Spaces:
Sleeping
Sleeping
vipaint config
Browse files
configs/inpainting/lands_config_mountain.yaml
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data:
|
| 2 |
+
name: ldm.data.imagenet.ImageNetValidation
|
| 3 |
+
seq: {'half': [200, 300], 'box': [300, 350], 'random': [400,500]} #[400,500] #[350, 450], #, 'val': "random" : [350, 450], half : , val: [0,50]
|
| 4 |
+
file_seq: None
|
| 5 |
+
file_name: data/sflckr_all_images.npz
|
| 6 |
+
channels: 3
|
| 7 |
+
image_size: 512
|
| 8 |
+
latent_size: 128
|
| 9 |
+
latent_channels: 3
|
| 10 |
+
|
| 11 |
+
autoencoder: models/first_stage_models/vq-f4/config.yaml
|
| 12 |
+
diffusion: configs/latent-diffusion/semantic_synthesis512.yaml
|
| 13 |
+
diffusion_model: models/ldm/semantic_synthesis512/model.ckpt
|
| 14 |
+
working_dir: results/landscapes_box
|
| 15 |
+
conditional_model: True
|
| 16 |
+
|
| 17 |
+
name: inpainting
|
| 18 |
+
|
| 19 |
+
measurement:
|
| 20 |
+
operator:
|
| 21 |
+
in_shape: !!python/tuple [1, 3, 256, 256]
|
| 22 |
+
scale_factor: 4
|
| 23 |
+
|
| 24 |
+
noise:
|
| 25 |
+
name: gaussian
|
| 26 |
+
sigma: 0.05
|
| 27 |
+
|
| 28 |
+
mask_opt:
|
| 29 |
+
mask_type: random #random
|
| 30 |
+
mask_len_range: !!python/tuple [64, 65] # for box
|
| 31 |
+
mask_prob_range: !!python/tuple [0.2, 0.21] # [0.3, 0.7] for random
|
| 32 |
+
image_size: 512
|
| 33 |
+
|
| 34 |
+
mask_files: {'random': ./masks/masks_mountain.npz, "half": masks/mask_random_half_100_imagenet.npy,
|
| 35 |
+
"box": masks/box_100_imagenet.npy } # validation files : {'random': masks/mask_20_imagenet.npy, "half": masks/mask_random_half_20_imagenet.npy }
|
| 36 |
+
|
| 37 |
+
posterior: "gauss" #hierarchical, gauss
|
| 38 |
+
name: ldm.guided_diffusion.loss_vq.VQLPIPSWithDiscriminator
|
| 39 |
+
|
| 40 |
+
# gauss:
|
| 41 |
+
# first_stage: vq
|
| 42 |
+
# unconditional_guidance_scale: 1
|
| 43 |
+
# eta: 0.2
|
| 44 |
+
# beta: 4500
|
| 45 |
+
# batch_size: 1
|
| 46 |
+
# iterations: 100
|
| 47 |
+
# t_steps_hierarchy: [550]
|
| 48 |
+
# rho: 7
|
| 49 |
+
# lr_init_gamma: 0.01
|
| 50 |
+
# mean_scale : 1
|
| 51 |
+
# mean_scale_top: 0.8
|
| 52 |
+
|
| 53 |
+
hierarchical:
|
| 54 |
+
first_stage: vq
|
| 55 |
+
unconditional_guidance_scale: 3
|
| 56 |
+
eta: 0.2
|
| 57 |
+
beta_1: 45 #70 #700, prior
|
| 58 |
+
beta_2: 55 #70 #700, posterior
|
| 59 |
+
recon: 45
|
| 60 |
+
batch_size: 1
|
| 61 |
+
iterations: 100 #250
|
| 62 |
+
t_steps_hierarchy: [550, 400] # 500, 450, 500, 450, 500, 450,
|
| 63 |
+
rho: 7
|
| 64 |
+
lr_init_gamma: 0.01
|
| 65 |
+
mean_scale : 1
|
| 66 |
+
mean_scale_top: 0.8
|
| 67 |
+
|
| 68 |
+
init:
|
| 69 |
+
var_scale: 0.6
|
| 70 |
+
prior_scale: 6 # 4
|
| 71 |
+
|
| 72 |
+
sampling:
|
| 73 |
+
method: ps
|
| 74 |
+
scale: 2
|
| 75 |
+
n_samples: 1
|
| 76 |
+
unconditional_guidance_scale: 3
|