Spaces:
Sleeping
Sleeping
hjimjim
commited on
Commit
·
9cd616a
1
Parent(s):
ed588b8
all
Browse files- README.md +12 -0
- app.py +146 -0
- configs/inpainting/lands_config_mountain.yaml +76 -0
- configs/latent-diffusion/cin256-v2.yaml +68 -0
- configs/latent-diffusion/semantic_synthesis512.yaml +78 -0
- configs/latent-diffusion/txt2img-1p4B-eval.yaml +72 -0
- data/sflckr_all_images.npz +3 -0
- ldm/guided_diffusion/h_posterior.py +506 -0
- ldm/guided_diffusion/loss_vq.py +203 -0
- ldm/guided_diffusion/losses.py +116 -0
- ldm/lr_scheduler.py +99 -0
- ldm/models/autoencoder.py +444 -0
- ldm/models/diffusion/.ipynb_checkpoints/ddpm-checkpoint.py +1445 -0
- ldm/models/diffusion/__init__.py +0 -0
- ldm/models/diffusion/classifier.py +267 -0
- ldm/models/diffusion/ddim.py +203 -0
- ldm/models/diffusion/ddpm.py +1515 -0
- ldm/models/diffusion/plms.py +236 -0
- ldm/modules/attention.py +261 -0
- ldm/modules/diffusionmodules/__init__.py +0 -0
- ldm/modules/diffusionmodules/model.py +835 -0
- ldm/modules/diffusionmodules/openaimodel.py +963 -0
- ldm/modules/diffusionmodules/util.py +266 -0
- ldm/modules/distributions/.ipynb_checkpoints/distributions-checkpoint.py +98 -0
- ldm/modules/distributions/__init__.py +0 -0
- ldm/modules/distributions/distributions.py +98 -0
- ldm/modules/ema.py +76 -0
- ldm/modules/encoders/__init__.py +0 -0
- ldm/modules/encoders/modules.py +202 -0
- ldm/modules/image_degradation/__init__.py +2 -0
- ldm/modules/image_degradation/bsrgan.py +730 -0
- ldm/modules/image_degradation/bsrgan_light.py +650 -0
- ldm/modules/image_degradation/utils/test.png +0 -0
- ldm/modules/image_degradation/utils_image.py +916 -0
- ldm/modules/losses/__init__.py +1 -0
- ldm/modules/losses/contperceptual.py +111 -0
- ldm/modules/losses/vqperceptual.py +167 -0
- ldm/modules/x_transformer.py +641 -0
- ldm/util.py +202 -0
- requirements.txt +115 -0
- taming/modules/autoencoder/lpips/vgg.pth +3 -0
- utils/helper.py +259 -0
- utils/logger.py +12 -0
- utils/mask_generator.py +198 -0
- vipainting.py +203 -0
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: VIPaint
|
| 3 |
+
emoji: 😻
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.39.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_drawable_canvas import st_canvas
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
import vipainting
|
| 7 |
+
import time
|
| 8 |
+
import threading
|
| 9 |
+
from queue import Queue
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
image_queue = Queue()
|
| 13 |
+
sampling_queue = Queue()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
st.title("Mask Your Own Inpaint")
|
| 17 |
+
|
| 18 |
+
@st.cache_data
|
| 19 |
+
def load_images():
|
| 20 |
+
data = np.load("data/sflckr_all_images.npz")
|
| 21 |
+
images = data["images"]
|
| 22 |
+
return images
|
| 23 |
+
|
| 24 |
+
if "random_idx" not in st.session_state:
|
| 25 |
+
st.session_state.random_idx = None
|
| 26 |
+
|
| 27 |
+
images = load_images()
|
| 28 |
+
if st.button("Random Pick"):
|
| 29 |
+
st.session_state.random_idx = random.randint(0, images.shape[0] - 1)
|
| 30 |
+
|
| 31 |
+
def make_square(img, target_size=300):
|
| 32 |
+
size = max(img.size)
|
| 33 |
+
background = Image.new("RGB", (size, size), (255, 255, 255))
|
| 34 |
+
offset = ((size - img.size[0]) // 2, (size - img.size[1]) // 2)
|
| 35 |
+
background.paste(img, offset)
|
| 36 |
+
return background.resize((target_size, target_size))
|
| 37 |
+
|
| 38 |
+
def run_inpainting(random_idx, mask_array, image_queue, sampling_queue):
|
| 39 |
+
vipainting.vipaint(random_idx, mask_array, image_queue, sampling_queue)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
if st.session_state.random_idx is not None:
|
| 43 |
+
img_array = images[st.session_state.random_idx]
|
| 44 |
+
|
| 45 |
+
img_pil = Image.fromarray(img_array)
|
| 46 |
+
img_pil = make_square(img_pil, target_size=300)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
col1, col2 = st.columns(2)
|
| 50 |
+
with col1:
|
| 51 |
+
st.write("Draw your mask on the image below:")
|
| 52 |
+
canvas_result = st_canvas(
|
| 53 |
+
fill_color="rgba(255, 0, 0, 0.3)",
|
| 54 |
+
stroke_width=50,
|
| 55 |
+
stroke_color="black",
|
| 56 |
+
background_image=img_pil,
|
| 57 |
+
update_streamlit=True,
|
| 58 |
+
width=300,
|
| 59 |
+
height=300,
|
| 60 |
+
drawing_mode="freedraw",
|
| 61 |
+
key="canvas"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
if canvas_result.image_data is not None:
|
| 66 |
+
mask = canvas_result.image_data[:, :, 3]
|
| 67 |
+
binary_mask = (mask > 128).astype(np.uint8) * 255
|
| 68 |
+
|
| 69 |
+
with col2:
|
| 70 |
+
st.write("Masked Image")
|
| 71 |
+
st.image(binary_mask, caption="Binary Mask", width=300)
|
| 72 |
+
|
| 73 |
+
mask_image = Image.fromarray(binary_mask).resize((512, 512), Image.ANTIALIAS)
|
| 74 |
+
mask_array = 255 - np.array(mask_image)
|
| 75 |
+
mask_array = np.expand_dims(mask_array, axis=(0, 1))
|
| 76 |
+
|
| 77 |
+
if st.button("inpaint"):
|
| 78 |
+
st.write("Please wait...")
|
| 79 |
+
inpaint_thread = threading.Thread(target=run_inpainting, args=(st.session_state.random_idx, mask_array, image_queue, sampling_queue))
|
| 80 |
+
inpaint_thread.start()
|
| 81 |
+
|
| 82 |
+
img_left, img_right = st.columns(2)
|
| 83 |
+
img_left_placeholder = img_left.empty()
|
| 84 |
+
img_right_placeholder = img_right.empty()
|
| 85 |
+
with img_left:
|
| 86 |
+
img_left_placeholder.image(img_pil, caption=f"True Image", width=300)
|
| 87 |
+
seg_image_path = f"results/{st.session_state.random_idx}/input.png"
|
| 88 |
+
|
| 89 |
+
while True:
|
| 90 |
+
if os.path.exists(seg_image_path):
|
| 91 |
+
with img_right:
|
| 92 |
+
img_right_image = Image.open(seg_image_path)
|
| 93 |
+
img_right_placeholder.image(img_right_image, caption="Segmentation Map", width=300)
|
| 94 |
+
break
|
| 95 |
+
time.sleep(0.5)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Set up progress tracking
|
| 99 |
+
expected_updates = 100
|
| 100 |
+
progress_bar = st.progress(0)
|
| 101 |
+
st.write("Fitting in progress")
|
| 102 |
+
displayed_images = 0
|
| 103 |
+
|
| 104 |
+
col_left, col_right = st.columns(2)
|
| 105 |
+
left_placeholder = col_left.empty()
|
| 106 |
+
right_placeholder = col_right.empty()
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
while displayed_images < expected_updates:
|
| 110 |
+
if not image_queue.empty():
|
| 111 |
+
img = image_queue.get() # Get the next image from the queue
|
| 112 |
+
|
| 113 |
+
if displayed_images % 2 == 0:
|
| 114 |
+
left_placeholder.image(img, caption=f"Progress Update {displayed_images + 1}", width=300)
|
| 115 |
+
else:
|
| 116 |
+
right_placeholder.image(img, caption=f"Progress Update {displayed_images + 1}", width=300)
|
| 117 |
+
|
| 118 |
+
# Update progress bar
|
| 119 |
+
displayed_images += 1
|
| 120 |
+
progress_bar.progress(displayed_images / expected_updates)
|
| 121 |
+
|
| 122 |
+
time.sleep(0.3)
|
| 123 |
+
|
| 124 |
+
expected_updates = 10
|
| 125 |
+
s_progress_bar = st.progress(0)
|
| 126 |
+
displayed_images = 0
|
| 127 |
+
st.write("Sampling in progress")
|
| 128 |
+
sample_left, sample_right = st.columns(2)
|
| 129 |
+
sleft_placeholder = sample_left.empty()
|
| 130 |
+
sright_placeholder = sample_right.empty()
|
| 131 |
+
while displayed_images < expected_updates:
|
| 132 |
+
if not sampling_queue.empty():
|
| 133 |
+
img = sampling_queue.get()
|
| 134 |
+
|
| 135 |
+
if displayed_images % 2 == 0:
|
| 136 |
+
sleft_placeholder.image(img, caption=f"Sampling Update {displayed_images + 1}", width=300)
|
| 137 |
+
else:
|
| 138 |
+
sright_placeholder.image(img, caption=f"Sampling Update {displayed_images + 1}", width=300)
|
| 139 |
+
|
| 140 |
+
displayed_images += 1
|
| 141 |
+
s_progress_bar.progress(displayed_images / expected_updates)
|
| 142 |
+
|
| 143 |
+
time.sleep(0.3)
|
| 144 |
+
|
| 145 |
+
inpaint_thread.join()
|
| 146 |
+
st.success("Inpainting completed!")
|
configs/inpainting/lands_config_mountain.yaml
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data:
|
| 2 |
+
name: ldm.data.imagenet.ImageNetValidation
|
| 3 |
+
seq: {'half': [200, 300], 'box': [300, 350], 'random': [400,500]} #[400,500] #[350, 450], #, 'val': "random" : [350, 450], half : , val: [0,50]
|
| 4 |
+
file_seq: None
|
| 5 |
+
file_name: data/sflckr_all_images.npz
|
| 6 |
+
channels: 3
|
| 7 |
+
image_size: 512
|
| 8 |
+
latent_size: 128
|
| 9 |
+
latent_channels: 3
|
| 10 |
+
|
| 11 |
+
autoencoder: models/first_stage_models/vq-f4/config.yaml
|
| 12 |
+
diffusion: configs/latent-diffusion/semantic_synthesis512.yaml
|
| 13 |
+
diffusion_model: models/ldm/semantic_synthesis512/model.ckpt
|
| 14 |
+
working_dir: results/landscapes_box
|
| 15 |
+
conditional_model: True
|
| 16 |
+
|
| 17 |
+
name: inpainting
|
| 18 |
+
|
| 19 |
+
measurement:
|
| 20 |
+
operator:
|
| 21 |
+
in_shape: !!python/tuple [1, 3, 256, 256]
|
| 22 |
+
scale_factor: 4
|
| 23 |
+
|
| 24 |
+
noise:
|
| 25 |
+
name: gaussian
|
| 26 |
+
sigma: 0.05
|
| 27 |
+
|
| 28 |
+
mask_opt:
|
| 29 |
+
mask_type: random #random
|
| 30 |
+
mask_len_range: !!python/tuple [64, 65] # for box
|
| 31 |
+
mask_prob_range: !!python/tuple [0.2, 0.21] # [0.3, 0.7] for random
|
| 32 |
+
image_size: 512
|
| 33 |
+
|
| 34 |
+
mask_files: {'random': ./masks/masks_mountain.npz, "half": masks/mask_random_half_100_imagenet.npy,
|
| 35 |
+
"box": masks/box_100_imagenet.npy } # validation files : {'random': masks/mask_20_imagenet.npy, "half": masks/mask_random_half_20_imagenet.npy }
|
| 36 |
+
|
| 37 |
+
posterior: "gauss" #hierarchical, gauss
|
| 38 |
+
name: ldm.guided_diffusion.loss_vq.VQLPIPSWithDiscriminator
|
| 39 |
+
|
| 40 |
+
# gauss:
|
| 41 |
+
# first_stage: vq
|
| 42 |
+
# unconditional_guidance_scale: 1
|
| 43 |
+
# eta: 0.2
|
| 44 |
+
# beta: 4500
|
| 45 |
+
# batch_size: 1
|
| 46 |
+
# iterations: 100
|
| 47 |
+
# t_steps_hierarchy: [550]
|
| 48 |
+
# rho: 7
|
| 49 |
+
# lr_init_gamma: 0.01
|
| 50 |
+
# mean_scale : 1
|
| 51 |
+
# mean_scale_top: 0.8
|
| 52 |
+
|
| 53 |
+
hierarchical:
|
| 54 |
+
first_stage: vq
|
| 55 |
+
unconditional_guidance_scale: 3
|
| 56 |
+
eta: 0.2
|
| 57 |
+
beta_1: 45 #70 #700, prior
|
| 58 |
+
beta_2: 55 #70 #700, posterior
|
| 59 |
+
recon: 45
|
| 60 |
+
batch_size: 1
|
| 61 |
+
iterations: 100 #250
|
| 62 |
+
t_steps_hierarchy: [550, 400] # 500, 450, 500, 450, 500, 450,
|
| 63 |
+
rho: 7
|
| 64 |
+
lr_init_gamma: 0.01
|
| 65 |
+
mean_scale : 1
|
| 66 |
+
mean_scale_top: 0.8
|
| 67 |
+
|
| 68 |
+
init:
|
| 69 |
+
var_scale: 0.6
|
| 70 |
+
prior_scale: 6 # 4
|
| 71 |
+
|
| 72 |
+
sampling:
|
| 73 |
+
method: ps
|
| 74 |
+
scale: 2
|
| 75 |
+
n_samples: 1
|
| 76 |
+
unconditional_guidance_scale: 3
|
configs/latent-diffusion/cin256-v2.yaml
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
base_learning_rate: 0.0001
|
| 3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
| 4 |
+
params:
|
| 5 |
+
linear_start: 0.0015
|
| 6 |
+
linear_end: 0.0195
|
| 7 |
+
num_timesteps_cond: 1
|
| 8 |
+
log_every_t: 200
|
| 9 |
+
timesteps: 1000
|
| 10 |
+
first_stage_key: image
|
| 11 |
+
cond_stage_key: class_label
|
| 12 |
+
image_size: 64
|
| 13 |
+
channels: 3
|
| 14 |
+
cond_stage_trainable: true
|
| 15 |
+
conditioning_key: crossattn
|
| 16 |
+
monitor: val/loss
|
| 17 |
+
use_ema: False
|
| 18 |
+
|
| 19 |
+
unet_config:
|
| 20 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
| 21 |
+
params:
|
| 22 |
+
image_size: 64
|
| 23 |
+
in_channels: 3
|
| 24 |
+
out_channels: 3
|
| 25 |
+
model_channels: 192
|
| 26 |
+
attention_resolutions:
|
| 27 |
+
- 8
|
| 28 |
+
- 4
|
| 29 |
+
- 2
|
| 30 |
+
num_res_blocks: 2
|
| 31 |
+
channel_mult:
|
| 32 |
+
- 1
|
| 33 |
+
- 2
|
| 34 |
+
- 3
|
| 35 |
+
- 5
|
| 36 |
+
num_heads: 1
|
| 37 |
+
use_spatial_transformer: true
|
| 38 |
+
transformer_depth: 1
|
| 39 |
+
context_dim: 512
|
| 40 |
+
|
| 41 |
+
first_stage_config:
|
| 42 |
+
target: ldm.models.autoencoder.VQModelInterface
|
| 43 |
+
params:
|
| 44 |
+
embed_dim: 3
|
| 45 |
+
n_embed: 8192
|
| 46 |
+
ddconfig:
|
| 47 |
+
double_z: false
|
| 48 |
+
z_channels: 3
|
| 49 |
+
resolution: 256
|
| 50 |
+
in_channels: 3
|
| 51 |
+
out_ch: 3
|
| 52 |
+
ch: 128
|
| 53 |
+
ch_mult:
|
| 54 |
+
- 1
|
| 55 |
+
- 2
|
| 56 |
+
- 4
|
| 57 |
+
num_res_blocks: 2
|
| 58 |
+
attn_resolutions: []
|
| 59 |
+
dropout: 0.0
|
| 60 |
+
lossconfig:
|
| 61 |
+
target: torch.nn.Identity
|
| 62 |
+
|
| 63 |
+
cond_stage_config:
|
| 64 |
+
target: ldm.modules.encoders.modules.ClassEmbedder
|
| 65 |
+
params:
|
| 66 |
+
n_classes: 1001
|
| 67 |
+
embed_dim: 512
|
| 68 |
+
key: class_label
|
configs/latent-diffusion/semantic_synthesis512.yaml
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
base_learning_rate: 1.0e-06
|
| 3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
| 4 |
+
params:
|
| 5 |
+
linear_start: 0.0015
|
| 6 |
+
linear_end: 0.0205
|
| 7 |
+
log_every_t: 100
|
| 8 |
+
timesteps: 1000
|
| 9 |
+
loss_type: l1
|
| 10 |
+
first_stage_key: image
|
| 11 |
+
cond_stage_key: segmentation
|
| 12 |
+
image_size: 128
|
| 13 |
+
channels: 3
|
| 14 |
+
concat_mode: true
|
| 15 |
+
cond_stage_trainable: true
|
| 16 |
+
unet_config:
|
| 17 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
| 18 |
+
params:
|
| 19 |
+
image_size: 128
|
| 20 |
+
in_channels: 6
|
| 21 |
+
out_channels: 3
|
| 22 |
+
model_channels: 128
|
| 23 |
+
attention_resolutions:
|
| 24 |
+
- 32
|
| 25 |
+
- 16
|
| 26 |
+
- 8
|
| 27 |
+
num_res_blocks: 2
|
| 28 |
+
channel_mult:
|
| 29 |
+
- 1
|
| 30 |
+
- 4
|
| 31 |
+
- 8
|
| 32 |
+
num_heads: 8
|
| 33 |
+
first_stage_config:
|
| 34 |
+
target: ldm.models.autoencoder.VQModelInterface
|
| 35 |
+
params:
|
| 36 |
+
embed_dim: 3
|
| 37 |
+
n_embed: 8192
|
| 38 |
+
monitor: val/rec_loss
|
| 39 |
+
ddconfig:
|
| 40 |
+
double_z: false
|
| 41 |
+
z_channels: 3
|
| 42 |
+
resolution: 256
|
| 43 |
+
in_channels: 3
|
| 44 |
+
out_ch: 3
|
| 45 |
+
ch: 128
|
| 46 |
+
ch_mult:
|
| 47 |
+
- 1
|
| 48 |
+
- 2
|
| 49 |
+
- 4
|
| 50 |
+
num_res_blocks: 2
|
| 51 |
+
attn_resolutions: []
|
| 52 |
+
dropout: 0.0
|
| 53 |
+
lossconfig:
|
| 54 |
+
target: torch.nn.Identity
|
| 55 |
+
cond_stage_config:
|
| 56 |
+
target: ldm.modules.encoders.modules.SpatialRescaler
|
| 57 |
+
params:
|
| 58 |
+
n_stages: 2
|
| 59 |
+
in_channels: 182
|
| 60 |
+
out_channels: 3
|
| 61 |
+
data:
|
| 62 |
+
target: main.DataModuleFromConfig
|
| 63 |
+
params:
|
| 64 |
+
batch_size: 8
|
| 65 |
+
wrap: false
|
| 66 |
+
num_workers: 10
|
| 67 |
+
train:
|
| 68 |
+
target: ldm.data.landscapes.RFWTrain
|
| 69 |
+
params:
|
| 70 |
+
size: 768
|
| 71 |
+
crop_size: 512
|
| 72 |
+
segmentation_to_float32: true
|
| 73 |
+
validation:
|
| 74 |
+
