Spaces:
Sleeping
Sleeping
first commit
Browse files- app.py +146 -0
- requirements.txt +115 -0
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_drawable_canvas import st_canvas
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
import vipainting
|
| 7 |
+
import time
|
| 8 |
+
import threading
|
| 9 |
+
from queue import Queue
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
image_queue = Queue()
|
| 13 |
+
sampling_queue = Queue()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
st.title("Mask Your Own Inpaint")
|
| 17 |
+
|
| 18 |
+
@st.cache_data
|
| 19 |
+
def load_images():
|
| 20 |
+
data = np.load("data/sflckr_all_images.npz")
|
| 21 |
+
images = data["images"]
|
| 22 |
+
return images
|
| 23 |
+
|
| 24 |
+
if "random_idx" not in st.session_state:
|
| 25 |
+
st.session_state.random_idx = None
|
| 26 |
+
|
| 27 |
+
images = load_images()
|
| 28 |
+
if st.button("Random Pick"):
|
| 29 |
+
st.session_state.random_idx = random.randint(0, images.shape[0] - 1)
|
| 30 |
+
|
| 31 |
+
def make_square(img, target_size=300):
|
| 32 |
+
size = max(img.size)
|
| 33 |
+
background = Image.new("RGB", (size, size), (255, 255, 255))
|
| 34 |
+
offset = ((size - img.size[0]) // 2, (size - img.size[1]) // 2)
|
| 35 |
+
background.paste(img, offset)
|
| 36 |
+
return background.resize((target_size, target_size))
|
| 37 |
+
|
| 38 |
+
def run_inpainting(random_idx, mask_array, image_queue, sampling_queue):
|
| 39 |
+
vipainting.vipaint(random_idx, mask_array, image_queue, sampling_queue)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if st.session_state.random_idx is not None:
|
| 43 |
+
img_array = images[st.session_state.random_idx]
|
| 44 |
+
|
| 45 |
+
img_pil = Image.fromarray(img_array)
|
| 46 |
+
img_pil = make_square(img_pil, target_size=300)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
col1, col2 = st.columns(2)
|
| 50 |
+
with col1:
|
| 51 |
+
st.write("Draw your mask on the image below:")
|
| 52 |
+
canvas_result = st_canvas(
|
| 53 |
+
fill_color="rgba(255, 0, 0, 0.3)",
|
| 54 |
+
stroke_width=50,
|
| 55 |
+
stroke_color="black",
|
| 56 |
+
background_image=img_pil,
|
| 57 |
+
update_streamlit=True,
|
| 58 |
+
width=300,
|
| 59 |
+
height=300,
|
| 60 |
+
drawing_mode="freedraw",
|
| 61 |
+
key="canvas"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
if canvas_result.image_data is not None:
|
| 66 |
+
mask = canvas_result.image_data[:, :, 3]
|
| 67 |
+
binary_mask = (mask > 128).astype(np.uint8) * 255
|
| 68 |
+
|
| 69 |
+
with col2:
|
| 70 |
+
st.write("Masked Image")
|
| 71 |
+
st.image(binary_mask, caption="Binary Mask", width=300)
|
| 72 |
+
|
| 73 |
+
mask_image = Image.fromarray(binary_mask).resize((512, 512), Image.ANTIALIAS)
|
| 74 |
+
mask_array = 255 - np.array(mask_image)
|
| 75 |
+
mask_array = np.expand_dims(mask_array, axis=(0, 1))
|
| 76 |
+
|
| 77 |
+
if st.button("inpaint"):
|
| 78 |
+
st.write("Please wait...")
