation_config(**_agg_cfg)
|
473 |
-
|
474 |
-
logger.info("Loading OCR model")
|
475 |
-
with contextlib.redirect_stdout(None):
|
476 |
-
ocr_model = ocr_predictor(
|
477 |
-
"db_resnet50",
|
478 |
-
"crnn_mobilenet_v3_large",
|
479 |
-
pretrained=True,
|
480 |
-
assume_straight_pages=True,
|
481 |
-
)
|
482 |
-
|
483 |
-
# load the examples
|
484 |
-
name_to_path = load_example_filenames(_here / "examples")
|
485 |
-
logger.info(f"Loaded {len(name_to_path)} examples")
|
486 |
-
|
487 |
-
demo = gr.Blocks(title="Document Summarization")
|
488 |
-
_examples = list(name_to_path.keys())
|
489 |
-
logger.info("Starting app instance")
|
490 |
-
with demo:
|
491 |
-
gr.Markdown(
|
492 |
-
"""# Document Summarization with Long-Document Transformers
|
493 |
-
|
494 |
-
An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://hf.co/datasets/kmfoda/booksum). Architectures [in this demo](https://hf.co/spaces/pszemraj/document-summarization) are [LongT5-base](https://hf.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://hf.co/pszemraj/pegasus-x-large-book-summary).
|
495 |
-
|
496 |
-
**Want more performance?** Run this demo from a free [Google Colab GPU](https://colab.research.google.com/gist/pszemraj/52f67cf7326e780155812a6a1f9bb724/document-summarization-on-gpu.ipynb)
|
497 |
-
"""
|
498 |
-
)
|
499 |
with gr.Column():
|
500 |
-
gr.
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
507 |
)
|
508 |
-
with gr.Row():
|
509 |
-
with gr.Column(variant="compact"):
|
510 |
-
model_name = gr.Dropdown(
|
511 |
-
choices=MODEL_OPTIONS,
|
512 |
-
value=MODEL_OPTIONS[0],
|
513 |
-
label="Model Name",
|
514 |
-
)
|
515 |
-
num_beams = gr.Radio(
|
516 |
-
choices=BEAM_OPTIONS,
|
517 |
-
value=BEAM_OPTIONS[len(BEAM_OPTIONS) // 2],
|
518 |
-
label="Beam Search: # of Beams",
|
519 |
-
)
|
520 |
-
load_examples_button = gr.Button(
|
521 |
-
"Load Example in Dropdown",
|
522 |
-
)
|
523 |
-
load_file_button = gr.Button("Upload & Process File")
|
524 |
-
with gr.Column(variant="compact"):
|
525 |
-
example_name = gr.Dropdown(
|
526 |
-
_examples,
|
527 |
-
label="Examples",
|
528 |
-
value=random.choice(_examples),
|
529 |
-
)
|
530 |
-
uploaded_file = gr.File(
|
531 |
-
label="File Upload",
|
532 |
-
file_count="single",
|
533 |
-
file_types=[".txt", ".md", ".pdf"],
|
534 |
-
type="filepath",
|
535 |
-
)
|
536 |
-
with gr.Row():
|
537 |
-
input_text = gr.Textbox(
|
538 |
-
lines=4,
|
539 |
-
max_lines=8,
|
540 |
-
label="Text to Summarize",
|
541 |
-
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
542 |
-
)
|
543 |
-
with gr.Column():
|
544 |
-
gr.Markdown("## Generate Summary")
|
545 |
-
with gr.Row():
|
546 |
-
summarize_button = gr.Button(
|
547 |
-
"Summarize!",
|
548 |
-
variant="primary",
|
549 |
-
)
|
550 |
-
gr.Markdown(
|
551 |
-
"_Summarization should take ~1-2 minutes for most settings, but may extend up to 5-10 minutes in some scenarios._"
|
552 |
-
)
|
553 |
-
output_text = gr.HTML("<em>Output will appear below:</em>")
|
554 |
-
with gr.Column():
|
555 |
-
gr.Markdown("### Results & Scores")
|
556 |
-
with gr.Row():
|
557 |
-
with gr.Column(variant="compact"):
|
558 |
-
gr.Markdown(
|
559 |
-
"Download the summary as a text file, with parameters and scores."