target: ldm.data.landscapes.RFWValidation
|
| 75 |
+
params:
|
| 76 |
+
size: 768
|
| 77 |
+
crop_size: 512
|
| 78 |
+
segmentation_to_float32: true
|
configs/latent-diffusion/txt2img-1p4B-eval.yaml
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
base_learning_rate: 5.0e-05
|
| 3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
| 4 |
+
params:
|
| 5 |
+
linear_start: 0.00085
|
| 6 |
+
linear_end: 0.012
|
| 7 |
+
num_timesteps_cond: 1
|
| 8 |
+
log_every_t: 200
|
| 9 |
+
timesteps: 1000
|
| 10 |
+
first_stage_key: image
|
| 11 |
+
cond_stage_key: caption
|
| 12 |
+
image_size: 32
|
| 13 |
+
channels: 4
|
| 14 |
+
cond_stage_trainable: true
|
| 15 |
+
conditioning_key: crossattn
|
| 16 |
+
monitor: val/loss_simple_ema
|
| 17 |
+
scale_factor: 0.18215
|
| 18 |
+
use_ema: False
|
| 19 |
+
|
| 20 |
+
unet_config:
|
| 21 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
| 22 |
+
params:
|
| 23 |
+
image_size: 32
|
| 24 |
+
in_channels: 4
|
| 25 |
+
out_channels: 4
|
| 26 |
+
model_channels: 320
|
| 27 |
+
attention_resolutions:
|
| 28 |
+
- 4
|
| 29 |
+
- 2
|
| 30 |
+
- 1
|
| 31 |
+
num_res_blocks: 2
|
| 32 |
+
channel_mult:
|
| 33 |
+
- 1
|
| 34 |
+
- 2
|
| 35 |
+
- 4
|
| 36 |
+
- 4
|
| 37 |
+
num_heads: 8
|
| 38 |
+
use_spatial_transformer: true
|
| 39 |
+
transformer_depth: 1
|
| 40 |
+
context_dim: 1280
|
| 41 |
+
use_checkpoint: true
|
| 42 |
+
legacy: False
|
| 43 |
+
|
| 44 |
+
first_stage_config:
|
| 45 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
| 46 |
+
params:
|
| 47 |
+
embed_dim: 4
|
| 48 |
+
monitor: val/rec_loss
|
| 49 |
+
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
|
| 50 |
+
ddconfig:
|
| 51 |
+
double_z: true
|
| 52 |
+
z_channels: 4
|
| 53 |
+
resolution: 256
|
| 54 |
+
in_channels: 3
|
| 55 |
+
out_ch: 3
|
| 56 |
+
ch: 128
|
| 57 |
+
ch_mult:
|
| 58 |
+
- 1
|
| 59 |
+
- 2
|
| 60 |
+
- 4
|
| 61 |
+
- 4
|
| 62 |
+
num_res_blocks: 2
|
| 63 |
+
attn_resolutions: []
|
| 64 |
+
dropout: 0.0
|
| 65 |
+
lossconfig:
|
| 66 |
+
target: torch.nn.Identity
|
| 67 |
+
|
| 68 |
+
cond_stage_config:
|
| 69 |
+
target: ldm.modules.encoders.modules.BERTEmbedder
|
| 70 |
+
params:
|
| 71 |
+
n_embed: 1280
|
| 72 |
+
n_layer: 32
|
data/sflckr_all_images.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d06ed31331826cf6de554151fb02245b0dbf249b5ea7f3edc4f2d275fa906d6
|
| 3 |
+
size 38570710
|
ldm/guided_diffusion/h_posterior.py
ADDED
|
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""INFERENCE TIME OPTIMIZATION"""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from functools import partial
|
| 7 |
+
import torch.distributions as td
|
| 8 |
+
import gc
|
| 9 |
+
import wandb
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
from utils.helper import params_train, get_optimizers,clean_directory, time_descretization, to_img, custom_to_np, save_params, save_samples, save_inpaintings, save_plot
|
| 12 |
+
import os
|
| 13 |
+
import PIL
|
| 14 |
+
import glob
|
| 15 |
+
from tqdm import trange
|
| 16 |
+
import time
|
| 17 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, extract_into_tensor, noise_like
|
| 18 |
+
import wandb
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class HPosterior(object):
|
| 22 |
+
def __init__(self, model, vae_loss, t_steps_hierarchy, eta=0.4, z0_size=32, img_size = 256, latent_channels = 3,
|
| 23 |
+
num_hierarchy_steps=5, schedule="linear", first_stage = "kl", posterior = "hierarchical", image_queue = None, sampling_queue=None, **kwargs):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.model = model #prior noise prediction model
|
| 26 |
+
self.schedule = schedule #noise schedule the prior was trained on
|
| 27 |
+
self.vae_loss = vae_loss #vae loss followed during training
|
| 28 |
+
self.eta = eta #eta used to produce faster, clean samples
|
| 29 |
+
self.first_stage= first_stage #first stage training procedure: kl or vq loss
|
| 30 |
+
self.posterior = posterior
|
| 31 |
+
self.t_steps_hierarchy = np.array(t_steps_hierarchy) #time steps for hierachical posterior
|
| 32 |
+
self.z0size = z0_size #dimension of latent space variables z
|
| 33 |
+
self.img_size = img_size #512 #
|
| 34 |
+
self.latent_size = z0_size #128 #
|
| 35 |
+
self.latent_channels = latent_channels
|
| 36 |
+
self.image_queue = image_queue
|
| 37 |
+
self.sampling_queue = sampling_queue
|
| 38 |
+
|
| 39 |
+
def q_given_te(self, t, s, shape, zeta_t_star=None):
|
| 40 |
+
if zeta_t_star is not None:
|
| 41 |
+
alpha_s = torch.sqrt(1 - zeta_t_star**2)
|
| 42 |
+
var_s = zeta_t_star**2
|
| 43 |
+
else:
|
| 44 |
+
if len(s.shape) == 0 :m = 1
|
| 45 |
+
else: m = s.shape[0]
|
| 46 |
+
var_s = (self.model.sqrt_one_minus_alphas_cumprod[s].reshape(m, 1 ,1 ,1))**2
|
| 47 |
+
alpha_s = torch.sqrt(1 - var_s)
|
| 48 |
+
|
| 49 |
+
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t])**2
|
| 50 |
+
alpha_t = torch.sqrt(1 - var_t)
|
| 51 |
+
alpha_t_s = alpha_t.reshape(len(var_t), 1 ,1 ,1) / alpha_s
|
| 52 |
+
var_t_s = var_t.reshape(len(var_t), 1 ,1 ,1) - alpha_t_s**2 * var_s
|
| 53 |
+
return alpha_t_s, torch.sqrt(var_t_s)
|
| 54 |
+
|
| 55 |
+
def qpos_given_te(self, t, s, t_star, z_t_star, z_t, zeta_T_star=None):
|
| 56 |
+
alpha_t_s, scale_t_s = self.q_given_te(t, s, z_t_star.shape)
|
| 57 |
+
alpha_s_t_star, scale_s_t_star = self.q_given_te(s, t_star, z_t_star.shape, zeta_T_star)
|
| 58 |
+
|
| 59 |
+
var = scale_t_s**2 * scale_s_t_star**2 / (scale_t_s**2 + alpha_s_t_star**2 * scale_s_t_star**2 )
|
| 60 |
+
mean = (var) * ( (alpha_s_t_star/scale_s_t_star**2) * z_t_star + (alpha_t_s/scale_t_s**2) * z_t )
|
| 61 |
+
return mean, torch.sqrt(var)
|
| 62 |
+
|
| 63 |
+
def register_buffer(self, name, attr):
|
| 64 |
+
if type(attr) == torch.Tensor:
|
| 65 |
+
if attr.device != torch.device("cuda"):
|
| 66 |
+
attr = attr.to(torch.device("cuda"))
|
| 67 |
+
setattr(self, name, attr)
|
| 68 |
+
|
| 69 |
+
def get_error(self,x,t,c, unconditional_conditioning, unconditional_guidance_scale):
|
| 70 |
+
|
| 71 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 72 |
+
e_t = self.model.apply_model(x.float(), t, c)
|
| 73 |
+
else:
|
| 74 |
+
x_in = torch.cat([x] * 2)
|
| 75 |
+
t_in = torch.cat([t] * 2)
|
| 76 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 77 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
| 78 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
| 79 |
+
|
| 80 |
+
return e_t
|
| 81 |
+
|
| 82 |
+
def descretize(self, rho):
|
| 83 |
+
#Get time descretization for prior loss (t > T_e)
|
| 84 |
+
self.timesteps_1000 = time_descretization(sigma_min=0.002, sigma_max = 0.999, rho = rho, num_t_steps = 1000)*1000
|
| 85 |
+
self.timesteps_1000 = self.timesteps_1000.cuda().long()
|
| 86 |
+
sigma_timesteps = self.model.sqrt_one_minus_alphas_cumprod[self.timesteps_1000]
|
| 87 |
+
self.register_buffer('sigma_timesteps', sigma_timesteps)
|
| 88 |
+
|
| 89 |
+
#Get prior std for hierarchical time points
|
| 90 |
+
sigma_hierarchy = self.model.sqrt_one_minus_alphas_cumprod[self.t_steps_hierarchy]
|
| 91 |
+
self.t_steps_hierarchy = torch.tensor(self.t_steps_hierarchy.copy()).cuda()
|
| 92 |
+
alphas_h = 1 - sigma_hierarchy**2
|
| 93 |
+
alphas_prev = torch.concatenate([ alphas_h[1:], alphas_h[-1].reshape(1)])
|
| 94 |
+
h_sigmas = torch.sqrt(self.eta * (1 - alphas_prev) / (1 - alphas_h) * (1 - alphas_h / alphas_prev) )
|
| 95 |
+
h_sigmas[1:] = torch.sqrt(self.eta * (1 - alphas_prev[:-1]) / (1 - alphas_h[:-1]) * (1 - alphas_h[:-1] / alphas_prev[:-1]) )
|
| 96 |
+
h_sigmas[0] = torch.sqrt(1 - alphas_h[0])
|
| 97 |
+
|
| 98 |
+
#register tensors
|
| 99 |
+
self.register_buffer('h_alphas', alphas_h)
|
| 100 |
+
self.register_buffer('h_alphas_prev', alphas_prev)
|
| 101 |
+
self.register_buffer('h_sigmas', h_sigmas)
|
| 102 |
+
|
| 103 |
+
def init(self, img, std_scale, mean_scale, prior_scale, mean_scale_top = 0.1):
|
| 104 |
+
num_h_steps = len(self.t_steps_hierarchy)
|
| 105 |
+
img = torch.Tensor.repeat(img,[num_h_steps,1,1,1])[:num_h_steps]
|
| 106 |
+
#sigmas = self.h_sigmas[...,None, None, None].expand(img.shape)
|
| 107 |
+
sigmas = torch.zeros_like(img)
|
| 108 |
+
sqrt_alphas = torch.sqrt(self.h_alphas)[...,None, None, None].expand(img.shape)
|
| 109 |
+
sqrt_one_minus_alphas = torch.sqrt(1 - self.h_alphas)[...,None, None, None].expand(img.shape)
|
| 110 |
+
## Variances for posterior
|
| 111 |
+
sigmas[0] = self.h_sigmas[0, None, None, None].expand(img[0].shape)
|
| 112 |
+
sigmas[1:] = std_scale * (1/np.sqrt(self.eta)) * self.h_sigmas[1:, None, None, None].expand(img[1:].shape)
|
| 113 |
+
logvar_pos = 2*torch.log(sigmas).float()
|
| 114 |
+
## Means :
|
| 115 |
+
mean_pos = sqrt_alphas*img + mean_scale*sqrt_one_minus_alphas* torch.randn_like(img)
|
| 116 |
+
mean_pos[0] = img[0] + mean_scale_top*torch.randn_like(img[0])
|
| 117 |
+
## Gammas for posterior weighing between prior and posterior
|
| 118 |
+
gamma = torch.tensor(prior_scale)[None,None,None,None].expand(img.shape).cuda()
|
| 119 |
+
return mean_pos, logvar_pos, gamma.float()
|
| 120 |
+
|
| 121 |
+
def get_kl(self,mu1, mu2, scale1, scale2, wt):
|
| 122 |
+
return wt*(1/2*scale2**2)*(mu1 - mu2)**2 \
|
| 123 |
+
+ torch.log(scale2/scale1) + scale1**2/(2*scale2**2) - 1/2
|
| 124 |
+
|
| 125 |
+
# diffusion loss
|
| 126 |
+
def loss_prior(self, mu_pos, logvar_pos, cond=None,
|
| 127 |
+
unconditional_conditioning=None,
|
| 128 |
+
unconditional_guidance_scale=1, K=10, intermediate_mus=None):
|
| 129 |
+
'''
|
| 130 |
+
This function gets the kl between q(x_{T_e})||p(x_T_e) ) = E_{t>T*_e}[(x_T_e - \mu_\theta(x_t))^2]
|
| 131 |
+
x_T_e = z_t_star, samples from q(x_{T_e})
|
| 132 |
+
Sample z_t by adding noise scaled by sqrt(\sigma_t^2 - \zeta_t^2) so that z_t matches total noise at t
|
| 133 |
+
'''
|
| 134 |
+
t_e = self.t_steps_hierarchy[0]
|
| 135 |
+
## Sample z_{T_e}
|
| 136 |
+
tau_te = torch.exp(0.5*logvar_pos)
|
| 137 |
+
mu_te = torch.Tensor.repeat(mu_pos, [K,1,1,1])
|
| 138 |
+
z_te = torch.sqrt(1 - tau_te**2 )* mu_te + tau_te * torch.randn_like(mu_te)
|
| 139 |
+
|
| 140 |
+
## Sample t
|
| 141 |
+
#Get allowed timesteps > T_e
|
| 142 |
+
t_g = torch.where(self.sigma_timesteps > torch.max(tau_te))[0]
|
| 143 |
+
t_allowed = self.timesteps_1000[t_g]
|
| 144 |
+
# print(len(t_g))
|
| 145 |
+
def sample_uniform(t_allowed):
|
| 146 |
+
t0 = torch.rand(1)
|
| 147 |
+
T_max = len(t_allowed)
|
| 148 |
+
T_min = 2 #stay away from close values to T*
|
| 149 |
+
t = torch.remainder(t0 + torch.arange(0., 1., step=1. / K), 1.)*(T_max-T_min) + T_min
|
| 150 |
+
t = torch.floor(t).long()
|
| 151 |
+
return t
|
| 152 |
+
t = sample_uniform(t_allowed)
|
| 153 |
+
t_cur = t_allowed[t]
|
| 154 |
+
t_prev = t_allowed[t-1]
|
| 155 |
+
# print((t_cur - t_prev), t_cur)
|
| 156 |
+
|
| 157 |
+
#sample z_t from p(z_t | z_{T_e})
|
| 158 |
+
alpha_t, scale_t = self.q_given_te(t_cur, t_e, z_te.shape, tau_te)
|
| 159 |
+
error = torch.randn_like(z_te)
|
| 160 |
+
z_t = alpha_t*z_te + error* scale_t
|
| 161 |
+
|
| 162 |
+
#Get prior, posterior mean variances for t_prev
|
| 163 |
+
e_out = self.get_error(z_t.float(), t_cur, cond, unconditional_conditioning, unconditional_guidance_scale)
|
| 164 |
+
alpha_t_, scale_t_ = self.q_given_te(t_cur,t_e, z_te.shape)
|
| 165 |
+
mu_t_hat = (z_t - scale_t_*e_out)/alpha_t_
|
| 166 |
+
pos_mean, pos_scale = self.qpos_given_te(t_cur, t_prev, t_e, z_te, z_t, tau_te)
|
| 167 |
+
prior_mean, prior_scale = self.qpos_given_te(t_cur, t_prev, t_e, mu_t_hat, z_t, None)
|
| 168 |
+
|
| 169 |
+
wt = (1000-t_e)/2
|
| 170 |
+
kl = self.get_kl(pos_mean, prior_mean,pos_scale, prior_scale, wt=1)
|
| 171 |
+
kl = torch.mean(wt*kl, dim=[1,2,3])
|
| 172 |
+
|
| 173 |
+
return {"loss" : kl, "sample" : z_te, "intermediate_mus" : intermediate_mus}
|
| 174 |
+
|
| 175 |
+
def recon_loss(self, samples_pixel, x0_pixel, mask_pixel, operator=None):
|
| 176 |
+
global_step = 0
|
| 177 |
+
if self.first_stage == "kl":
|
| 178 |
+
nll_loss, _ = self.vae_loss(x0_pixel, samples_pixel, mask_pixel, 0, global_step,
|
| 179 |
+
last_layer=self.model.first_stage_model.get_last_layer(), split="val")
|
| 180 |
+
else:
|
| 181 |
+
qloss = torch.tensor([0.]).cuda()
|
| 182 |
+
nll_loss, _ = self.vae_loss(qloss, x0_pixel, samples_pixel, mask_pixel, 0, 0,
|
| 183 |
+
last_layer=self.model.first_stage_model.get_last_layer(), split="val",
|
| 184 |
+
predicted_indices=None, operator=operator)
|
| 185 |
+
#nll_loss = nll_loss/1000
|
| 186 |
+
return { "loss" : nll_loss}
|
| 187 |
+
|
| 188 |
+
def prior_preds(self, z_t, t_cur, cond, a_t, a_prev, sigma_t, unconditional_conditioning, unconditional_guidance_scale ):
|
| 189 |
+
#Get e, pred_x0
|
| 190 |
+
e_out = self.get_error(z_t, t_cur, cond, unconditional_conditioning, unconditional_guidance_scale)
|
| 191 |
+
pred_x0 = (z_t - torch.sqrt(1 - a_t) * e_out) / a_t.sqrt()
|
| 192 |
+
# direction pointing to x_t
|
| 193 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_out
|
| 194 |
+
z_next = a_prev.sqrt() * pred_x0 + dir_xt
|
| 195 |
+
return z_next, pred_x0
|
| 196 |
+
|
| 197 |
+
def posterior_mean(self, mu_pos, mu_prior, gamma):
|
| 198 |
+
wt = torch.sigmoid(gamma)
|
| 199 |
+
mean_t_1 = wt*mu_prior + (1-wt)*mu_pos
|
| 200 |
+
return mean_t_1
|
| 201 |
+
|
| 202 |
+
def normalize(self, img):
|
| 203 |
+
img -= torch.min(img)
|
| 204 |
+
return 2*img/torch.max(img) - 1
|
| 205 |
+
|
| 206 |
+
def loss_posterior(self, z_t, mu_pos, logvar_pos, gamma, cond=None,
|
| 207 |
+
unconditional_conditioning=None,
|
| 208 |
+
unconditional_guidance_scale=1,
|
| 209 |
+
K=10, iteration=0, to_sample = False, intermediate_mus=None):
|
| 210 |
+
|
| 211 |
+
sigma_pos = torch.exp(0.5*logvar_pos)
|
| 212 |
+
kl_t, t0, q_entropy = torch.zeros(z_t.shape[0]).cuda(), 100, 0
|
| 213 |
+
num_steps = len(self.t_steps_hierarchy)
|
| 214 |
+
intermediate_samples = np.zeros((num_steps, 1, self.img_size, self.img_size, 3))
|
| 215 |
+
intermediate_preds = np.zeros((num_steps, 1, self.img_size, self.img_size, 3))
|
| 216 |
+
b = z_t.shape[0]
|
| 217 |
+
with torch.no_grad():
|
| 218 |
+
recon = self.model.decode_first_stage(z_t)
|
| 219 |
+
intermediate_samples[0] = to_img(recon)[0]
|
| 220 |
+
|
| 221 |
+
alphas = self.h_alphas
|
| 222 |
+
for i, (t_cur, t_next) in enumerate(zip(self.t_steps_hierarchy[:-1], self.t_steps_hierarchy[1:])):
|
| 223 |
+
t_hat_cur = torch.ones(b).cuda() * (t_cur )
|
| 224 |
+
a_t = torch.full((b, 1, 1, 1), alphas[i]).cuda()
|
| 225 |
+
a_prev = torch.full((b, 1, 1, 1), alphas[i+1]).cuda()
|
| 226 |
+
a_t_prev = a_t/a_prev
|
| 227 |
+
sigma_t = self.h_sigmas[i+1]
|
| 228 |
+
#Get prior predictions
|
| 229 |
+
z_next, pred_x0 = self.prior_preds(z_t.float(), t_hat_cur, cond, a_t, a_prev, sigma_t,