|
| 79 |
+
inpaint_thread = threading.Thread(target=run_inpainting, args=(st.session_state.random_idx, mask_array, image_queue, sampling_queue))
|
| 80 |
+
inpaint_thread.start()
|
| 81 |
+
|
| 82 |
+
img_left, img_right = st.columns(2)
|
| 83 |
+
img_left_placeholder = img_left.empty()
|
| 84 |
+
img_right_placeholder = img_right.empty()
|
| 85 |
+
with img_left:
|
| 86 |
+
img_left_placeholder.image(img_pil, caption=f"True Image", width=300)
|
| 87 |
+
seg_image_path = f"results/{st.session_state.random_idx}/input.png"
|
| 88 |
+
|
| 89 |
+
while True:
|
| 90 |
+
if os.path.exists(seg_image_path):
|
| 91 |
+
with img_right:
|
| 92 |
+
img_right_image = Image.open(seg_image_path)
|
| 93 |
+
img_right_placeholder.image(img_right_image, caption="Segmentation Map", width=300)
|
| 94 |
+
break
|
| 95 |
+
time.sleep(0.5)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Set up progress tracking
|
| 99 |
+
expected_updates = 100
|
| 100 |
+
progress_bar = st.progress(0)
|
| 101 |
+
st.write("Fitting in progress")
|
| 102 |
+
displayed_images = 0
|
| 103 |
+
|
| 104 |
+
col_left, col_right = st.columns(2)
|
| 105 |
+
left_placeholder = col_left.empty()
|
| 106 |
+
right_placeholder = col_right.empty()
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
while displayed_images < expected_updates:
|
| 110 |
+
if not image_queue.empty():
|
| 111 |
+
img = image_queue.get() # Get the next image from the queue
|
| 112 |
+
|
| 113 |
+
if displayed_images % 2 == 0:
|
| 114 |
+
left_placeholder.image(img, caption=f"Progress Update {displayed_images + 1}", width=300)
|
| 115 |
+
else:
|
| 116 |
+
right_placeholder.image(img, caption=f"Progress Update {displayed_images + 1}", width=300)
|
| 117 |
+
|
| 118 |
+
# Update progress bar
|
| 119 |
+
displayed_images += 1
|
| 120 |
+
progress_bar.progress(displayed_images / expected_updates)
|
| 121 |
+
|
| 122 |
+
time.sleep(0.3)
|
| 123 |
+
|
| 124 |
+
expected_updates = 10
|
| 125 |
+
s_progress_bar = st.progress(0)
|
| 126 |
+
displayed_images = 0
|
| 127 |
+
st.write("Sampling in progress")
|
| 128 |
+
sample_left, sample_right = st.columns(2)
|
| 129 |
+
sleft_placeholder = sample_left.empty()
|
| 130 |
+
sright_placeholder = sample_right.empty()
|
| 131 |
+
while displayed_images < expected_updates:
|
| 132 |
+
if not sampling_queue.empty():
|
| 133 |
+
img = sampling_queue.get()
|
| 134 |
+
|
| 135 |
+
if displayed_images % 2 == 0:
|
| 136 |
+
sleft_placeholder.image(img, caption=f"Sampling Update {displayed_images + 1}", width=300)
|
| 137 |
+
else:
|
| 138 |
+
sright_placeholder.image(img, caption=f"Sampling Update {displayed_images + 1}", width=300)
|
| 139 |
+
|
| 140 |
+
displayed_images += 1
|
| 141 |
+
s_progress_bar.progress(displayed_images / expected_updates)
|
| 142 |
+
|
| 143 |
+
time.sleep(0.3)
|
| 144 |
+
|
| 145 |
+
inpaint_thread.join()
|
| 146 |
+
st.success("Inpainting completed!")
|
requirements.txt
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
streamlit-drawable-canvas
|
| 3 |
+
pillow
|
| 4 |
+
numpy
|
| 5 |
+
# Core Packages
|
| 6 |
+
numpy==1.24.4
|
| 7 |
+
pillow==9.5.0
|
| 8 |
+
torch==2.4.1
|
| 9 |
+
torchvision==0.8.1
|
| 10 |
+
opencv-python==4.10.0.84
|
| 11 |
+
opencv-python-headless==4.10.0.84
|