|
560 |
-
)
|
561 |
-
text_file = gr.File(
|
562 |
-
label="Download as Text File",
|
563 |
-
file_count="single",
|
564 |
-
type="filepath",
|
565 |
-
interactive=False,
|
566 |
-
)
|
567 |
-
with gr.Column(variant="compact"):
|
568 |
-
gr.Markdown(
|
569 |
-
"Scores **roughly** represent the summary quality as a measure of the model's 'confidence'. less-negative numbers (closer to 0) are better."
|
570 |
-
)
|
571 |
-
summary_scores = gr.Textbox(
|
572 |
-
label="Summary Scores",
|
573 |
-
placeholder="Summary scores will appear here",
|
574 |
-
)
|
575 |
-
with gr.Column(variant="panel"):
|
576 |
-
gr.Markdown("### **Summary Output**")
|
577 |
-
summary_text = gr.HTML(
|
578 |
-
label="Summary",
|
579 |
-
value="<i>Summary will appear here!</i>",
|
580 |
-
)
|
581 |
-
with gr.Column():
|
582 |
-
gr.Markdown("### **Aggregate Summary Batches**")
|
583 |
-
with gr.Row():
|
584 |
-
aggregate_button = gr.Button(
|
585 |
-
"Aggregate!",
|
586 |
-
variant="primary",
|
587 |
-
)
|
588 |
-
gr.Markdown(
|
589 |
-
f"""Aggregate the above batches into a cohesive summary.
|
590 |
-
- A secondary instruct-tuned LM consolidates info
|
591 |
-
- Current model: [{AGGREGATE_MODEL}](https://hf.co/{AGGREGATE_MODEL})
|
592 |
-
"""
|
593 |
-
)
|
594 |
-
with gr.Column(variant="panel"):
|
595 |
-
aggregated_summary = gr.HTML(
|
596 |
-
label="Aggregate Summary",
|
597 |
-
value="<i>Aggregate summary will appear here!</i>",
|
598 |
-
)
|
599 |
-
|
600 |
-
with gr.Column():
|
601 |
-
gr.Markdown(
|
602 |
-
"""### Advanced Settings
|
603 |
-
|
604 |
-
Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_.
|
605 |
-
"""
|
606 |
-
)
|
607 |
-
with gr.Row():
|
608 |
-
length_penalty = gr.Slider(
|
609 |
-
minimum=0.3,
|
610 |
-
maximum=1.1,
|
611 |
-
label="length penalty",
|
612 |
-
value=0.7,
|
613 |
-
step=0.05,
|
614 |
-
)
|
615 |
-
token_batch_length = gr.Radio(
|
616 |
-
choices=TOKEN_BATCH_OPTIONS,
|
617 |
-
label="token batch length",
|
618 |
-
# select median option
|
619 |
-
value=TOKEN_BATCH_OPTIONS[len(TOKEN_BATCH_OPTIONS) // 2],
|
620 |
-
)
|
621 |
-
|
622 |
-
with gr.Row():
|
623 |
-
repetition_penalty = gr.Slider(
|
624 |
-
minimum=1.0,
|
625 |
-
maximum=5.0,
|
626 |
-
label="repetition penalty",
|
627 |
-
value=1.5,
|
628 |
-
step=0.1,
|
629 |
-
)
|
630 |
-
no_repeat_ngram_size = gr.Radio(
|
631 |
-
choices=[2, 3, 4, 5],
|
632 |
-
label="no repeat ngram size",
|
633 |
-
value=3,
|
634 |
-
)
|
635 |
-
predrop_stopwords = gr.Checkbox(
|
636 |
-
label="Drop Stopwords (Pre-Truncation)",
|
637 |
-
value=False,
|
638 |
-
)
|
639 |
-
|
640 |
-
load_examples_button.click(
|
641 |
-
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
|
642 |
-
)
|
643 |
-
|
644 |
-
load_file_button.click(
|
645 |
-
fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
|
646 |
-
)
|
647 |
|
648 |
-
|
649 |
-
fn=proc_submission,
|
650 |
-
inputs=[
|
651 |
-
input_text,
|
652 |
-
model_name,
|