|
| 230 |
+
unconditional_conditioning, unconditional_guidance_scale)
|
| 231 |
+
std_prior = self.h_sigmas[i+1]
|
| 232 |
+
|
| 233 |
+
##Posterior means and variances
|
| 234 |
+
pos_mean = self.posterior_mean(a_prev.sqrt()*mu_pos[i].unsqueeze(0), z_next, gamma[i].unsqueeze(0))
|
| 235 |
+
std_pos = sigma_pos[i]
|
| 236 |
+
|
| 237 |
+
## Sample z_t
|
| 238 |
+
z_t = pos_mean + std_pos * torch.randn_like(pos_mean)
|
| 239 |
+
#Get kl
|
| 240 |
+
kl = self.get_kl(pos_mean, z_next, std_pos, std_prior, wt=1)
|
| 241 |
+
kl_t += torch.mean(kl, dim=[1,2,3])
|
| 242 |
+
|
| 243 |
+
with torch.no_grad():
|
| 244 |
+
recon_pred = self.model.decode_first_stage(pred_x0)
|
| 245 |
+
intermediate_preds[i] = to_img(recon_pred)[0]
|
| 246 |
+
intermediate_mus[i+1] = to_img(self.normalize(mu_pos[i]).unsqueeze(0)).astype(np.uint8)[0]
|
| 247 |
+
|
| 248 |
+
##One-step denoising
|
| 249 |
+
t_hat_cur = torch.ones(b).cuda() * (self.t_steps_hierarchy[-1])
|
| 250 |
+
e_out = self.get_error(z_t.float(), t_hat_cur, cond, unconditional_conditioning, unconditional_guidance_scale)
|
| 251 |
+
a_t = torch.full((b, 1, 1, 1), alphas[-1]).cuda()
|
| 252 |
+
sqrt_one_minus_at = torch.sqrt(1 - a_t)
|
| 253 |
+
pred_z0 = (z_t - sqrt_one_minus_at * e_out) / a_t.sqrt()
|
| 254 |
+
|
| 255 |
+
with torch.no_grad():
|
| 256 |
+
recon = self.model.decode_first_stage(pred_z0)
|
| 257 |
+
intermediate_preds[-1] = to_img(recon)[0]
|
| 258 |
+
|
| 259 |
+
return {"sample" : pred_z0, "loss" : kl_t, "entropy": q_entropy,
|
| 260 |
+
"intermediates" : intermediate_samples, "interim_preds" :intermediate_preds,
|
| 261 |
+
"intermediate_mus" : intermediate_mus}
|
| 262 |
+
|
| 263 |
+
def grad_and_value(self, x_prev, x_0_hat, measurement, mask_pixel, operator):
|
| 264 |
+
nll_loss = torch.mean(self.recon_loss(x_0_hat, measurement, mask_pixel, operator)["loss"])
|
| 265 |
+
norm_grad = torch.autograd.grad(outputs=nll_loss, inputs=x_prev)[0]
|
| 266 |
+
return norm_grad, nll_loss
|
| 267 |
+
|
| 268 |
+
def conditioning(self, x_prev, x_t, x_0_hat, measurement, mask_pixel, scale, operator, **kwargs):
|
| 269 |
+
norm_grad, norm = self.grad_and_value(x_prev=x_prev, x_0_hat=x_0_hat,
|
| 270 |
+
measurement=measurement, mask_pixel=mask_pixel, operator=operator)
|
| 271 |
+
x_t -= norm_grad*scale
|
| 272 |
+
return x_t, norm
|
| 273 |
+
|
| 274 |
+
def sample(self, scale, eta, mu_pos, logvar_pos, gamma,
|
| 275 |
+
mask_pixel, y, n_samples=100, cond=None,
|
| 276 |
+
unconditional_conditioning=None, unconditional_guidance_scale=1,
|
| 277 |
+
batch_size=10, dir_name="temp/", temp=1,
|
| 278 |
+
samples_iteration=0, operator = None):
|
| 279 |
+
sigma_pos = torch.exp(0.5*logvar_pos)
|
| 280 |
+
t0 = 100
|
| 281 |
+
num_steps = len(self.t_steps_hierarchy)
|
| 282 |
+
intermediate_samples = np.zeros((num_steps, 1, self.img_size, self.img_size, 3))
|
| 283 |
+
intermediate_preds = np.zeros((num_steps, 1, self.img_size, self.img_size, 3))
|
| 284 |
+
intermediate_mus = np.zeros((num_steps, 1, self.img_size, self.img_size, 3))
|
| 285 |
+
alphas = self.h_alphas
|
| 286 |
+
|
| 287 |
+
##batch your sample generation
|
| 288 |
+
all_images = []
|
| 289 |
+
t0 = time.time()
|
| 290 |
+
save_dir = os.path.join(dir_name , "samples_50_"+ str(scale) ) #50_ #"samples_" + str(scale)
|
| 291 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 292 |
+
for _ in trange(n_samples // batch_size, desc="Sampling Batches"):
|
| 293 |
+
mu_10 = torch.Tensor.repeat(mu_pos[0], [batch_size,1,1,1])
|
| 294 |
+
tau_t = sigma_pos[0]
|
| 295 |
+
z_t = torch.sqrt(1 - tau_t**2 )* mu_10 + tau_t * torch.randn_like(mu_10)
|
| 296 |
+
##Sample from posterior
|
| 297 |
+
with torch.no_grad():
|
| 298 |
+
recon = self.model.decode_first_stage(z_t)
|
| 299 |
+
intermediate_samples[0] = to_img(recon)[0]
|
| 300 |
+
for i, (t_cur, t_next) in enumerate(zip(self.t_steps_hierarchy[:-1], self.t_steps_hierarchy[1:])):
|
| 301 |
+
# print(t_cur)
|
| 302 |
+
t_hat_cur = torch.ones(batch_size).cuda() * (t_cur )
|
| 303 |
+
a_t = torch.full((batch_size, 1, 1, 1), alphas[i]).cuda()
|
| 304 |
+
a_prev = torch.full((batch_size, 1, 1, 1), alphas[i+1]).cuda()
|
| 305 |
+
sigma_t = self.h_sigmas[i+1]
|
| 306 |
+
#Get prior predictions
|
| 307 |
+
z_next, pred_x0 = self.prior_preds(z_t.float(), t_hat_cur, cond, a_t, a_prev, sigma_t,
|
| 308 |
+
unconditional_conditioning, unconditional_guidance_scale)
|
| 309 |
+
##Posterior means and variances
|
| 310 |
+
# a_prev.sqrt()*
|
| 311 |
+
mean_t_1 = self.posterior_mean(a_prev.sqrt()*mu_pos[i+1].unsqueeze(0), z_next, gamma[i+1].unsqueeze(0))
|
| 312 |
+
std_pos = sigma_pos[i+1]
|
| 313 |
+
#Sample z_t
|
| 314 |
+
z_t = mean_t_1 + std_pos * torch.randn_like(mean_t_1)
|
| 315 |
+
|
| 316 |
+
with torch.no_grad():
|
| 317 |
+
pred_x = self.model.decode_first_stage(pred_x0)
|
| 318 |
+
save_samples(save_dir, pred_x, k=None, num_to_save = 1, file_name = f'sample_{i}.png')
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
timesteps = np.flip(np.arange(0, self.t_steps_hierarchy[-1].cpu().numpy(), 1))
|
| 322 |
+
timesteps = np.concatenate((self.t_steps_hierarchy[-1].cpu().reshape(1), timesteps))
|
| 323 |
+
##Sample using DPS algorithm
|
| 324 |
+
for i, (step, t_next) in enumerate(zip(timesteps[:-1], timesteps[1:])):
|
| 325 |
+
step = int(step)
|
| 326 |
+
t_hat_cur = torch.ones(batch_size).cuda() * (step)
|
| 327 |
+
a_t = torch.full((batch_size, 1, 1, 1), self.model.alphas_cumprod[step]).cuda()
|
| 328 |
+
a_prev = torch.full((batch_size, 1, 1, 1), self.model.alphas_cumprod[int(t_next)]).cuda()
|
| 329 |
+
sigma_t = eta *torch.sqrt( (1 - a_prev) / (1 - a_t) * (1 - a_t / a_prev))
|
| 330 |
+
z_t = z_t.requires_grad_()
|
| 331 |
+
z_next, pred_x0 = self.prior_preds(z_t.float(), t_hat_cur, cond, a_t, a_prev, sigma_t,
|
| 332 |
+
unconditional_conditioning, unconditional_guidance_scale)
|
| 333 |
+
pred_x = self.model.decode_first_stage(pred_x0)
|
| 334 |
+
z_t, _ = self.conditioning(x_prev = z_t , x_t = z_next,
|
| 335 |
+
x_0_hat = pred_x, measurement = y,
|
| 336 |
+
mask_pixel=mask_pixel, scale=scale, operator=operator)
|
| 337 |
+
z_t = z_t.detach_()
|
| 338 |
+
|
| 339 |
+
if i%50 == 0:
|
| 340 |
+
with torch.no_grad():
|
| 341 |
+
recons = self.model.decode_first_stage(pred_x0)
|
| 342 |
+
recons_np = to_img(recons).astype(np.uint8)
|
| 343 |
+
self.sampling_queue.put(recons_np)
|
| 344 |
+
save_samples(save_dir, recons, k=None, num_to_save = 1, file_name = f'det_{step}.png')
|
| 345 |
+
|
| 346 |
+
z_0 = pred_x0
|
| 347 |
+
with torch.no_grad():
|
| 348 |
+
recon = self.model.decode_first_stage(z_0)
|
| 349 |
+
intermediate_preds[-1] = to_img(recons)[0]
|
| 350 |
+
|
| 351 |
+
with torch.no_grad() :
|
| 352 |
+
recons = self.model.decode_first_stage(pred_x0)
|
| 353 |
+
recons_np = to_img(recons).astype(np.uint8)
|
| 354 |
+
self.sampling_queue.put(recons_np)
|
| 355 |
+
all_images.append(custom_to_np(recons))
|
| 356 |
+
|
| 357 |
+
t1 = time.time()
|
| 358 |
+
|
| 359 |
+
all_img = np.concatenate(all_images, axis=0)
|
| 360 |
+
all_img = all_img[:n_samples]
|
| 361 |
+
shape_str = "x".join([str(x) for x in all_img.shape])
|
| 362 |
+
nppath = os.path.join(save_dir, f"{shape_str}-samples.npz")
|
| 363 |
+
np.savez(nppath, all_img, t1-t0)
|
| 364 |
+
|
| 365 |
+
'''
|
| 366 |
+
recon_in = y*(mask_pixel) + ( 1-mask_pixel)*recons
|
| 367 |
+
recon_in = to_img(recon_in)
|
| 368 |
+
image_path = os.path.join(save_dir, str(samples_iteration) + ".png")
|
| 369 |
+
image_np = recon_in.astype(np.uint8)[0]
|
| 370 |
+
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
|
| 371 |
+
'''
|
| 372 |
+
file_name_img = None
|
| 373 |
+
|
| 374 |
+
if operator is None:
|
| 375 |
+
save_inpaintings(save_dir, recons, y, mask_pixel, num_to_save = batch_size) #recons
|
| 376 |
+
else:
|
| 377 |
+
save_samples(save_dir, recons, None, batch_size)
|
| 378 |
+
recons_np = to_img(recons).astype(np.uint8)
|
| 379 |
+
self.sampling_queue.put(recons_np)
|
| 380 |
+
return
|
| 381 |
+
|
| 382 |
+
def fit(self, lambda_, cond, shape, quantize_denoised=False, mask_pixel = None,
|
| 383 |
+
y = None, log_every_t=100, unconditional_guidance_scale=1.,
|
| 384 |
+
unconditional_conditioning=None, dir_name = None, kl_weight_1=50, kl_weight_2 = 50,
|
| 385 |
+
debug=False, wdb=False, iterations=200, batch_size = 10, lr_init_gamma=0.01,
|
| 386 |
+
operator=None, recon_weight = 50):
|
| 387 |
+
|
| 388 |
+
if wdb:
|
| 389 |
+
wandb.init(project='LDM', dir = '/scratch/sakshi/wandb-cache')
|
| 390 |
+
wandb.config.run_type = 'hierarchical'
|
| 391 |
+
wandb.run.name = "hierarchical"
|
| 392 |
+
|
| 393 |
+
params_to_fit = params_train(lambda_)
|
| 394 |
+
mu_pos, logvar_pos, gamma = params_to_fit
|
| 395 |
+
optimizers, schedulers = get_optimizers(mu_pos, logvar_pos, gamma, lr_init_gamma)
|
| 396 |
+
rec_loss_all, prior_loss_all, posterior_loss_all =[], [], []
|
| 397 |
+
loss_all = []
|
| 398 |
+
mu_all, logvar_all, gamma_all = [], [], []
|
| 399 |
+
for k in range(iterations):
|
| 400 |
+
if k%100==0: print(k)
|
| 401 |
+
intermediate_mus = np.zeros((len(self.t_steps_hierarchy), self.latent_size, self.latent_size, self.latent_channels))
|
| 402 |
+
|
| 403 |
+
for opt in optimizers: opt.zero_grad()
|
| 404 |
+
stats_prior = self.loss_prior(mu_pos[0], logvar_pos[0], cond=cond,
|
| 405 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 406 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 407 |
+
K=batch_size, intermediate_mus=intermediate_mus)
|
| 408 |
+
#stats_posterior = self.get_z0_t(stats_prior["sample"], self.t_steps_hierarchy)
|
| 409 |
+
stats_posterior = self.loss_posterior(stats_prior["sample"], mu_pos[1:], logvar_pos[1:], gamma[1:],
|
| 410 |
+
cond=cond,
|
| 411 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 412 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 413 |
+
K=batch_size, iteration=k, intermediate_mus=stats_prior["intermediate_mus"])
|
| 414 |
+
sample = self.model.decode_first_stage(stats_posterior["sample"])
|
| 415 |
+
|
| 416 |
+
stats_recon = self.recon_loss(sample, y, mask_pixel, operator)
|
| 417 |
+
num_pixels = 3*256*256 #(1000/num_pixels)* (1000/num_pixels)*
|
| 418 |
+
loss_total = torch.mean(kl_weight_1*stats_prior["loss"] \
|
| 419 |
+
+ kl_weight_2*stats_posterior["loss"] + recon_weight*stats_recon["loss"] ) #
|
| 420 |
+
loss_total.backward()
|
| 421 |
+
for opt in optimizers: opt.step()
|
| 422 |
+
for sch in schedulers: sch.step()
|
| 423 |
+
|
| 424 |
+
rec_loss_all.append(torch.mean(stats_recon["loss"].detach()).item())
|
| 425 |
+
prior_loss_all.append(torch.mean(kl_weight_1*stats_prior["loss"].detach()).item())
|
| 426 |
+
posterior_loss_all.append(torch.mean(kl_weight_2*stats_posterior["loss"].detach()).item())
|
| 427 |
+
mu_all.append(torch.mean(mu_pos.detach()).item())
|
| 428 |
+
logvar_all.append(torch.mean(logvar_pos.detach()).item())
|
| 429 |
+
gamma_all.append(torch.mean(torch.sigmoid(gamma).detach()).item())
|
| 430 |
+
sample_np = to_img(sample).astype(np.uint8)
|
| 431 |
+
loss_all.append(loss_total.detach().item())
|
| 432 |
+
self.image_queue.put(sample_np)
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
save_plot(dir_name, [rec_loss_all, prior_loss_all, posterior_loss_all],
|
| 436 |
+
["Recon loss", "Diffusion loss", "Hierarchical loss"], "loss.png")
|
| 437 |
+
save_plot(dir_name, [loss_all],
|
| 438 |
+
["Total Loss"], "loss_t.png")
|
| 439 |
+
save_plot(dir_name, [mu_all],
|
| 440 |
+
["mean"], "mean.png")
|
| 441 |
+
save_plot(dir_name, [logvar_all],
|
| 442 |
+
["logvar"], "logvar.png")
|
| 443 |
+
save_plot(dir_name, [gamma_all],
|
| 444 |
+
["gamma"], "gamma.png")
|
| 445 |
+
|
| 446 |
+
if k%log_every_t == 0 or k == iterations - 1:
|
| 447 |
+
save_samples(os.path.join(dir_name , "progress"), sample, k, batch_size)
|
| 448 |
+
save_samples(os.path.join(dir_name , "mus"), stats_posterior["intermediate_mus"], k,
|
| 449 |
+
len(stats_posterior["intermediate_mus"]))
|
| 450 |
+
|
| 451 |
+
#save_inpaintings(os.path.join(dir_name , "progress_inpaintings"), sample, y,
|
| 452 |
+
# mask_pixel, k, num_to_save = 5)
|
| 453 |
+
save_params(os.path.join(dir_name , "params"), mu_pos, logvar_pos, gamma,k)
|
| 454 |
+
|
| 455 |
+
gc.collect()
|
| 456 |
+
return
|
| 457 |
+
|
| 458 |
+
##unconditional samplinng for debugging purposes:
|
| 459 |
+
'''
|
| 460 |
+
def sample_T(self, x0, cond, unconditional_conditioning, unconditional_guidance_scale , eta=0.4, t_steps_hierarchy=None, dir_="out_temp2"):
|
| 461 |
+
''
|
| 462 |
+
sigma_discretization_edm = time_descretization(sigma_min=0.002, sigma_max = 999, rho = 7, num_t_steps = 10)/1000
|
| 463 |
+
T_max = 1000
|
| 464 |
+
beta_start = 1 # 0.0015*T_max
|
| 465 |
+
beta_end = 15 # 0.0155*T_max
|
| 466 |
+
def var(t):
|
| 467 |
+
return 1.0 - (1.0) * torch.exp(- beta_start * t - 0.5 * (beta_end - beta_start) * t * t)
|
| 468 |
+
''
|
| 469 |
+
|
| 470 |
+
x0 = torch.randn_like(x0)
|
| 471 |
+
t_steps_hierarchy = torch.tensor(self.t_steps_hierarchy).cuda()
|
| 472 |
+
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t_steps_hierarchy[0]].reshape(1, 1 ,1 ,1))**2 # self.var(t_steps_hierarchy[0])
|
| 473 |
+
x_t = x0 # torch.sqrt(1 - var_t) * x0 + torch.sqrt(var_t) * torch.randn_like(x0)
|
| 474 |
+
|
| 475 |
+
os.makedirs(dir_, exist_ok=True)
|
| 476 |
+
alphas = self.h_alphas
|
| 477 |
+
b = 5
|
| 478 |
+
for i, t in enumerate(t_steps_hierarchy[:-1]):
|
| 479 |
+
t_hat = torch.ones(b).cuda() * (t)
|
| 480 |
+
a_t = torch.full((b, 1, 1, 1), alphas[i]).cuda()
|
| 481 |
+
a_prev = torch.full((b, 1, 1, 1), alphas[i+1]).cuda()
|
| 482 |
+
sigma_t = self.h_sigmas[i+1]
|
| 483 |
+
x_t, pred_x0 = self.prior_preds(x_t.float(), t_hat, cond, a_t, a_prev, sigma_t,
|
| 484 |
+
unconditional_conditioning, unconditional_guidance_scale)
|
| 485 |
+
|
| 486 |
+
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t].reshape(1, 1 ,1 ,1))**2
|
| 487 |
+
a_t = 1 - var_t
|
| 488 |
+
x_t = x_t + sigma_t*torch.randn_like(x_t)
|
| 489 |
+
recon = self.model.decode_first_stage(pred_x0)
|
| 490 |
+
image_path = os.path.join(dir_, f'{i}.png')
|
| 491 |
+
image_np = (recon.detach() * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 492 |
+
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
|
| 493 |
+
|
| 494 |
+
t_hat_cur = torch.ones(b).cuda() * (self.t_steps_hierarchy[-1])
|
| 495 |
+
e_out = self.get_error(x_t.float(), t_hat_cur, cond, unconditional_conditioning, unconditional_guidance_scale)
|
| 496 |
+
a_t = torch.full((b, 1, 1, 1), alphas[-1]).cuda()
|
| 497 |
+
sqrt_one_minus_at = torch.sqrt(1 - a_t)
|
| 498 |
+
pred_x0 = (x_t - sqrt_one_minus_at * e_out) / a_t.sqrt()
|
| 499 |
+