| 12 |
+
tqdm==4.66.5
|
| 13 |
+
scipy==1.10.1
|
| 14 |
+
pandas==2.0.3
|
| 15 |
+
matplotlib==3.7.5
|
| 16 |
+
streamlit==1.39.0
|
| 17 |
+
streamlit-drawable-canvas==0.9.3
|
| 18 |
+
|
| 19 |
+
# PyPI Packages
|
| 20 |
+
absl-py==2.1.0
|
| 21 |
+
aiohttp==3.10.10
|
| 22 |
+
aiohappyeyeballs==2.4.3
|
| 23 |
+
aiosignal==1.3.1
|
| 24 |
+
albumentations==1.4.18
|
| 25 |
+
altair==5.4.1
|
| 26 |
+
async-timeout==4.0.3
|
| 27 |
+
attrs==24.2.0
|
| 28 |
+
blinker==1.8.2
|
| 29 |
+
cachetools==5.5.0
|
| 30 |
+
charset-normalizer==3.4.0
|
| 31 |
+
click==8.1.7
|
| 32 |
+
contourpy==1.1.1
|
| 33 |
+
diffusers==0.31.0
|
| 34 |
+
docker-pycreds==0.4.0
|
| 35 |
+
einops==0.8.0
|
| 36 |
+
filelock==3.16.1
|
| 37 |
+
fonttools==4.54.1
|
| 38 |
+
fsspec==2024.10.0
|
| 39 |
+
gitdb==4.0.11
|
| 40 |
+
gitpython==3.1.43
|
| 41 |
+
google-auth==2.35.0
|
| 42 |
+
google-auth-oauthlib==1.0.0
|
| 43 |
+
grpcio==1.67.0
|
| 44 |
+
huggingface-hub==0.26.1
|
| 45 |
+
idna==3.10
|
| 46 |
+
imageio==2.35.1
|
| 47 |
+
importlib-metadata==8.5.0
|
| 48 |
+
importlib-resources==6.4.5
|
| 49 |
+
invisible-watermark==0.2.0
|
| 50 |
+
jinja2==3.1.4
|
| 51 |
+
jsonschema==4.23.0
|
| 52 |
+
jsonschema-specifications==2023.12.1
|
| 53 |
+
kiwisolver==1.4.7
|
| 54 |
+
kornia==0.6.4
|
| 55 |
+
markdown==3.7
|
| 56 |
+
markdown-it-py==3.0.0
|
| 57 |
+
matplotlib==3.7.5
|
| 58 |
+
mdurl==0.1.2
|
| 59 |
+
mpmath==1.3.0
|
| 60 |
+
multidict==6.1.0
|
| 61 |
+
networkx==3.1
|
| 62 |
+
nvidia-cublas-cu12==12.1.3.1
|
| 63 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
| 64 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
| 65 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
| 66 |
+
nvidia-cudnn-cu12==9.1.0.70
|
| 67 |
+
nvidia-cufft-cu12==11.0.2.54
|
| 68 |
+
nvidia-curand-cu12==10.3.2.106
|
| 69 |
+
nvidia-cusolver-cu12==11.4.5.107
|
| 70 |
+
nvidia-cusparse-cu12==12.1.0.106
|
| 71 |
+
nvidia-nccl-cu12==2.20.5
|
| 72 |
+
nvidia-nvjitlink-cu12==12.6.77
|
| 73 |
+
nvidia-nvtx-cu12==12.1.105
|
| 74 |
+
oauthlib==3.2.2
|
| 75 |
+
omegaconf==2.3.0
|
| 76 |
+
packaging==24.1
|
| 77 |
+
pkgutil-resolve-name==1.3.10
|
| 78 |
+
protobuf==3.20.1
|
| 79 |
+
psutil==6.1.0
|
| 80 |
+
pyarrow==17.0.0
|
| 81 |
+
pydeck==0.9.1
|
| 82 |
+
pydeprecate==0.3.2
|
| 83 |
+
pygments==2.18.0
|
| 84 |
+
pyparsing==3.1.4
|
| 85 |
+
python-dateutil==2.9.0.post0
|
| 86 |
+
pytorch-lightning==1.6.5
|
| 87 |
+
pyyaml==6.0.2
|
| 88 |
+
referencing==0.35.1
|
| 89 |
+
regex==2024.9.11
|
| 90 |
+
requests==2.32.3
|
| 91 |
+
requests-oauthlib==2.0.0
|
| 92 |
+
rich==13.9.3
|
| 93 |
+
rsa==4.9
|
| 94 |
+
safetensors==0.4.5
|
| 95 |
+
scikit-image==0.21.0
|
| 96 |
+
sentry-sdk==2.17.0
|
| 97 |
+
setproctitle==1.3.3
|
| 98 |
+
smmap==5.0.1
|
| 99 |
+
sympy==1.13.3
|
| 100 |
+
taming-transformers-rom1504==0.0.6
|
| 101 |
+
tenacity==9.0.0
|
| 102 |
+
tensorboard==2.14.0
|
| 103 |
+
tensorboard-data-server==0.7.2
|
| 104 |
+
tifffile==2023.7.10
|
| 105 |
+
tokenizers==0.12.1
|
| 106 |
+
toml==0.10.2
|
| 107 |
+
torchmetrics==0.6.0
|
| 108 |
+
transformers==4.19.2
|
| 109 |
+
triton==3.0.0
|
| 110 |
+
urllib3==2.2.3
|
| 111 |
+
wandb==0.18.5
|
| 112 |
+
watchdog==4.0.2
|
| 113 |
+
werkzeug==3.0.6
|
| 114 |
+
yarl==1.15.2
|
| 115 |
+
zipp==3.20.2
|