653 |
-
num_beams,
|
654 |
-
token_batch_length,
|
655 |
-
length_penalty,
|
656 |
-
repetition_penalty,
|
657 |
-
no_repeat_ngram_size,
|
658 |
-
predrop_stopwords,
|
659 |
-
],
|
660 |
-
outputs=[output_text, summary_text, summary_scores, text_file],
|
661 |
-
)
|
662 |
-
aggregate_button.click(
|
663 |
-
fn=aggregate_text,
|
664 |
-
inputs=[summary_text, text_file],
|
665 |
-
outputs=[aggregated_summary],
|
666 |
-
)
|
667 |
-
demo.launch(share=args.share, debug=True)
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
from summarize import summarize_text
|
5 |
+
from pdf2text import convert_PDF_to_Text
|
6 |
+
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
EXAMPLES_DIR = "examples"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def load_examples():
|
14 |
+
name_to_path = {}
|
15 |
+
if os.path.exists(EXAMPLES_DIR):
|
16 |
+
for file in os.listdir(EXAMPLES_DIR):
|
17 |
+
if file.endswith(".txt"):
|
18 |
+
name = file.replace(".txt", "")
|
19 |
+
name_to_path[name] = os.path.join(EXAMPLES_DIR, file)
|
20 |
+
logger.info(f"Loaded {len(name_to_path)} examples")
|
21 |
+
return name_to_path
|
22 |
|
23 |
+
def get_example_text(example_name, name_to_path):
|
24 |
+
path = name_to_path.get(example_name)
|
25 |
+
if path and os.path.exists(path):
|
26 |
+
with open(path, "r", encoding="utf-8") as f:
|
27 |
+
return f.read()
|
28 |
+
return ""
|
29 |
|
30 |
+
name_to_path = load_examples()
|
|
|
|
|
31 |
|
32 |
+
def summarize_interface(input_text, summary_length, summary_type, use_ocr):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
try:
|
34 |
+
if input_text.endswith(".pdf") and os.path.exists(input_text):
|
35 |
+
result_text = convert_PDF_to_Text(input_text, use_ocr=use_ocr)
|
36 |
+
elif os.path.isfile(input_text):
|
37 |
+
with open(input_text, "r", encoding="utf-8") as f:
|
38 |
+
result_text = f.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
else:
|
40 |
+
result_text = input_text
|
41 |
+
summary = summarize_text(result_text, summary_length, summary_type)
|
42 |
+
return summary
|
|
|
43 |
except Exception as e:
|
44 |
+
logger.exception("Summarization failed:")
|
45 |
+
return f"❌ Summarization failed: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
example_names = list(name_to_path.keys())
|
48 |
+
default_example = example_names[0] if example_names else None
|
49 |
|
50 |
+
with gr.Blocks() as demo:
|
51 |
+
gr.Markdown("# DocSummarizer
|
52 |
+
使用 AI 自動摘要你的文件 📄")
|
|
|
|
|
|
|
53 |
|
54 |
+
with gr.Row():
|
55 |
+
input_textbox = gr.Textbox(label="Text to Summarize (or PDF path)", lines=15, placeholder="輸入或貼上文字,或提供 txt/pdf 檔案路徑")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
with gr.Column():
|
57 |
+
summary_length = gr.Slider(50, 1000, value=250, label="Summary Length")
|
58 |
+
summary_type = gr.Radio(choices=["map", "map-reduce"], value="map-reduce", label="Summarization Strategy")
|
59 |
+