|
| 500 |
+
recon = self.model.decode_first_stage(pred_x0)
|
| 501 |
+
image_path = os.path.join(dir_, f'{len(t_steps_hierarchy)}.png')
|
| 502 |
+
image_np = (recon.detach() * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 503 |
+
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
|
| 504 |
+
return
|
| 505 |
+
|
| 506 |
+
'''
|
ldm/guided_diffusion/loss_vq.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from einops import repeat
|
| 5 |
+
|
| 6 |
+
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
| 7 |
+
from taming.modules.losses.lpips import LPIPS
|
| 8 |
+
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
|
| 12 |
+
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
|
| 13 |
+
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
|
| 14 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
|
| 15 |
+
loss_real = (weights * loss_real).sum() / weights.sum()
|
| 16 |
+
loss_fake = (weights * loss_fake).sum() / weights.sum()
|
| 17 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
| 18 |
+
return d_loss
|
| 19 |
+
|
| 20 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
| 21 |
+
if global_step < threshold:
|
| 22 |
+
weight = value
|
| 23 |
+
return weight
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def measure_perplexity(predicted_indices, n_embed):
|
| 27 |
+
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
| 28 |
+
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
| 29 |
+
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
| 30 |
+
avg_probs = encodings.mean(0)
|
| 31 |
+
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
| 32 |
+
cluster_use = torch.sum(avg_probs > 0)
|
| 33 |
+
return perplexity, cluster_use
|
| 34 |
+
|
| 35 |
+
def l1(x, y):
|
| 36 |
+
return torch.abs(x-y)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def l2(x, y):
|
| 40 |
+
return torch.pow((x-y), 2)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class VQLPIPSWithDiscriminator(nn.Module):
|
| 44 |
+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
| 45 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
| 46 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
| 47 |
+
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
|
| 48 |
+
pixel_loss="l1"):
|
| 49 |
+
super().__init__()
|
| 50 |
+
assert disc_loss in ["hinge", "vanilla"]
|
| 51 |
+
assert perceptual_loss in ["lpips", "clips", "dists"]
|
| 52 |
+
assert pixel_loss in ["l1", "l2"]
|
| 53 |
+
self.codebook_weight = codebook_weight
|
| 54 |
+
self.pixel_weight = pixelloss_weight
|
| 55 |
+
if perceptual_loss == "lpips":
|
| 56 |
+
print(f"{self.__class__.__name__}: Running with LPIPS.")
|
| 57 |
+
self.perceptual_loss = LPIPS().eval().to(device="cuda")
|
| 58 |
+
else:
|
| 59 |
+
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
|
| 60 |
+
self.perceptual_weight = perceptual_weight
|
| 61 |
+
|
| 62 |
+
if pixel_loss == "l1":
|
| 63 |
+
self.pixel_loss = l1
|
| 64 |
+
else:
|
| 65 |
+
self.pixel_loss = l2
|
| 66 |
+
|
| 67 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
| 68 |
+
n_layers=disc_num_layers,
|
| 69 |
+
use_actnorm=use_actnorm,
|
| 70 |
+
ndf=disc_ndf
|
| 71 |
+
).apply(weights_init).cuda()
|
| 72 |
+
self.discriminator.eval()
|
| 73 |
+
self.discriminator_iter_start = disc_start
|
| 74 |
+
if disc_loss == "hinge":
|
| 75 |
+
self.disc_loss = hinge_d_loss
|
| 76 |
+
elif disc_loss == "vanilla":
|
| 77 |
+
self.disc_loss = vanilla_d_loss
|
| 78 |
+
else:
|
| 79 |
+
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
| 80 |
+
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
| 81 |
+
self.disc_factor = disc_factor
|
| 82 |
+
self.discriminator_weight = disc_weight
|
| 83 |
+
self.disc_conditional = disc_conditional
|
| 84 |
+
self.n_classes = n_classes
|
| 85 |
+
|
| 86 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
| 87 |
+
if last_layer is not None:
|
| 88 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
| 89 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
| 90 |
+
else:
|
| 91 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
| 92 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
| 93 |
+
|
| 94 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
| 95 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
| 96 |
+
d_weight = d_weight * self.discriminator_weight
|
| 97 |
+
return d_weight
|
| 98 |
+
|
| 99 |
+
def forward(self, codebook_loss, inputs, reconstructions, mask, optimizer_idx,
|
| 100 |
+
global_step, last_layer=None, cond=None, split="train", predicted_indices=None,
|
| 101 |
+
operator=None, noiser = None):
|
| 102 |
+
|
| 103 |
+
#if not exists(codebook_loss):
|
| 104 |
+
# codebook_loss = torch.tensor([0.]).to(inputs.device)
|
| 105 |
+
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
| 106 |
+
'''
|
| 107 |
+
if operator is not None: x = operator.forward(reconstructions)
|
| 108 |
+
else: x = reconstructions.contiguous()
|
| 109 |
+
rec_loss = torch.abs(inputs - x)
|
| 110 |
+
'''
|
| 111 |
+
#rec_loss = torch.sum(rec_loss, dim=[1,2,3])
|
| 112 |
+
#rec_loss = torch.linalg.norm(difference)
|
| 113 |
+
if operator is not None : x = operator.forward(reconstructions)
|
| 114 |
+
else :
|
| 115 |
+
x = reconstructions.contiguous()*mask
|
| 116 |
+
inputs = inputs.contiguous()*mask
|
| 117 |
+
rec_loss = self.pixel_loss(inputs,x)
|
| 118 |
+
std = 0.566 #+ 0.05
|
| 119 |
+
|
| 120 |
+
#rec_loss = torch.abs(inputs.contiguous()*(mask) - reconstructions.contiguous()*(mask))
|
| 121 |
+
#nll_loss = torch.linalg.norm(rec_loss)
|
| 122 |
+
#num_obs = torch.sum(mask)
|
| 123 |
+
|
| 124 |
+
if self.perceptual_weight > 0:
|
| 125 |
+
if operator is None:
|
| 126 |
+
p_loss = self.perceptual_loss(mask*inputs.contiguous().float(), mask*reconstructions.contiguous().float())
|
| 127 |
+
else:
|
| 128 |
+
p_loss = torch.tensor([0.0])
|
| 129 |
+
# p_loss = self.perceptual_loss(inputs.contiguous().float(), reconstructions.contiguous().float())
|
| 130 |
+
|
| 131 |
+
rec_loss = rec_loss #+ self.perceptual_weight * p_loss #.reshape(rec_loss.shape[0]) #
|
| 132 |
+
else:
|
| 133 |
+
p_loss = torch.tensor([0.0])
|
| 134 |
+
|
| 135 |
+
#rec_loss = torch.mean(rec_loss, dim =[1,2,3])
|
| 136 |
+
|
| 137 |
+
nll_loss = rec_loss /(2*std**2) #+ 2* torch.log(std) #+ self.logvar
|
| 138 |
+
nll_loss = 100*torch.mean(nll_loss) + 100*self.perceptual_weight * p_loss.squeeze() #/ (nll_loss.shape[0]) #num_obs
|
| 139 |
+
|
| 140 |
+
#rec_loss = torch.sum(rec_loss, dim=[1,2,3]) / (torch.sum(mask)*3) #*1000 #rec_loss.shape[0]*
|
| 141 |
+
|
| 142 |
+
#nll_loss = torch.mean(rec_loss)
|
| 143 |
+
|
| 144 |
+
#nll_loss = torch.mean(nll_loss) + self.codebook_weight * codebook_loss.mean()
|
| 145 |
+
return nll_loss, nll_loss
|
| 146 |
+
# now the GAN part
|
| 147 |
+
if optimizer_idx == 0:
|
| 148 |
+
# generator update
|
| 149 |
+
if cond is None:
|
| 150 |
+
assert not self.disc_conditional
|
| 151 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
| 152 |
+
else:
|
| 153 |
+
assert self.disc_conditional
|
| 154 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
| 155 |
+
g_loss = -torch.mean(logits_fake) #200*
|
| 156 |
+
|
| 157 |
+
'''
|
| 158 |
+
try:
|
| 159 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
| 160 |
+
except RuntimeError:
|
| 161 |
+
assert not self.training
|
| 162 |
+
d_weight = torch.tensor(0.0)
|
| 163 |
+
|
| 164 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
| 165 |
+
'''
|
| 166 |
+
#d_weight * disc_factor *
|
| 167 |
+
loss = nll_loss + g_loss + self.codebook_weight * codebook_loss.mean()
|
| 168 |
+
|
| 169 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
| 170 |
+
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
| 171 |
+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
| 172 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
| 173 |
+
#"{}/p_loss".format(split): p_loss.detach().mean(),
|
| 174 |
+
#"{}/d_weight".format(split): d_weight.detach(),
|
| 175 |
+
#"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
| 176 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
if predicted_indices is not None:
|
| 180 |
+
assert self.n_classes is not None
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
|
| 183 |
+
log[f"{split}/perplexity"] = perplexity
|
| 184 |
+
log[f"{split}/cluster_usage"] = cluster_usage
|
| 185 |
+
return loss, log
|
| 186 |
+
|
| 187 |
+
if optimizer_idx == 1:
|
| 188 |
+
# second pass for discriminator update
|
| 189 |
+
if cond is None:
|
| 190 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
| 191 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
| 192 |
+
else:
|
| 193 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
| 194 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
| 195 |
+
|
| 196 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
| 197 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
| 198 |
+
|
| 199 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
| 200 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
| 201 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
| 202 |
+
}
|
| 203 |
+
return d_loss, log
|
ldm/guided_diffusion/losses.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
|
| 5 |
+
|
| 6 |
+
class LPIPSWithDiscriminator(nn.Module):
|
| 7 |
+
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
|
| 8 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
| 9 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
| 10 |
+
disc_loss="hinge"):
|
| 11 |
+
|
| 12 |
+
super().__init__()
|
| 13 |
+
assert disc_loss in ["hinge", "vanilla"]
|
| 14 |
+
self.kl_weight = kl_weight
|
| 15 |
+
self.pixel_weight = pixelloss_weight
|
| 16 |
+
self.perceptual_loss = LPIPS().eval().cuda()
|
| 17 |
+
self.perceptual_weight = perceptual_weight
|
| 18 |
+
# output log variance
|
| 19 |
+
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
| 20 |
+
|
| 21 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
| 22 |
+
n_layers=disc_num_layers,
|
| 23 |
+
use_actnorm=use_actnorm
|
| 24 |
+
).apply(weights_init).cuda()
|
| 25 |
+
self.discriminator_iter_start = disc_start
|
| 26 |
+
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
| 27 |
+
self.disc_factor = disc_factor
|
| 28 |
+
self.discriminator_weight = disc_weight
|
| 29 |
+
self.disc_conditional = disc_conditional
|
| 30 |
+
|
| 31 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, reconstructions, last_layer=None):
|
| 32 |
+
if last_layer is not None:
|
| 33 |
+
|
| 34 |
+
nll_grads = torch.autograd.grad(nll_loss, reconstructions, retain_graph=True)[0]
|
| 35 |
+
g_grads = torch.autograd.grad(g_loss, reconstructions, retain_graph=True)[0]
|
| 36 |
+
else:
|
| 37 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
| 38 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
| 39 |
+
|
| 40 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
| 41 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
| 42 |
+
d_weight = d_weight * self.discriminator_weight
|
| 43 |
+
return d_weight
|
| 44 |
+
|
| 45 |
+
def forward(self, inputs, reconstructions, mask, optimizer_idx,
|
| 46 |
+
global_step, posteriors = None, last_layer=None, cond=None, split="train",
|
| 47 |
+
weights=None):
|
| 48 |
+
rec_loss = torch.abs(inputs.contiguous()*(mask) - reconstructions.contiguous()*(mask))
|
| 49 |
+
if self.perceptual_weight > 0:
|
| 50 |
+
p_loss = self.perceptual_loss(inputs.contiguous()*(mask), reconstructions.contiguous()*(mask))
|
| 51 |
+
rec_loss = rec_loss
|
| 52 |
+
|
| 53 |
+
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
| 54 |
+
#weighted_nll_loss = nll_loss
|
| 55 |
+
#if weights is not None:
|
| 56 |
+
# weighted_nll_loss = weights*nll_loss
|
| 57 |
+
|
| 58 |
+
#weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
| 59 |
+
nll_loss = 100*torch.mean(nll_loss, dim = [1,2,3]) + 100*self.perceptual_weight * p_loss.squeeze() #/ nll_loss.shape[0]
|
| 60 |
+
#kl_loss = posteriors.kl()
|
| 61 |
+
#kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
| 62 |
+
|
| 63 |
+
return nll_loss, nll_loss
|
| 64 |
+
#return weighted_nll_loss, nll_loss
|
| 65 |
+
# now the GAN part
|
| 66 |
+
if optimizer_idx == 0:
|
| 67 |
+
# generator update
|
| 68 |
+
if cond is None:
|
| 69 |
+
assert not self.disc_conditional
|
| 70 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
| 71 |
+
else:
|
| 72 |
+
assert self.disc_conditional
|
| 73 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
| 74 |
+
g_loss = -torch.mean(logits_fake)
|
| 75 |
+
|
| 76 |
+
if self.disc_factor > 0.0:
|
| 77 |
+
try:
|
| 78 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, reconstructions, last_layer=last_layer)
|
| 79 |
+
except RuntimeError:
|
| 80 |
+
assert not self.training
|
| 81 |
+
d_weight = torch.tensor(0.0)
|
| 82 |
+
else:
|
| 83 |
+
d_weight = torch.tensor(0.0)
|
| 84 |
+
|
| 85 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
| 86 |
+
#+ self.kl_weight * kl_loss
|
| 87 |
+
#print("GAN Losss : ", d_weight * g_loss)
|
| 88 |
+
loss = weighted_nll_loss #+ d_weight * g_loss
|
| 89 |
+
|
| 90 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
|
| 91 |
+
#"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
|
| 92 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
| 93 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
| 94 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
| 95 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
| 96 |
+
}
|
| 97 |
+
return loss, log
|
| 98 |
+
|
| 99 |
+
if optimizer_idx == 1:
|
| 100 |
+
# second pass for discriminator update
|
| 101 |
+
if cond is None:
|
| 102 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
| 103 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
| 104 |
+
else:
|
| 105 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
| 106 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
| 107 |
+
|
| 108 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
| 109 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
| 110 |
+
|
| 111 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
| 112 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
| 113 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
| 114 |
+
}
|
| 115 |
+
return d_loss, log
|
| 116 |
+
|
ldm/lr_scheduler.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class LambdaWarmUpCosineScheduler:
|
| 5 |
+
"""
|
| 6 |
+
note: use with a base_lr of 1.0
|
| 7 |
+
"""
|
| 8 |
+
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
| 9 |
+
self.lr_warm_up_steps = warm_up_steps
|
| 10 |
+
self.lr_start = lr_start
|
| 11 |
+
self.lr_min = lr_min
|
| 12 |
+
self.lr_max = lr_max
|
| 13 |
+
self.lr_max_decay_steps = max_decay_steps
|
| 14 |
+
self.last_lr = 0.
|
| 15 |
+
self.verbosity_interval = verbosity_interval
|
| 16 |
+
|
| 17 |
+
def schedule(self, n, **kwargs):
|
| 18 |
+
if self.verbosity_interval > 0:
|
| 19 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
| 20 |
+
if n < self.lr_warm_up_steps:
|
| 21 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
| 22 |
+
self.last_lr = lr
|
| 23 |
+
return lr
|
| 24 |
+
else:
|
| 25 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
| 26 |
+
t = min(t, 1.0)
|
| 27 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
| 28 |
+
1 + np.cos(t * np.pi))
|
| 29 |
+
self.last_lr = lr
|
| 30 |
+
return lr
|
| 31 |
+
|
| 32 |
+
def __call__(self, n, **kwargs):
|
| 33 |
+
return self.schedule(n,**kwargs)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class LambdaWarmUpCosineScheduler2:
|
| 37 |
+
"""
|
| 38 |
+
supports repeated iterations, configurable via lists
|
| 39 |
+
note: use with a base_lr of 1.0.
|
| 40 |
+
"""
|
| 41 |
+
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
| 42 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
| 43 |
+
self.lr_warm_up_steps = warm_up_steps
|
| 44 |
+
self.lr_warm_up_steps =[1000]
|
| 45 |
+
self.f_start = f_start
|
| 46 |
+
self.f_min = f_min
|
| 47 |
+
self.f_max = f_max
|
| 48 |
+
self.cycle_lengths = cycle_lengths
|
| 49 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
| 50 |
+
self.last_f = 0.
|
| 51 |
+
self.verbosity_interval = verbosity_interval
|
| 52 |
+
|
| 53 |
+
def find_in_interval(self, n):
|
| 54 |
+
interval = 0
|
| 55 |
+
for cl in self.cum_cycles[1:]:
|
| 56 |
+
if n <= cl:
|
| 57 |
+
return interval
|
| 58 |
+
interval += 1
|
| 59 |
+
|
| 60 |
+
def schedule(self, n, **kwargs):
|
| 61 |
+
cycle = self.find_in_interval(n)
|
| 62 |
+
n = n - self.cum_cycles[cycle]
|
| 63 |
+
if self.verbosity_interval > 0:
|
| 64 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
| 65 |
+
f"current cycle {cycle}")
|
| 66 |
+
if n < self.lr_warm_up_steps[cycle]:
|
| 67 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
| 68 |
+
self.last_f = f
|
| 69 |
+
return f
|
| 70 |
+
else:
|
| 71 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
| 72 |
+
t = min(t, 1.0)
|
| 73 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
| 74 |
+
1 + np.cos(t * np.pi))
|
| 75 |
+
self.last_f = f
|
| 76 |
+
return f
|
| 77 |
+
|
| 78 |
+
def __call__(self, n, **kwargs):
|
| 79 |
+
return self.schedule(n, **kwargs)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
| 83 |
+
|
| 84 |
+
def schedule(self, n, **kwargs):
|
| 85 |
+
cycle = self.find_in_interval(n)
|
| 86 |
+
n = n - self.cum_cycles[cycle]
|
| 87 |
+
if self.verbosity_interval > 0:
|
| 88 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
| 89 |
+
f"current cycle {cycle}")
|
| 90 |
+
|
| 91 |
+
if n < self.lr_warm_up_steps[cycle]:
|
| 92 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
| 93 |
+
self.last_f = f
|
| 94 |
+
return f
|
| 95 |
+
else:
|
| 96 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
| 97 |
+
self.last_f = f
|
| 98 |
+
return f
|
| 99 |
+
|
ldm/models/autoencoder.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pytorch_lightning as pl
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from contextlib import contextmanager
|
| 5 |
+
|
| 6 |
+
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
| 7 |
+
|
| 8 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
| 9 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 10 |
+
|
| 11 |
+
from ldm.util import instantiate_from_config
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class VQModel(pl.LightningModule):
|
| 15 |
+
def __init__(self,
|
| 16 |
+
ddconfig,
|
| 17 |
+
lossconfig,
|
| 18 |
+
n_embed,
|
| 19 |
+
embed_dim,
|
| 20 |
+
ckpt_path=None,
|
| 21 |
+
ignore_keys=[],
|
| 22 |
+
image_key="image",
|
| 23 |
+
colorize_nlabels=None,
|
| 24 |
+
monitor=None,
|
| 25 |
+
batch_resize_range=None,
|
| 26 |
+
scheduler_config=None,
|
| 27 |
+
lr_g_factor=1.0,
|
| 28 |
+
remap=None,
|
| 29 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
| 30 |
+
use_ema=False
|
| 31 |
+
):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.embed_dim = embed_dim
|
| 34 |
+
self.n_embed = n_embed
|
| 35 |
+
self.image_key = image_key
|
| 36 |
+
self.encoder = Encoder(**ddconfig)
|
| 37 |
+
self.decoder = Decoder(**ddconfig)
|
| 38 |
+
self.loss = instantiate_from_config(lossconfig)
|
| 39 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
| 40 |
+
remap=remap,
|
| 41 |
+
sane_index_shape=sane_index_shape)
|
| 42 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
| 43 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 44 |
+
if colorize_nlabels is not None:
|
| 45 |
+
assert type(colorize_nlabels)==int
|
| 46 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 47 |
+
if monitor is not None:
|
| 48 |
+
self.monitor = monitor
|
| 49 |
+
self.batch_resize_range = batch_resize_range
|
| 50 |
+
if self.batch_resize_range is not None:
|
| 51 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
| 52 |
+
|
| 53 |
+
self.use_ema = use_ema
|
| 54 |
+
if self.use_ema:
|
| 55 |
+
self.model_ema = LitEma(self)
|
| 56 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 57 |
+
|
| 58 |
+
if ckpt_path is not None:
|
| 59 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 60 |
+
self.scheduler_config = scheduler_config
|
| 61 |
+
self.lr_g_factor = lr_g_factor
|
| 62 |
+
|
| 63 |
+
@contextmanager
|
| 64 |
+
def ema_scope(self, context=None):
|
| 65 |
+
if self.use_ema:
|
| 66 |
+
self.model_ema.store(self.parameters())
|
| 67 |
+
self.model_ema.copy_to(self)
|
| 68 |
+
if context is not None:
|
| 69 |
+
print(f"{context}: Switched to EMA weights")
|
| 70 |
+
try:
|
| 71 |
+
yield None
|
| 72 |
+
finally:
|
| 73 |
+
if self.use_ema:
|
| 74 |
+
self.model_ema.restore(self.parameters())
|
| 75 |
+
if context is not None:
|
| 76 |
+
print(f"{context}: Restored training weights")
|
| 77 |
+
|
| 78 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 79 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 80 |
+
keys = list(sd.keys())
|
| 81 |
+
for k in keys:
|
| 82 |
+
for ik in ignore_keys:
|
| 83 |
+
if k.startswith(ik):
|
| 84 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 85 |
+
del sd[k]
|
| 86 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
| 87 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 88 |
+
if len(missing) > 0:
|
| 89 |
+
print(f"Missing Keys: {missing}")
|
| 90 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 91 |
+
|
| 92 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 93 |
+
if self.use_ema:
|
| 94 |
+
self.model_ema(self)
|
| 95 |
+
|
| 96 |
+
def encode(self, x, return_all=False):
|
| 97 |
+
h = self.encoder(x)
|
| 98 |
+
h = self.quant_conv(h)
|
| 99 |
+
quant, emb_loss, info = self.quantize(h)
|
| 100 |
+
return quant, emb_loss, info
|
| 101 |
+
|
| 102 |
+
def encode_to_prequant(self, x):
|
| 103 |
+
h = self.encoder(x)
|
| 104 |
+
h = self.quant_conv(h)
|
| 105 |
+
return h
|
| 106 |
+
|
| 107 |
+
def decode(self, quant):
|
| 108 |
+
quant = self.post_quant_conv(quant)
|
| 109 |
+
dec = self.decoder(quant)
|
| 110 |
+
return dec
|
| 111 |
+
|
| 112 |
+
def decode_code(self, code_b):
|
| 113 |
+
quant_b = self.quantize.embed_code(code_b)
|
| 114 |
+
dec = self.decode(quant_b)
|
| 115 |
+
return dec
|
| 116 |
+
|
| 117 |
+
def forward(self, input, return_pred_indices=False):
|
| 118 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
| 119 |
+
dec = self.decode(quant)
|
| 120 |
+
if return_pred_indices:
|
| 121 |
+
return dec, diff, ind
|
| 122 |
+
return dec, diff
|
| 123 |
+
|
| 124 |
+
def get_input(self, batch, k):
|
| 125 |
+
x = batch[k]
|
| 126 |
+
if len(x.shape) == 3:
|
| 127 |
+
x = x[..., None]
|
| 128 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 129 |
+
if self.batch_resize_range is not None:
|
| 130 |
+
lower_size = self.batch_resize_range[0]
|
| 131 |
+
upper_size = self.batch_resize_range[1]
|
| 132 |
+
if self.global_step <= 4:
|
| 133 |
+
# do the first few batches with max size to avoid later oom
|
| 134 |
+
new_resize = upper_size
|
| 135 |
+
else:
|
| 136 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
| 137 |
+
if new_resize != x.shape[2]:
|
| 138 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
| 139 |
+
x = x.detach()
|
| 140 |
+
return x
|
| 141 |
+
|
| 142 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 143 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
| 144 |
+
# try not to fool the heuristics
|
| 145 |
+
x = self.get_input(batch, self.image_key)
|
| 146 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
| 147 |
+
|
| 148 |
+
if optimizer_idx == 0:
|
| 149 |
+
# autoencode
|
| 150 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
| 151 |
+
last_layer=self.get_last_layer(), split="train",
|
| 152 |
+
predicted_indices=ind)
|
| 153 |
+
|
| 154 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
| 155 |
+
return aeloss
|
| 156 |
+
|
| 157 |
+
if optimizer_idx == 1:
|
| 158 |
+
# discriminator
|
| 159 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
| 160 |
+
last_layer=self.get_last_layer(), split="train")
|
| 161 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
| 162 |
+
return discloss
|
| 163 |
+
|
| 164 |
+
def validation_step(self, batch, batch_idx):
|
| 165 |
+
log_dict = self._validation_step(batch, batch_idx)
|
| 166 |
+
with self.ema_scope():
|
| 167 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
| 168 |
+
return log_dict
|
| 169 |
+
|
| 170 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
| 171 |
+
x = self.get_input(batch, self.image_key)
|
| 172 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
| 173 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
| 174 |
+
self.global_step,
|
| 175 |
+
last_layer=self.get_last_layer(),
|
| 176 |
+
split="val"+suffix,
|
| 177 |
+
predicted_indices=ind
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
| 181 |
+
self.global_step,
|
| 182 |
+
last_layer=self.get_last_layer(),
|
| 183 |
+
split="val"+suffix,
|
| 184 |
+
predicted_indices=ind
|
| 185 |
+
)
|
| 186 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
| 187 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
| 188 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
| 189 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
| 190 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
| 191 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
| 192 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
| 193 |
+
self.log_dict(log_dict_ae)
|
| 194 |
+
self.log_dict(log_dict_disc)
|
| 195 |
+
return self.log_dict
|
| 196 |
+
|
| 197 |
+
def configure_optimizers(self):
|
| 198 |
+
lr_d = self.learning_rate
|
| 199 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
| 200 |
+
print("lr_d", lr_d)
|
| 201 |
+
print("lr_g", lr_g)
|
| 202 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
| 203 |
+
list(self.decoder.parameters())+
|
| 204 |
+
list(self.quantize.parameters())+
|
| 205 |
+
list(self.quant_conv.parameters())+
|
| 206 |
+
list(self.post_quant_conv.parameters()),
|
| 207 |
+
lr=lr_g, betas=(0.5, 0.9))
|
| 208 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 209 |
+
lr=lr_d, betas=(0.5, 0.9))
|
| 210 |
+
|
| 211 |
+
if self.scheduler_config is not None:
|
| 212 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
| 213 |
+
|
| 214 |
+
print("Setting up LambdaLR scheduler...")
|
| 215 |
+
scheduler = [
|
| 216 |
+
{
|
| 217 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
| 218 |
+
'interval': 'step',
|
| 219 |
+
'frequency': 1
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
| 223 |
+
'interval': 'step',
|
| 224 |
+
'frequency': 1
|
| 225 |
+
},
|
| 226 |
+
]
|
| 227 |
+
return [opt_ae, opt_disc], scheduler
|
| 228 |
+
return [opt_ae, opt_disc], []
|
| 229 |
+
|
| 230 |
+
def get_last_layer(self):
|
| 231 |
+
return self.decoder.conv_out.weight
|
| 232 |
+
|
| 233 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
| 234 |
+
log = dict()
|
| 235 |
+
x = self.get_input(batch, self.image_key)
|
| 236 |
+
x = x.to(self.device)
|
| 237 |
+
if only_inputs:
|
| 238 |
+
log["inputs"] = x
|
| 239 |
+
return log
|
| 240 |
+
xrec, _ = self(x)
|
| 241 |
+
if x.shape[1] > 3:
|
| 242 |
+
# colorize with random projection
|
| 243 |
+
assert xrec.shape[1] > 3
|
| 244 |
+
x = self.to_rgb(x)
|
| 245 |
+
xrec = self.to_rgb(xrec)
|
| 246 |
+
log["inputs"] = x
|
| 247 |
+
log["reconstructions"] = xrec
|
| 248 |
+
if plot_ema:
|
| 249 |
+
with self.ema_scope():
|
| 250 |
+
xrec_ema, _ = self(x)
|
| 251 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
| 252 |
+
log["reconstructions_ema"] = xrec_ema
|
| 253 |
+
return log
|
| 254 |
+
|
| 255 |
+
def to_rgb(self, x):
|
| 256 |
+
assert self.image_key == "segmentation"
|
| 257 |
+
if not hasattr(self, "colorize"):
|
| 258 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 259 |
+
x = F.conv2d(x, weight=self.colorize)
|
| 260 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 261 |
+
return x
|
| 262 |
+
|
| 263 |
+
class VQModelInterface(VQModel):
|
| 264 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
| 265 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
| 266 |
+
self.embed_dim = embed_dim
|
| 267 |
+
|
| 268 |
+
def encode(self, x, return_all=False):
|
| 269 |
+
h = self.encoder(x)
|
| 270 |
+
h = self.quant_conv(h)
|
| 271 |
+
return h
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def decode(self, h, force_not_quantize=False):
|
| 275 |
+
# also go through quantization layer
|
| 276 |
+
if not force_not_quantize:
|
| 277 |
+
quant, emb_loss, info = self.quantize(h)
|
| 278 |
+
else:
|
| 279 |
+
quant = h
|
| 280 |
+
quant = self.post_quant_conv(quant)
|
| 281 |
+
dec = self.decoder(quant)
|
| 282 |
+
return dec
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
class AutoencoderKL(pl.LightningModule):
|
| 286 |
+
def __init__(self,
|
| 287 |
+
ddconfig,
|
| 288 |
+
lossconfig,
|
| 289 |
+
embed_dim,
|
| 290 |
+
ckpt_path=None,
|
| 291 |
+
ignore_keys=[],
|
| 292 |
+
image_key="image",
|
| 293 |
+
colorize_nlabels=None,
|
| 294 |
+
monitor=None,
|
| 295 |
+
):
|
| 296 |
+
super().__init__()
|
| 297 |
+
self.image_key = image_key
|
| 298 |
+
self.encoder = Encoder(**ddconfig)
|
| 299 |
+
self.decoder = Decoder(**ddconfig)
|
| 300 |
+
self.loss = instantiate_from_config(lossconfig)
|
| 301 |
+
assert ddconfig["double_z"]
|
| 302 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 303 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 304 |
+
self.embed_dim = embed_dim
|
| 305 |
+
if colorize_nlabels is not None:
|
| 306 |
+
assert type(colorize_nlabels)==int
|
| 307 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 308 |
+
if monitor is not None:
|
| 309 |
+
self.monitor = monitor
|
| 310 |
+
if ckpt_path is not None:
|
| 311 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 312 |
+
|
| 313 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 314 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 315 |
+
keys = list(sd.keys())
|
| 316 |
+
for k in keys:
|
| 317 |
+
for ik in ignore_keys:
|
| 318 |
+
if k.startswith(ik):
|
| 319 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 320 |
+
del sd[k]
|
| 321 |
+
self.load_state_dict(sd, strict=False)
|
| 322 |
+
print(f"Restored from {path}")
|
| 323 |
+
|
| 324 |
+
def encode(self, x, return_all=False):
|
| 325 |
+
h = self.encoder(x)
|
| 326 |
+
moments = self.quant_conv(h)
|
| 327 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 328 |
+
if return_all: return posterior, moments
|
| 329 |
+
return posterior
|
| 330 |
+
|
| 331 |
+
def decode(self, z):
|
| 332 |
+
z = self.post_quant_conv(z)
|
| 333 |
+
dec = self.decoder(z)
|
| 334 |
+
return dec
|
| 335 |
+
|
| 336 |
+
def forward(self, input, sample_posterior=True):
|
| 337 |
+
posterior = self.encode(input)
|
| 338 |
+
if sample_posterior:
|
| 339 |
+
z = posterior.sample()
|
| 340 |
+
else:
|
| 341 |
+
z = posterior.mode()
|
| 342 |
+
dec = self.decode(z)
|
| 343 |
+
return dec, posterior
|
| 344 |
+
|
| 345 |
+
def get_input(self, batch, k):
|
| 346 |
+
x = batch[k]
|
| 347 |
+
if len(x.shape) == 3:
|
| 348 |
+
x = x[..., None]
|
| 349 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 350 |
+
return x
|
| 351 |
+
|
| 352 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 353 |
+
inputs = self.get_input(batch, self.image_key)
|
| 354 |
+
reconstructions, posterior = self(inputs)
|
| 355 |
+
|
| 356 |
+
if optimizer_idx == 0:
|
| 357 |
+
# train encoder+decoder+logvar
|
| 358 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 359 |
+
last_layer=self.get_last_layer(), split="train")
|
| 360 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 361 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 362 |
+
return aeloss
|
| 363 |
+
|
| 364 |
+
if optimizer_idx == 1:
|
| 365 |
+
# train the discriminator
|
| 366 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 367 |
+
last_layer=self.get_last_layer(), split="train")
|
| 368 |
+
|
| 369 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 370 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 371 |
+
return discloss
|
| 372 |
+
|
| 373 |
+
def validation_step(self, batch, batch_idx):
|
| 374 |
+
inputs = self.get_input(batch, self.image_key)
|
| 375 |
+
reconstructions, posterior = self(inputs)
|
| 376 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
| 377 |
+
last_layer=self.get_last_layer(), split="val")
|
| 378 |
+
|
| 379 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
| 380 |
+
last_layer=self.get_last_layer(), split="val")
|
| 381 |
+
|
| 382 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
| 383 |
+
self.log_dict(log_dict_ae)
|
| 384 |
+
self.log_dict(log_dict_disc)
|
| 385 |
+
return self.log_dict
|
| 386 |
+
|
| 387 |
+
def configure_optimizers(self):
|
| 388 |
+
lr = self.learning_rate
|
| 389 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
| 390 |
+
list(self.decoder.parameters())+
|
| 391 |
+
list(self.quant_conv.parameters())+
|
| 392 |
+
list(self.post_quant_conv.parameters()),
|
| 393 |
+
lr=lr, betas=(0.5, 0.9))
|
| 394 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 395 |
+
lr=lr, betas=(0.5, 0.9))
|
| 396 |
+
return [opt_ae, opt_disc], []
|
| 397 |
+
|
| 398 |
+
def get_last_layer(self):
|
| 399 |
+
return self.decoder.conv_out.weight
|
| 400 |
+
|
| 401 |
+
@torch.no_grad()
|
| 402 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
| 403 |
+
log = dict()
|
| 404 |
+
x = self.get_input(batch, self.image_key)
|
| 405 |
+
x = x.to(self.device)
|
| 406 |
+
if not only_inputs:
|
| 407 |
+
xrec, posterior = self(x)
|
| 408 |
+
if x.shape[1] > 3:
|
| 409 |
+
# colorize with random projection
|
| 410 |
+
assert xrec.shape[1] > 3
|
| 411 |
+
x = self.to_rgb(x)
|
| 412 |
+
xrec = self.to_rgb(xrec)
|
| 413 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
| 414 |
+
log["reconstructions"] = xrec
|
| 415 |
+
log["inputs"] = x
|
| 416 |
+
return log
|
| 417 |
+
|
| 418 |
+
def to_rgb(self, x):
|
| 419 |
+
assert self.image_key == "segmentation"
|
| 420 |
+
if not hasattr(self, "colorize"):
|
| 421 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 422 |
+
x = F.conv2d(x, weight=self.colorize)
|
| 423 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 424 |
+
return x
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
class IdentityFirstStage(torch.nn.Module):
|
| 428 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
| 429 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
| 430 |
+
super().__init__()
|
| 431 |
+
|
| 432 |
+
def encode(self, x, *args, **kwargs):
|
| 433 |
+
return x
|
| 434 |
+
|
| 435 |
+
def decode(self, x, *args, **kwargs):
|
| 436 |
+
return x
|
| 437 |
+
|
| 438 |
+
def quantize(self, x, *args, **kwargs):
|
| 439 |
+
if self.vq_interface:
|
| 440 |
+
return x, None, [None, None, None]
|
| 441 |
+
return x
|
| 442 |
+
|
| 443 |
+
def forward(self, x, *args, **kwargs):
|
| 444 |
+
return x
|
ldm/models/diffusion/.ipynb_checkpoints/ddpm-checkpoint.py
ADDED
|
@@ -0,0 +1,1445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
wild mixture of
|
| 3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
| 5 |
+
https://github.com/CompVis/taming-transformers
|
| 6 |
+
-- merci
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pytorch_lightning as pl
|
| 13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 14 |
+
from einops import rearrange, repeat
|
| 15 |
+
from contextlib import contextmanager
|
| 16 |
+
from functools import partial
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
from torchvision.utils import make_grid
|
| 19 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
| 20 |
+
|
| 21 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
| 22 |
+
from ldm.modules.ema import LitEma
|
| 23 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
| 24 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
| 25 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
| 26 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
| 30 |
+
'crossattn': 'c_crossattn',
|
| 31 |
+
'adm': 'y'}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def disabled_train(self, mode=True):
|
| 35 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 36 |
+
does not change anymore."""