use_ocr = gr.Checkbox(label="Use OCR for PDF", value=False)
|
60 |
+
submit_button = gr.Button("Summarize")
|
61 |
+
|
62 |
+
output_textbox = gr.Textbox(label="Summarized Output", lines=15)
|
63 |
+
submit_button.click(fn=summarize_interface, inputs=[input_textbox, summary_length, summary_type, use_ocr], outputs=output_textbox)
|
64 |
+
|
65 |
+
if default_example:
|
66 |
+
with gr.Row():
|
67 |
+
gr.Examples(
|
68 |
+
examples=[[name] for name in example_names],
|
69 |
+
inputs=input_textbox,
|
70 |
+
label="📚 範例檔案",
|
71 |
+
fn=lambda name: get_example_text(name, name_to_path),
|
72 |
+
cache_examples=False
|
73 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pdf2text.py
CHANGED
@@ -1,33 +1,53 @@
|
|
1 |
-
|
2 |
import pytesseract
|
3 |
from PyPDF2 import PdfReader
|
4 |
-
import
|
5 |
-
import
|
6 |
|
7 |
def extract_text_simple(pdf_path: str) -> str:
|
8 |
-
"""
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
def extract_text_ocr(pdf_path: str) -> str:
|
17 |
-
"""
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
return f"❌ OCR 擷取失敗: {e}"
|
28 |
|
29 |
-
def extract_text(pdf_path: str, mode:
|
30 |
-
"""
|
|
|
|
|
31 |
if mode == "ocr":
|
32 |
return extract_text_ocr(pdf_path)
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import pytesseract
|
3 |
from PyPDF2 import PdfReader
|
4 |
+
from pdf2image import convert_from_path
|
5 |
+
from typing import Literal
|
6 |
|
7 |
def extract_text_simple(pdf_path: str) -> str:
|
8 |
+
"""
|
9 |
+
使用 PyPDF2 解析 PDF 純文字
|
10 |
+
"""
|
11 |
+
reader = PdfReader(pdf_path)
|
12 |
+
all_text = []
|
13 |
+
for page in reader.pages:
|
14 |
+
text = page.extract_text()
|
15 |
+
if text:
|
16 |
+
all_text.append(text.strip())
|
17 |
+
return "\n".join(all_text)
|
18 |
|
19 |
+
def extract_text_ocr(pdf_path: str, dpi: int = 300) -> str:
|
20 |
+
"""
|
21 |
+
使用 Tesseract OCR 提取圖片形式的 PDF 內容
|
22 |
+
"""
|
23 |
+
images = convert_from_path(pdf_path, dpi=dpi)
|
24 |
+
all_text = []
|
25 |
+
for img in images:
|
26 |
+
text = pytesseract.image_to_string(img, lang="chi_tra+eng")
|
27 |
+
if text:
|
28 |
+
all_text.append(text.strip())
|
29 |
+
return "\n".join(all_text)
|
|
|
30 |
|
31 |
+
def extract_text(pdf_path: str, mode: Literal["simple", "ocr"] = "simple") -> str:
|
32 |
+
"""
|
33 |
+
根據模式選擇提取方法
|
34 |
+
"""
|
35 |
if mode == "ocr":
|
36 |
return extract_text_ocr(pdf_path)
|
37 |
+
else:
|
38 |
+
return extract_text_simple(pdf_path)
|
39 |
+
|
40 |
+
# 為 app.py 提供相容介面
|
41 |
+
def convert_PDF_to_Text(pdf_path: str, ocr_model=None, max_pages: int = 20) -> dict:
|
42 |
+
"""
|
43 |
+
模擬 app.py 所需的 convert_PDF_to_Text 介面
|
44 |
+
"""
|
45 |
+
text = extract_text(pdf_path, mode="ocr" if ocr_model else "simple")
|
46 |
+
return {
|
47 |
+
"converted_text": text,
|
48 |
+
"source_path": pdf_path,
|
49 |
+
"used_ocr": bool(ocr_model),
|
50 |
+
"page_count": "N/A",
|
51 |
+
}
|
52 |
+
|
53 |
+
convert_pdf_to_text = convert_PDF_to_Text
|