|
| 37 |
+
return self
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def uniform_on_device(r1, r2, shape, device):
|
| 41 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class DDPM(pl.LightningModule):
|
| 45 |
+
# classic DDPM with Gaussian diffusion, in image space
|
| 46 |
+
def __init__(self,
|
| 47 |
+
unet_config,
|
| 48 |
+
timesteps=1000,
|
| 49 |
+
beta_schedule="linear",
|
| 50 |
+
loss_type="l2",
|
| 51 |
+
ckpt_path=None,
|
| 52 |
+
ignore_keys=[],
|
| 53 |
+
load_only_unet=False,
|
| 54 |
+
monitor="val/loss",
|
| 55 |
+
use_ema=True,
|
| 56 |
+
first_stage_key="image",
|
| 57 |
+
image_size=256,
|
| 58 |
+
channels=3,
|
| 59 |
+
log_every_t=100,
|
| 60 |
+
clip_denoised=True,
|
| 61 |
+
linear_start=1e-4,
|
| 62 |
+
linear_end=2e-2,
|
| 63 |
+
cosine_s=8e-3,
|
| 64 |
+
given_betas=None,
|
| 65 |
+
original_elbo_weight=0.,
|
| 66 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
| 67 |
+
l_simple_weight=1.,
|
| 68 |
+
conditioning_key=None,
|
| 69 |
+
parameterization="eps", # all assuming fixed variance schedules
|
| 70 |
+
scheduler_config=None,
|
| 71 |
+
use_positional_encodings=False,
|
| 72 |
+
learn_logvar=False,
|
| 73 |
+
logvar_init=0.,
|
| 74 |
+
):
|
| 75 |
+
super().__init__()
|
| 76 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
| 77 |
+
self.parameterization = parameterization
|
| 78 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
| 79 |
+
self.cond_stage_model = None
|
| 80 |
+
self.clip_denoised = clip_denoised
|
| 81 |
+
self.log_every_t = log_every_t
|
| 82 |
+
self.first_stage_key = first_stage_key
|
| 83 |
+
self.image_size = image_size # try conv?
|
| 84 |
+
self.channels = channels
|
| 85 |
+
self.use_positional_encodings = use_positional_encodings
|
| 86 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
| 87 |
+
count_params(self.model, verbose=True)
|
| 88 |
+
self.use_ema = use_ema
|
| 89 |
+
if self.use_ema:
|
| 90 |
+
self.model_ema = LitEma(self.model)
|
| 91 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 92 |
+
|
| 93 |
+
self.use_scheduler = scheduler_config is not None
|
| 94 |
+
if self.use_scheduler:
|
| 95 |
+
self.scheduler_config = scheduler_config
|
| 96 |
+
|
| 97 |
+
self.v_posterior = v_posterior
|
| 98 |
+
self.original_elbo_weight = original_elbo_weight
|
| 99 |
+
self.l_simple_weight = l_simple_weight
|
| 100 |
+
|
| 101 |
+
if monitor is not None:
|
| 102 |
+
self.monitor = monitor
|
| 103 |
+
if ckpt_path is not None:
|
| 104 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
| 105 |
+
|
| 106 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
| 107 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
| 108 |
+
|
| 109 |
+
self.loss_type = loss_type
|
| 110 |
+
|
| 111 |
+
self.learn_logvar = learn_logvar
|
| 112 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
| 113 |
+
if self.learn_logvar:
|
| 114 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 118 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 119 |
+
if exists(given_betas):
|
| 120 |
+
betas = given_betas
|
| 121 |
+
else:
|
| 122 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
| 123 |
+
cosine_s=cosine_s)
|
| 124 |
+
alphas = 1. - betas
|
| 125 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
| 126 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
| 127 |
+
|
| 128 |
+
timesteps, = betas.shape
|
| 129 |
+
self.num_timesteps = int(timesteps)
|
| 130 |
+
self.linear_start = linear_start
|
| 131 |
+
self.linear_end = linear_end
|
| 132 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
| 133 |
+
|
| 134 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
| 135 |
+
|
| 136 |
+
self.register_buffer('betas', to_torch(betas))
|
| 137 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 138 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
| 139 |
+
|
| 140 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 141 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
| 142 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
| 143 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
| 144 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
| 145 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
| 146 |
+
|
| 147 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
| 148 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
| 149 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
| 150 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
| 151 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
| 152 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
| 153 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
| 154 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
| 155 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
| 156 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
| 157 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
| 158 |
+
|
| 159 |
+
if self.parameterization == "eps":
|
| 160 |
+
lvlb_weights = self.betas ** 2 / (
|
| 161 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
| 162 |
+
elif self.parameterization == "x0":
|
| 163 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
| 164 |
+
else:
|
| 165 |
+
raise NotImplementedError("mu not supported")
|
| 166 |
+
# TODO how to choose this term
|
| 167 |
+
lvlb_weights[0] = lvlb_weights[1]
|
| 168 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
| 169 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
| 170 |
+
|
| 171 |
+
@contextmanager
|
| 172 |
+
def ema_scope(self, context=None):
|
| 173 |
+
if self.use_ema:
|
| 174 |
+
self.model_ema.store(self.model.parameters())
|
| 175 |
+
self.model_ema.copy_to(self.model)
|
| 176 |
+
if context is not None:
|
| 177 |
+
print(f"{context}: Switched to EMA weights")
|
| 178 |
+
try:
|
| 179 |
+
yield None
|
| 180 |
+
finally:
|
| 181 |
+
if self.use_ema:
|
| 182 |
+
self.model_ema.restore(self.model.parameters())
|
| 183 |
+
if context is not None:
|
| 184 |
+
print(f"{context}: Restored training weights")
|
| 185 |
+
|
| 186 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
| 187 |
+
sd = torch.load(path, map_location="cpu")
|
| 188 |
+
if "state_dict" in list(sd.keys()):
|
| 189 |
+
sd = sd["state_dict"]
|
| 190 |
+
keys = list(sd.keys())
|
| 191 |
+
for k in keys:
|
| 192 |
+
for ik in ignore_keys:
|
| 193 |
+
if k.startswith(ik):
|
| 194 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 195 |
+
del sd[k]
|
| 196 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
| 197 |
+
sd, strict=False)
|
| 198 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 199 |
+
if len(missing) > 0:
|
| 200 |
+
print(f"Missing Keys: {missing}")
|
| 201 |
+
if len(unexpected) > 0:
|
| 202 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 203 |
+
|
| 204 |
+
def q_mean_variance(self, x_start, t):
|
| 205 |
+
"""
|
| 206 |
+
Get the distribution q(x_t | x_0).
|
| 207 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
| 208 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
| 209 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
| 210 |
+
"""
|
| 211 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
| 212 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
| 213 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
| 214 |
+
return mean, variance, log_variance
|
| 215 |
+
|
| 216 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
| 217 |
+
return (
|
| 218 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
| 219 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
def q_posterior(self, x_start, x_t, t):
|
| 223 |
+
posterior_mean = (
|
| 224 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
| 225 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 226 |
+
)
|
| 227 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
| 228 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
| 229 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 230 |
+
|
| 231 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
| 232 |
+
model_out = self.model(x, t)
|
| 233 |
+
if self.parameterization == "eps":
|
| 234 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 235 |
+
elif self.parameterization == "x0":
|
| 236 |
+
x_recon = model_out
|
| 237 |
+
if clip_denoised:
|
| 238 |
+
x_recon.clamp_(-1., 1.)
|
| 239 |
+
|
| 240 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 241 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 242 |
+
|
| 243 |
+
@torch.no_grad()
|
| 244 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
| 245 |
+
b, *_, device = *x.shape, x.device
|
| 246 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
| 247 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
| 248 |
+
# no noise when t == 0
|
| 249 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 250 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 251 |
+
|
| 252 |
+
@torch.no_grad()
|
| 253 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
| 254 |
+
device = self.betas.device
|
| 255 |
+
b = shape[0]
|
| 256 |
+
img = torch.randn(shape, device=device)
|
| 257 |
+
intermediates = [img]
|
| 258 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
| 259 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
| 260 |
+
clip_denoised=self.clip_denoised)
|
| 261 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
| 262 |
+
intermediates.append(img)
|
| 263 |
+
if return_intermediates:
|
| 264 |
+
return img, intermediates
|
| 265 |
+
return img
|
| 266 |
+
|
| 267 |
+
@torch.no_grad()
|
| 268 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
| 269 |
+
image_size = self.image_size
|
| 270 |
+
channels = self.channels
|
| 271 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
| 272 |
+
return_intermediates=return_intermediates)
|
| 273 |
+
|
| 274 |
+
def q_sample(self, x_start, t, noise=None):
|
| 275 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 276 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
| 277 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
| 278 |
+
|
| 279 |
+
def get_loss(self, pred, target, mean=True):
|
| 280 |
+
if self.loss_type == 'l1':
|
| 281 |
+
loss = (target - pred).abs()
|
| 282 |
+
if mean:
|
| 283 |
+
loss = loss.mean()
|
| 284 |
+
elif self.loss_type == 'l2':
|
| 285 |
+
if mean:
|
| 286 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
| 287 |
+
else:
|
| 288 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
| 289 |
+
else:
|
| 290 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
| 291 |
+
|
| 292 |
+
return loss
|
| 293 |
+
|
| 294 |
+
def p_losses(self, x_start, t, noise=None):
|
| 295 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 296 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 297 |
+
model_out = self.model(x_noisy, t)
|
| 298 |
+
|
| 299 |
+
loss_dict = {}
|
| 300 |
+
if self.parameterization == "eps":
|
| 301 |
+
target = noise
|
| 302 |
+
elif self.parameterization == "x0":
|
| 303 |
+
target = x_start
|
| 304 |
+
else:
|
| 305 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
| 306 |
+
|
| 307 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
| 308 |
+
|
| 309 |
+
log_prefix = 'train' if self.training else 'val'
|
| 310 |
+
|
| 311 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
| 312 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
| 313 |
+
|
| 314 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
| 315 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
| 316 |
+
|
| 317 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
| 318 |
+
|
| 319 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
| 320 |
+
|
| 321 |
+
return loss, loss_dict
|
| 322 |
+
|
| 323 |
+
def forward(self, x, *args, **kwargs):
|
| 324 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
| 325 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
| 326 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 327 |
+
return self.p_losses(x, t, *args, **kwargs)
|
| 328 |
+
|
| 329 |
+
def get_input(self, batch, k):
|
| 330 |
+
x = batch[k]
|
| 331 |
+
if len(x.shape) == 3:
|
| 332 |
+
x = x[..., None]
|
| 333 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
| 334 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
| 335 |
+
return x
|
| 336 |
+
|
| 337 |
+
def shared_step(self, batch):
|
| 338 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 339 |
+
loss, loss_dict = self(x)
|
| 340 |
+
return loss, loss_dict
|
| 341 |
+
|
| 342 |
+
def training_step(self, batch, batch_idx):
|
| 343 |
+
loss, loss_dict = self.shared_step(batch)
|
| 344 |
+
|
| 345 |
+
self.log_dict(loss_dict, prog_bar=True,
|
| 346 |
+
logger=True, on_step=True, on_epoch=True)
|
| 347 |
+
|
| 348 |
+
self.log("global_step", self.global_step,
|
| 349 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 350 |
+
|
| 351 |
+
if self.use_scheduler:
|
| 352 |
+
lr = self.optimizers().param_groups[0]['lr']
|
| 353 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 354 |
+
|
| 355 |
+
return loss
|
| 356 |
+
|
| 357 |
+
@torch.no_grad()
|
| 358 |
+
def validation_step(self, batch, batch_idx):
|
| 359 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
| 360 |
+
with self.ema_scope():
|
| 361 |
+
_, loss_dict_ema = self.shared_step(batch)
|
| 362 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
| 363 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 364 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 365 |
+
|
| 366 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 367 |
+
if self.use_ema:
|
| 368 |
+
self.model_ema(self.model)
|
| 369 |
+
|
| 370 |
+
def _get_rows_from_list(self, samples):
|
| 371 |
+
n_imgs_per_row = len(samples)
|
| 372 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
| 373 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
| 374 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 375 |
+
return denoise_grid
|
| 376 |
+
|
| 377 |
+
@torch.no_grad()
|
| 378 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
| 379 |
+
log = dict()
|
| 380 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 381 |
+
N = min(x.shape[0], N)
|
| 382 |
+
n_row = min(x.shape[0], n_row)
|
| 383 |
+
x = x.to(self.device)[:N]
|
| 384 |
+
log["inputs"] = x
|
| 385 |
+
|
| 386 |
+
# get diffusion row
|
| 387 |
+
diffusion_row = list()
|
| 388 |
+
x_start = x[:n_row]
|
| 389 |
+
|
| 390 |
+
for t in range(self.num_timesteps):
|
| 391 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 392 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 393 |
+
t = t.to(self.device).long()
|
| 394 |
+
noise = torch.randn_like(x_start)
|
| 395 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 396 |
+
diffusion_row.append(x_noisy)
|
| 397 |
+
|
| 398 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
| 399 |
+
|
| 400 |
+
if sample:
|
| 401 |
+
# get denoise row
|
| 402 |
+
with self.ema_scope("Plotting"):
|
| 403 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
| 404 |
+
|
| 405 |
+
log["samples"] = samples
|
| 406 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
| 407 |
+
|
| 408 |
+
if return_keys:
|
| 409 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 410 |
+
return log
|
| 411 |
+
else:
|
| 412 |
+
return {key: log[key] for key in return_keys}
|
| 413 |
+
return log
|
| 414 |
+
|
| 415 |
+
def configure_optimizers(self):
|
| 416 |
+
lr = self.learning_rate
|
| 417 |
+
params = list(self.model.parameters())
|
| 418 |
+
if self.learn_logvar:
|
| 419 |
+
params = params + [self.logvar]
|
| 420 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 421 |
+
return opt
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
class LatentDiffusion(DDPM):
|
| 425 |
+
"""main class"""
|
| 426 |
+
def __init__(self,
|
| 427 |
+
first_stage_config,
|
| 428 |
+
cond_stage_config,
|
| 429 |
+
num_timesteps_cond=None,
|
| 430 |
+
cond_stage_key="image",
|
| 431 |
+
cond_stage_trainable=False,
|
| 432 |
+
concat_mode=True,
|
| 433 |
+
cond_stage_forward=None,
|
| 434 |
+
conditioning_key=None,
|
| 435 |
+
scale_factor=1.0,
|
| 436 |
+
scale_by_std=False,
|
| 437 |
+
*args, **kwargs):
|
| 438 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
| 439 |
+
self.scale_by_std = scale_by_std
|
| 440 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
| 441 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
| 442 |
+
if conditioning_key is None:
|
| 443 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
| 444 |
+
if cond_stage_config == '__is_unconditional__':
|
| 445 |
+
conditioning_key = None
|
| 446 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
| 447 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
| 448 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
| 449 |
+
self.concat_mode = concat_mode
|
| 450 |
+
self.cond_stage_trainable = cond_stage_trainable
|
| 451 |
+
self.cond_stage_key = cond_stage_key
|
| 452 |
+
try:
|
| 453 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
| 454 |
+
except:
|
| 455 |
+
self.num_downs = 0
|
| 456 |
+
if not scale_by_std:
|
| 457 |
+
self.scale_factor = scale_factor
|
| 458 |
+
else:
|
| 459 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
| 460 |
+
self.instantiate_first_stage(first_stage_config)
|
| 461 |
+
self.instantiate_cond_stage(cond_stage_config)
|
| 462 |
+
self.cond_stage_forward = cond_stage_forward
|
| 463 |
+
self.clip_denoised = False
|
| 464 |
+
self.bbox_tokenizer = None
|
| 465 |
+
|
| 466 |
+
self.restarted_from_ckpt = False
|
| 467 |
+
if ckpt_path is not None:
|
| 468 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
| 469 |
+
self.restarted_from_ckpt = True
|
| 470 |
+
|
| 471 |
+
def make_cond_schedule(self, ):
|
| 472 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
| 473 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
| 474 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
| 475 |
+
|
| 476 |
+
@rank_zero_only
|
| 477 |
+
@torch.no_grad()
|
| 478 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
| 479 |
+
# only for very first batch
|
| 480 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
| 481 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
| 482 |
+
# set rescale weight to 1./std of encodings
|
| 483 |
+
print("### USING STD-RESCALING ###")
|
| 484 |
+
x = super().get_input(batch, self.first_stage_key)
|
| 485 |
+
x = x.to(self.device)
|
| 486 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 487 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 488 |
+
del self.scale_factor
|
| 489 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
| 490 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
| 491 |
+
print("### USING STD-RESCALING ###")
|
| 492 |
+
|
| 493 |
+
def register_schedule(self,
|
| 494 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 495 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 496 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
| 497 |
+
|
| 498 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
| 499 |
+
if self.shorten_cond_schedule:
|
| 500 |
+
self.make_cond_schedule()
|
| 501 |
+
|
| 502 |
+
def instantiate_first_stage(self, config):
|
| 503 |
+
model = instantiate_from_config(config)
|
| 504 |
+
self.first_stage_model = model.eval()
|
| 505 |
+
self.first_stage_model.train = disabled_train
|
| 506 |
+
for param in self.first_stage_model.parameters():
|
| 507 |
+
param.requires_grad = False
|
| 508 |
+
|
| 509 |
+
def instantiate_cond_stage(self, config):
|
| 510 |
+
if not self.cond_stage_trainable:
|
| 511 |
+
if config == "__is_first_stage__":
|
| 512 |
+
print("Using first stage also as cond stage.")
|
| 513 |
+
self.cond_stage_model = self.first_stage_model
|
| 514 |
+
elif config == "__is_unconditional__":
|
| 515 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
| 516 |
+
self.cond_stage_model = None
|
| 517 |
+
# self.be_unconditional = True
|
| 518 |
+
else:
|
| 519 |
+
model = instantiate_from_config(config)
|
| 520 |
+
self.cond_stage_model = model.eval()
|
| 521 |
+
self.cond_stage_model.train = disabled_train
|
| 522 |
+
for param in self.cond_stage_model.parameters():
|
| 523 |
+
param.requires_grad = False
|
| 524 |
+
else:
|
| 525 |
+
assert config != '__is_first_stage__'
|
| 526 |
+
assert config != '__is_unconditional__'
|
| 527 |
+
model = instantiate_from_config(config)
|
| 528 |
+
self.cond_stage_model = model
|
| 529 |
+
|
| 530 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
| 531 |
+
denoise_row = []
|
| 532 |
+
for zd in tqdm(samples, desc=desc):
|
| 533 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
| 534 |
+
force_not_quantize=force_no_decoder_quantization))
|
| 535 |
+
n_imgs_per_row = len(denoise_row)
|
| 536 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
| 537 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
| 538 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
| 539 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 540 |
+
return denoise_grid
|
| 541 |
+
|
| 542 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
| 543 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
| 544 |
+
z = encoder_posterior.sample()
|
| 545 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
| 546 |
+
z = encoder_posterior
|
| 547 |
+
else:
|
| 548 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
| 549 |
+
return self.scale_factor * z
|
| 550 |
+
|
| 551 |
+
def get_learned_conditioning(self, c):
|
| 552 |
+
if self.cond_stage_forward is None:
|
| 553 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
| 554 |
+
c = self.cond_stage_model.encode(c)
|
| 555 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
| 556 |
+
c = c.mode()
|
| 557 |
+
else:
|
| 558 |
+
c = self.cond_stage_model(c)
|
| 559 |
+
else:
|
| 560 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
| 561 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
| 562 |
+
return c
|
| 563 |
+
|
| 564 |
+
def meshgrid(self, h, w):
|
| 565 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
| 566 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
| 567 |
+
|
| 568 |
+
arr = torch.cat([y, x], dim=-1)
|
| 569 |
+
return arr
|
| 570 |
+
|
| 571 |
+
def delta_border(self, h, w):
|
| 572 |
+
"""
|
| 573 |
+
:param h: height
|
| 574 |
+
:param w: width
|
| 575 |
+
:return: normalized distance to image border,
|
| 576 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
| 577 |
+
"""
|
| 578 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
| 579 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
| 580 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
| 581 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
| 582 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
| 583 |
+
return edge_dist
|
| 584 |
+
|
| 585 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
| 586 |
+
weighting = self.delta_border(h, w)
|
| 587 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
| 588 |
+
self.split_input_params["clip_max_weight"], )
|
| 589 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
| 590 |
+
|
| 591 |
+
if self.split_input_params["tie_braker"]:
|
| 592 |
+
L_weighting = self.delta_border(Ly, Lx)
|
| 593 |
+
L_weighting = torch.clip(L_weighting,
|
| 594 |
+
self.split_input_params["clip_min_tie_weight"],
|
| 595 |
+
self.split_input_params["clip_max_tie_weight"])
|
| 596 |
+
|
| 597 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
| 598 |
+
weighting = weighting * L_weighting
|
| 599 |
+
return weighting
|
| 600 |
+
|
| 601 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
| 602 |
+
"""
|
| 603 |
+
:param x: img of size (bs, c, h, w)
|
| 604 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
| 605 |
+
"""
|
| 606 |
+
bs, nc, h, w = x.shape
|
| 607 |
+
|
| 608 |
+
# number of crops in image
|
| 609 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
| 610 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
| 611 |
+
|
| 612 |
+
if uf == 1 and df == 1:
|
| 613 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 614 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 615 |
+
|
| 616 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
| 617 |
+
|
| 618 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
| 619 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
| 620 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
| 621 |
+
|
| 622 |
+
elif uf > 1 and df == 1:
|
| 623 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 624 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 625 |
+
|
| 626 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
| 627 |
+
dilation=1, padding=0,
|
| 628 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
| 629 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
| 630 |
+
|
| 631 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
| 632 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
| 633 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
| 634 |
+
|
| 635 |
+
elif df > 1 and uf == 1:
|
| 636 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 637 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 638 |
+
|
| 639 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
| 640 |
+
dilation=1, padding=0,
|
| 641 |
+
stride=(stride[0] // df, stride[1] // df))
|
| 642 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
| 643 |
+
|
| 644 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
| 645 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
| 646 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
| 647 |
+
|
| 648 |
+
else:
|
| 649 |
+
raise NotImplementedError
|
| 650 |
+
|
| 651 |
+
return fold, unfold, normalization, weighting
|
| 652 |
+
|
| 653 |
+
@torch.no_grad()
|
| 654 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
| 655 |
+
cond_key=None, return_original_cond=False, bs=None):
|
| 656 |
+
x = super().get_input(batch, k)
|
| 657 |
+
if bs is not None:
|
| 658 |
+
x = x[:bs]
|
| 659 |
+
x = x.to(self.device)
|
| 660 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 661 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 662 |
+
|
| 663 |
+
if self.model.conditioning_key is not None:
|
| 664 |
+
if cond_key is None:
|
| 665 |
+
cond_key = self.cond_stage_key
|
| 666 |
+
if cond_key != self.first_stage_key:
|
| 667 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
| 668 |
+
xc = batch[cond_key]
|
| 669 |
+
elif cond_key == 'class_label':
|
| 670 |
+
xc = batch
|
| 671 |
+
else:
|
| 672 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
| 673 |
+
else:
|
| 674 |
+
xc = x
|
| 675 |
+
if not self.cond_stage_trainable or force_c_encode:
|
| 676 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
| 677 |
+
# import pudb; pudb.set_trace()
|
| 678 |
+
c = self.get_learned_conditioning(xc)
|
| 679 |
+
else:
|
| 680 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
| 681 |
+
else:
|
| 682 |
+
c = xc
|
| 683 |
+
if bs is not None:
|
| 684 |
+
c = c[:bs]
|
| 685 |
+
|
| 686 |
+
if self.use_positional_encodings:
|
| 687 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 688 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
| 689 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
| 690 |
+
|
| 691 |
+
else:
|
| 692 |
+
c = None
|
| 693 |
+
xc = None
|
| 694 |
+
if self.use_positional_encodings:
|
| 695 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 696 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
| 697 |
+
out = [z, c]
|
| 698 |
+
if return_first_stage_outputs:
|
| 699 |
+
xrec = self.decode_first_stage(z)
|
| 700 |
+
out.extend([x, xrec])
|
| 701 |
+
if return_original_cond:
|
| 702 |
+
out.append(xc)
|
| 703 |
+
return out
|
| 704 |
+
|
| 705 |
+
@torch.no_grad()
|
| 706 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
| 707 |
+
if predict_cids:
|
| 708 |
+
if z.dim() == 4:
|
| 709 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 710 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 711 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
| 712 |
+
|
| 713 |
+
z = 1. / self.scale_factor * z
|
| 714 |
+
|
| 715 |
+
if hasattr(self, "split_input_params"):
|
| 716 |
+
if self.split_input_params["patch_distributed_vq"]:
|
| 717 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
| 718 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
| 719 |
+
uf = self.split_input_params["vqf"]
|
| 720 |
+
bs, nc, h, w = z.shape
|
| 721 |
+
if ks[0] > h or ks[1] > w:
|
| 722 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
| 723 |
+
print("reducing Kernel")
|
| 724 |
+
|
| 725 |
+
if stride[0] > h or stride[1] > w:
|
| 726 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
| 727 |
+
print("reducing stride")
|
| 728 |
+
|
| 729 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
| 730 |
+
|
| 731 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
| 732 |
+
# 1. Reshape to img shape
|
| 733 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 734 |
+
|
| 735 |
+
# 2. apply model loop over last dim
|
| 736 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 737 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
| 738 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
| 739 |
+
for i in range(z.shape[-1])]
|
| 740 |
+
else:
|
| 741 |
+
|
| 742 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
| 743 |
+
for i in range(z.shape[-1])]
|
| 744 |
+
|
| 745 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
| 746 |
+
o = o * weighting
|
| 747 |
+
# Reverse 1. reshape to img shape
|
| 748 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
| 749 |
+
# stitch crops together
|
| 750 |
+
decoded = fold(o)
|
| 751 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
| 752 |
+
return decoded
|
| 753 |
+
else:
|
| 754 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 755 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
| 756 |
+
else:
|
| 757 |
+
return self.first_stage_model.decode(z)
|
| 758 |
+
|
| 759 |
+
else:
|
| 760 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 761 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
| 762 |
+
else:
|
| 763 |
+
return self.first_stage_model.decode(z)
|
| 764 |
+
|
| 765 |
+
# same as above but without decorator
|
| 766 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
| 767 |
+
if predict_cids:
|
| 768 |
+
if z.dim() == 4:
|
| 769 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 770 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 771 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
| 772 |
+
|
| 773 |
+
z = 1. / self.scale_factor * z
|
| 774 |
+
|
| 775 |
+
if hasattr(self, "split_input_params"):
|
| 776 |
+
if self.split_input_params["patch_distributed_vq"]:
|
| 777 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
| 778 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
| 779 |
+
uf = self.split_input_params["vqf"]
|
| 780 |
+
bs, nc, h, w = z.shape
|
| 781 |
+
if ks[0] > h or ks[1] > w:
|
| 782 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
| 783 |
+
print("reducing Kernel")
|
| 784 |
+
|
| 785 |
+
if stride[0] > h or stride[1] > w:
|
| 786 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
| 787 |
+
print("reducing stride")
|
| 788 |
+
|
| 789 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
| 790 |
+
|
| 791 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
| 792 |
+
# 1. Reshape to img shape
|
| 793 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 794 |
+
|
| 795 |
+
# 2. apply model loop over last dim
|
| 796 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 797 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
| 798 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
| 799 |
+
for i in range(z.shape[-1])]
|
| 800 |
+
else:
|
| 801 |
+
|
| 802 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
| 803 |
+
for i in range(z.shape[-1])]
|
| 804 |
+
|
| 805 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
| 806 |
+
o = o * weighting
|
| 807 |
+
# Reverse 1. reshape to img shape
|
| 808 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
| 809 |
+
# stitch crops together
|
| 810 |
+
decoded = fold(o)
|
| 811 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
| 812 |
+
return decoded
|
| 813 |
+
else:
|
| 814 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 815 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
| 816 |
+
else:
|
| 817 |
+
return self.first_stage_model.decode(z)
|
| 818 |
+
|
| 819 |
+
else:
|
| 820 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 821 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
| 822 |
+
else:
|
| 823 |
+
return self.first_stage_model.decode(z)
|
| 824 |
+
|
| 825 |
+
@torch.no_grad()
|
| 826 |
+
def encode_first_stage(self, x):
|
| 827 |
+
if hasattr(self, "split_input_params"):
|
| 828 |
+
if self.split_input_params["patch_distributed_vq"]:
|
| 829 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
| 830 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
| 831 |
+
df = self.split_input_params["vqf"]
|
| 832 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
| 833 |
+
bs, nc, h, w = x.shape
|
| 834 |
+
if ks[0] > h or ks[1] > w:
|
| 835 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
| 836 |
+
print("reducing Kernel")
|
| 837 |
+
|
| 838 |
+
if stride[0] > h or stride[1] > w:
|
| 839 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
| 840 |
+
print("reducing stride")
|
| 841 |
+
|
| 842 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
| 843 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
| 844 |
+
# Reshape to img shape
|
| 845 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 846 |
+
|
| 847 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
| 848 |
+
for i in range(z.shape[-1])]
|
| 849 |
+
|
| 850 |
+
o = torch.stack(output_list, axis=-1)
|
| 851 |
+
o = o * weighting
|
| 852 |
+
|
| 853 |
+
# Reverse reshape to img shape
|
| 854 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
| 855 |
+
# stitch crops together
|
| 856 |
+
decoded = fold(o)
|
| 857 |
+
decoded = decoded / normalization
|
| 858 |
+
return decoded
|
| 859 |
+
|
| 860 |
+
else:
|
| 861 |
+
return self.first_stage_model.encode(x)
|
| 862 |
+
else:
|
| 863 |
+
return self.first_stage_model.encode(x)
|
| 864 |
+
|
| 865 |
+
def shared_step(self, batch, **kwargs):
|
| 866 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
| 867 |
+
loss = self(x, c)
|
| 868 |
+
return loss
|
| 869 |
+
|
| 870 |
+
def forward(self, x, c, *args, **kwargs):
|
| 871 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 872 |
+
if self.model.conditioning_key is not None:
|
| 873 |
+
assert c is not None
|
| 874 |
+
if self.cond_stage_trainable:
|
| 875 |
+
c = self.get_learned_conditioning(c)
|
| 876 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
| 877 |
+
tc = self.cond_ids[t].to(self.device)
|
| 878 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
| 879 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
| 880 |
+
|
| 881 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
| 882 |
+
def rescale_bbox(bbox):
|
| 883 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
| 884 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
| 885 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
| 886 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
| 887 |
+
return x0, y0, w, h
|
| 888 |
+
|
| 889 |
+
return [rescale_bbox(b) for b in bboxes]
|
| 890 |
+
|
| 891 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
| 892 |
+
|
| 893 |
+
if isinstance(cond, dict):
|
| 894 |
+
# hybrid case, cond is exptected to be a dict
|
| 895 |
+
pass
|
| 896 |
+
else:
|
| 897 |
+
if not isinstance(cond, list):
|
| 898 |
+
cond = [cond]
|
| 899 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
| 900 |
+
cond = {key: cond}
|
| 901 |
+
|
| 902 |
+
if hasattr(self, "split_input_params"):
|
| 903 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
| 904 |
+
assert not return_ids
|
| 905 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
| 906 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
| 907 |
+
|
| 908 |
+
h, w = x_noisy.shape[-2:]
|
| 909 |
+
|
| 910 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
| 911 |
+
|
| 912 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
| 913 |
+
# Reshape to img shape
|
| 914 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 915 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
| 916 |
+
|
| 917 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
| 918 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
| 919 |
+
c_key = next(iter(cond.keys())) # get key
|
| 920 |
+
c = next(iter(cond.values())) # get value
|
| 921 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
| 922 |
+
c = c[0] # get element
|
| 923 |
+
|
| 924 |
+
c = unfold(c)
|
| 925 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 926 |
+
|
| 927 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
| 928 |
+
|
| 929 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
| 930 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
| 931 |
+
|
| 932 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
| 933 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
| 934 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
| 935 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
| 936 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
| 937 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
| 938 |
+
rescale_latent = 2 ** (num_downs)
|
| 939 |
+
|
| 940 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
| 941 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
| 942 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
| 943 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
| 944 |
+
for patch_nr in range(z.shape[-1])]
|
| 945 |
+
|
| 946 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
| 947 |
+
patch_limits = [(x_tl, y_tl,
|
| 948 |
+
rescale_latent * ks[0] / full_img_w,
|
| 949 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
| 950 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
| 951 |
+
|
| 952 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
| 953 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
| 954 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
| 955 |
+
print(patch_limits_tknzd[0].shape)
|
| 956 |
+
# cut tknzd crop position from conditioning
|
| 957 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
| 958 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
| 959 |
+
print(cut_cond.shape)
|
| 960 |
+
|
| 961 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
| 962 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
| 963 |
+
print(adapted_cond.shape)
|
| 964 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
| 965 |
+
print(adapted_cond.shape)
|
| 966 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
| 967 |
+
print(adapted_cond.shape)
|
| 968 |
+
|
| 969 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
| 970 |
+
|
| 971 |
+
else:
|
| 972 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
| 973 |
+
|
| 974 |
+
# apply model by loop over crops
|
| 975 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
| 976 |
+
assert not isinstance(output_list[0],
|
| 977 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
| 978 |
+
|
| 979 |
+
o = torch.stack(output_list, axis=-1)
|
| 980 |
+
o = o * weighting
|
| 981 |
+
# Reverse reshape to img shape
|
| 982 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
| 983 |
+
# stitch crops together
|
| 984 |
+
x_recon = fold(o) / normalization
|
| 985 |
+
|
| 986 |
+
else:
|
| 987 |
+
x_recon = self.model(x_noisy, t, **cond)
|
| 988 |
+
|
| 989 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
| 990 |
+
return x_recon[0]
|
| 991 |
+
else:
|
| 992 |
+
return x_recon
|
| 993 |
+
|
| 994 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
| 995 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
| 996 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 997 |
+
|
| 998 |
+
def _prior_bpd(self, x_start):
|
| 999 |
+
"""
|
| 1000 |
+
Get the prior KL term for the variational lower-bound, measured in
|
| 1001 |
+
bits-per-dim.
|
| 1002 |
+
This term can't be optimized, as it only depends on the encoder.
|
| 1003 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
| 1004 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
| 1005 |
+
"""
|
| 1006 |
+
batch_size = x_start.shape[0]
|
| 1007 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
| 1008 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
| 1009 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
| 1010 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
| 1011 |
+
|
| 1012 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
| 1013 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 1014 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 1015 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
| 1016 |
+
|
| 1017 |
+
loss_dict = {}
|
| 1018 |
+
prefix = 'train' if self.training else 'val'
|
| 1019 |
+
|
| 1020 |
+
if self.parameterization == "x0":
|
| 1021 |
+
target = x_start
|
| 1022 |
+
elif self.parameterization == "eps":
|
| 1023 |
+
target = noise
|
| 1024 |
+
else:
|
| 1025 |
+
raise NotImplementedError()
|
| 1026 |
+
|
| 1027 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
| 1028 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
| 1029 |
+
|
| 1030 |
+
logvar_t = self.logvar[t].to(self.device)
|
| 1031 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
| 1032 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
| 1033 |
+
if self.learn_logvar:
|
| 1034 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
| 1035 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
| 1036 |
+
|
| 1037 |
+
loss = self.l_simple_weight * loss.mean()
|
| 1038 |
+
|
| 1039 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
| 1040 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
| 1041 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
| 1042 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
| 1043 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
| 1044 |
+
|
| 1045 |
+
return loss, loss_dict
|
| 1046 |
+
|
| 1047 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
| 1048 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
| 1049 |
+
t_in = t
|
| 1050 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
| 1051 |
+
|
| 1052 |
+
if score_corrector is not None:
|
| 1053 |
+
assert self.parameterization == "eps"
|
| 1054 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
| 1055 |
+
|
| 1056 |
+
if return_codebook_ids:
|
| 1057 |
+
model_out, logits = model_out
|
| 1058 |
+
|
| 1059 |
+
if self.parameterization == "eps":
|
| 1060 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 1061 |
+
elif self.parameterization == "x0":
|
| 1062 |
+
x_recon = model_out
|
| 1063 |
+
else:
|
| 1064 |
+
raise NotImplementedError()
|
| 1065 |
+
|
| 1066 |
+
if clip_denoised:
|
| 1067 |
+
x_recon.clamp_(-1., 1.)
|
| 1068 |
+
if quantize_denoised:
|
| 1069 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
| 1070 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 1071 |
+
if return_codebook_ids:
|
| 1072 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
| 1073 |
+
elif return_x0:
|
| 1074 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
| 1075 |
+
else:
|
| 1076 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 1077 |
+
|
| 1078 |
+
@torch.no_grad()
|
| 1079 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
| 1080 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
| 1081 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
| 1082 |
+
b, *_, device = *x.shape, x.device
|
| 1083 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
| 1084 |
+
return_codebook_ids=return_codebook_ids,
|
| 1085 |
+
quantize_denoised=quantize_denoised,
|
| 1086 |
+
return_x0=return_x0,
|
| 1087 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 1088 |
+
if return_codebook_ids:
|
| 1089 |
+
raise DeprecationWarning("Support dropped.")
|
| 1090 |
+
model_mean, _, model_log_variance, logits = outputs
|
| 1091 |
+
elif return_x0:
|
| 1092 |
+
model_mean, _, model_log_variance, x0 = outputs
|
| 1093 |
+
else:
|
| 1094 |
+
model_mean, _, model_log_variance = outputs
|
| 1095 |
+
|
| 1096 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
| 1097 |
+
if noise_dropout > 0.:
|
| 1098 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 1099 |
+
# no noise when t == 0
|
| 1100 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 1101 |
+
|
| 1102 |
+
if return_codebook_ids:
|
| 1103 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
| 1104 |
+
if return_x0:
|
| 1105 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
| 1106 |
+
else:
|
| 1107 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 1108 |
+
|
| 1109 |
+
@torch.no_grad()
|
| 1110 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
| 1111 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
| 1112 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
| 1113 |
+
log_every_t=None):
|
| 1114 |
+
if not log_every_t:
|
| 1115 |
+
log_every_t = self.log_every_t
|
| 1116 |
+
timesteps = self.num_timesteps
|
| 1117 |
+
if batch_size is not None:
|
| 1118 |
+
b = batch_size if batch_size is not None else shape[0]
|
| 1119 |
+
shape = [batch_size] + list(shape)
|
| 1120 |
+
else:
|
| 1121 |
+
b = batch_size = shape[0]
|
| 1122 |
+
if x_T is None:
|
| 1123 |
+
img = torch.randn(shape, device=self.device)
|
| 1124 |
+
else:
|
| 1125 |
+
img = x_T
|
| 1126 |
+
intermediates = []
|
| 1127 |
+
if cond is not None:
|
| 1128 |
+
if isinstance(cond, dict):
|
| 1129 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1130 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1131 |
+
else:
|
| 1132 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1133 |
+
|
| 1134 |
+
if start_T is not None:
|
| 1135 |
+
timesteps = min(timesteps, start_T)
|
| 1136 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
| 1137 |
+
total=timesteps) if verbose else reversed(
|
| 1138 |
+
range(0, timesteps))
|
| 1139 |
+
if type(temperature) == float:
|
| 1140 |
+
temperature = [temperature] * timesteps
|
| 1141 |
+
|
| 1142 |
+
for i in iterator:
|
| 1143 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
| 1144 |
+
if self.shorten_cond_schedule:
|
| 1145 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1146 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1147 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1148 |
+
|
| 1149 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
| 1150 |
+
clip_denoised=self.clip_denoised,
|
| 1151 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
| 1152 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
| 1153 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 1154 |
+
if mask is not None:
|
| 1155 |
+
assert x0 is not None
|
| 1156 |
+
img_orig = self.q_sample(x0, ts)
|
| 1157 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1158 |
+
|
| 1159 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1160 |
+
intermediates.append(x0_partial)
|
| 1161 |
+
if callback: callback(i)
|
| 1162 |
+
if img_callback: img_callback(img, i)
|
| 1163 |
+
return img, intermediates
|
| 1164 |
+
|
| 1165 |
+
@torch.no_grad()
|
| 1166 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
| 1167 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
| 1168 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
| 1169 |
+
log_every_t=None):
|
| 1170 |
+
|
| 1171 |
+
if not log_every_t:
|
| 1172 |
+
log_every_t = self.log_every_t
|
| 1173 |
+
device = self.betas.device
|
| 1174 |
+
b = shape[0]
|
| 1175 |
+
if x_T is None:
|
| 1176 |
+
img = torch.randn(shape, device=device)
|
| 1177 |
+
else:
|
| 1178 |
+
img = x_T
|
| 1179 |
+
|
| 1180 |
+
intermediates = [img]
|
| 1181 |
+
if timesteps is None:
|
| 1182 |
+
timesteps = self.num_timesteps
|
| 1183 |
+
|
| 1184 |
+
if start_T is not None:
|
| 1185 |
+
timesteps = min(timesteps, start_T)
|
| 1186 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
| 1187 |
+
range(0, timesteps))
|
| 1188 |
+
|
| 1189 |
+
if mask is not None:
|
| 1190 |
+
assert x0 is not None
|
| 1191 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
| 1192 |
+
|
| 1193 |
+
for i in iterator:
|
| 1194 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
| 1195 |
+
if self.shorten_cond_schedule:
|
| 1196 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1197 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1198 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1199 |
+
|
| 1200 |
+
img = self.p_sample(img, cond, ts,
|
| 1201 |
+
clip_denoised=self.clip_denoised,
|
| 1202 |
+
quantize_denoised=quantize_denoised)
|
| 1203 |
+
if mask is not None:
|
| 1204 |
+
img_orig = self.q_sample(x0, ts)
|
| 1205 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1206 |
+
|
| 1207 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1208 |
+
intermediates.append(img)
|
| 1209 |
+
if callback: callback(i)
|
| 1210 |
+
if img_callback: img_callback(img, i)
|
| 1211 |
+
|
| 1212 |
+
if return_intermediates:
|
| 1213 |
+
return img, intermediates
|
| 1214 |
+
return img
|
| 1215 |
+
|
| 1216 |
+
@torch.no_grad()
|
| 1217 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
| 1218 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
| 1219 |
+
mask=None, x0=None, shape=None,**kwargs):
|
| 1220 |
+
if shape is None:
|
| 1221 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
| 1222 |
+
if cond is not None:
|
| 1223 |
+
if isinstance(cond, dict):
|
| 1224 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1225 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1226 |
+
else:
|
| 1227 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1228 |
+
return self.p_sample_loop(cond,
|
| 1229 |
+
shape,
|
| 1230 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
| 1231 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
| 1232 |
+
mask=mask, x0=x0)
|
| 1233 |
+
|
| 1234 |
+
@torch.no_grad()
|
| 1235 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
| 1236 |
+
|
| 1237 |
+
if ddim:
|
| 1238 |
+
ddim_sampler = DDIMSampler(self)
|
| 1239 |
+
shape = (self.channels, self.image_size, self.image_size)
|
| 1240 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
| 1241 |
+
shape,cond,verbose=False,**kwargs)
|
| 1242 |
+
|
| 1243 |
+
else:
|
| 1244 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
| 1245 |
+
return_intermediates=True,**kwargs)
|
| 1246 |
+
|
| 1247 |
+
return samples, intermediates
|
| 1248 |
+
|
| 1249 |
+
|
| 1250 |
+
@torch.no_grad()
|
| 1251 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
| 1252 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
| 1253 |
+
plot_diffusion_rows=True, **kwargs):
|
| 1254 |
+
|
| 1255 |
+
use_ddim = ddim_steps is not None
|
| 1256 |
+
|
| 1257 |
+
log = dict()
|
| 1258 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
| 1259 |
+
return_first_stage_outputs=True,
|
| 1260 |
+
force_c_encode=True,
|
| 1261 |
+
return_original_cond=True,
|
| 1262 |
+
bs=N)
|
| 1263 |
+
N = min(x.shape[0], N)
|
| 1264 |
+
n_row = min(x.shape[0], n_row)
|
| 1265 |
+
log["inputs"] = x
|
| 1266 |
+
log["reconstruction"] = xrec
|
| 1267 |
+
if self.model.conditioning_key is not None:
|
| 1268 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1269 |
+
xc = self.cond_stage_model.decode(c)
|
| 1270 |
+
log["conditioning"] = xc
|
| 1271 |
+
elif self.cond_stage_key in ["caption"]:
|
| 1272 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
| 1273 |
+
log["conditioning"] = xc
|
| 1274 |
+
elif self.cond_stage_key == 'class_label':
|
| 1275 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
| 1276 |
+
log['conditioning'] = xc
|
| 1277 |
+
elif isimage(xc):
|
| 1278 |
+
log["conditioning"] = xc
|
| 1279 |
+
if ismap(xc):
|
| 1280 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1281 |
+
|
| 1282 |
+
if plot_diffusion_rows:
|
| 1283 |
+
# get diffusion row
|
| 1284 |
+
diffusion_row = list()
|
| 1285 |
+
z_start = z[:n_row]
|
| 1286 |
+
for t in range(self.num_timesteps):
|
| 1287 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 1288 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 1289 |
+
t = t.to(self.device).long()
|
| 1290 |
+
noise = torch.randn_like(z_start)
|
| 1291 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 1292 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 1293 |
+
|
| 1294 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 1295 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 1296 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 1297 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 1298 |
+
log["diffusion_row"] = diffusion_grid
|
| 1299 |
+
|
| 1300 |
+
if sample:
|
| 1301 |
+
# get denoise row
|
| 1302 |
+
with self.ema_scope("Plotting"):
|
| 1303 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
| 1304 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
| 1305 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
| 1306 |
+
x_samples = self.decode_first_stage(samples)
|
| 1307 |
+
log["samples"] = x_samples
|
| 1308 |
+
if plot_denoise_rows:
|
| 1309 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 1310 |
+
log["denoise_row"] = denoise_grid
|
| 1311 |
+
|
| 1312 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
| 1313 |
+
self.first_stage_model, IdentityFirstStage):
|
| 1314 |
+
# also display when quantizing x0 while sampling
|
| 1315 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
| 1316 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
| 1317 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
| 1318 |
+
quantize_denoised=True)
|
| 1319 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
| 1320 |
+
# quantize_denoised=True)
|
| 1321 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1322 |
+
log["samples_x0_quantized"] = x_samples
|
| 1323 |
+
|
| 1324 |
+
if inpaint:
|
| 1325 |
+
# make a simple center square
|
| 1326 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
| 1327 |
+
mask = torch.ones(N, h, w).to(self.device)
|
| 1328 |
+
# zeros will be filled in
|
| 1329 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
| 1330 |
+
mask = mask[:, None, ...]
|
| 1331 |
+
with self.ema_scope("Plotting Inpaint"):
|
| 1332 |
+
|
| 1333 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
| 1334 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
| 1335 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1336 |
+
log["samples_inpainting"] = x_samples
|
| 1337 |
+
log["mask"] = mask
|
| 1338 |
+
|
| 1339 |
+
# outpaint
|
| 1340 |
+
with self.ema_scope("Plotting Outpaint"):
|
| 1341 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
| 1342 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
| 1343 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1344 |
+
log["samples_outpainting"] = x_samples
|
| 1345 |
+
|
| 1346 |
+
if plot_progressive_rows:
|
| 1347 |
+
with self.ema_scope("Plotting Progressives"):
|
| 1348 |
+
img, progressives = self.progressive_denoising(c,
|
| 1349 |
+
shape=(self.channels, self.image_size, self.image_size),
|
| 1350 |
+
batch_size=N)
|
| 1351 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
| 1352 |
+
log["progressive_row"] = prog_row
|
| 1353 |
+
|
| 1354 |
+
if return_keys:
|
| 1355 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 1356 |
+
return log
|
| 1357 |
+
else:
|
| 1358 |
+
return {key: log[key] for key in return_keys}
|
| 1359 |
+
return log
|
| 1360 |
+
|
| 1361 |
+
def configure_optimizers(self):
|
| 1362 |
+
lr = self.learning_rate
|
| 1363 |
+
params = list(self.model.parameters())
|
| 1364 |
+
if self.cond_stage_trainable:
|
| 1365 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
| 1366 |
+
params = params + list(self.cond_stage_model.parameters())
|
| 1367 |
+
if self.learn_logvar:
|
| 1368 |
+
print('Diffusion model optimizing logvar')
|
| 1369 |
+
params.append(self.logvar)
|
| 1370 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 1371 |
+
if self.use_scheduler:
|
| 1372 |
+
assert 'target' in self.scheduler_config
|
| 1373 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
| 1374 |
+
|
| 1375 |
+
print("Setting up LambdaLR scheduler...")
|
| 1376 |
+
scheduler = [
|
| 1377 |
+
{
|
| 1378 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
| 1379 |
+
'interval': 'step',
|
| 1380 |
+
'frequency': 1
|
| 1381 |
+
}]
|
| 1382 |
+
return [opt], scheduler
|
| 1383 |
+
return opt
|
| 1384 |
+
|
| 1385 |
+
@torch.no_grad()
|
| 1386 |
+
def to_rgb(self, x):
|
| 1387 |
+
x = x.float()
|
| 1388 |
+
if not hasattr(self, "colorize"):
|
| 1389 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
| 1390 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
| 1391 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
| 1392 |
+
return x
|
| 1393 |
+
|
| 1394 |
+
|
| 1395 |
+
class DiffusionWrapper(pl.LightningModule):
|
| 1396 |
+
def __init__(self, diff_model_config, conditioning_key):
|
| 1397 |
+
super().__init__()
|
| 1398 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
| 1399 |
+
self.conditioning_key = conditioning_key
|
| 1400 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
|
| 1401 |
+
|
| 1402 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
|
| 1403 |
+
if self.conditioning_key is None:
|
| 1404 |
+
out = self.diffusion_model(x, t)
|
| 1405 |
+
elif self.conditioning_key == 'concat':
|
| 1406 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1407 |
+
out = self.diffusion_model(xc, t)
|
| 1408 |
+
elif self.conditioning_key == 'crossattn':
|
| 1409 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1410 |
+
out = self.diffusion_model(x, t, context=cc)
|
| 1411 |
+
elif self.conditioning_key == 'hybrid':
|
| 1412 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1413 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1414 |
+
out = self.diffusion_model(xc, t, context=cc)
|
| 1415 |
+
elif self.conditioning_key == 'adm':
|
| 1416 |
+
cc = c_crossattn[0]
|
| 1417 |
+
out = self.diffusion_model(x, t, y=cc)
|
| 1418 |
+
else:
|
| 1419 |
+
raise NotImplementedError()
|
| 1420 |
+
|
| 1421 |
+
return out
|
| 1422 |
+
|
| 1423 |
+
|
| 1424 |
+
class Layout2ImgDiffusion(LatentDiffusion):
|
| 1425 |
+
# TODO: move all layout-specific hacks to this class
|
| 1426 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
| 1427 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
| 1428 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
| 1429 |
+
|
| 1430 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
| 1431 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
| 1432 |
+
|
| 1433 |
+
key = 'train' if self.training else 'validation'
|
| 1434 |
+
dset = self.trainer.datamodule.datasets[key]
|
| 1435 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
| 1436 |
+
|
| 1437 |
+
bbox_imgs = []
|
| 1438 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
| 1439 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
| 1440 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
| 1441 |
+
bbox_imgs.append(bboximg)
|
| 1442 |
+
|
| 1443 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
| 1444 |
+
logs['bbox_image'] = cond_img
|
| 1445 |
+
return logs
|
ldm/models/diffusion/__init__.py
ADDED
|
File without changes
|
ldm/models/diffusion/classifier.py
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import pytorch_lightning as pl
|
| 4 |
+
from omegaconf import OmegaConf
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from torch.optim import AdamW
|
| 7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 8 |
+
from copy import deepcopy
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
from glob import glob
|
| 11 |
+
from natsort import natsorted
|
| 12 |
+
|
| 13 |
+
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
| 14 |
+
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
| 15 |
+
|
| 16 |
+
__models__ = {
|
| 17 |
+
'class_label': EncoderUNetModel,
|
| 18 |
+
'segmentation': UNetModel
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def disabled_train(self, mode=True):
|
| 23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 24 |
+
does not change anymore."""
|
| 25 |
+
return self
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class NoisyLatentImageClassifier(pl.LightningModule):
|
| 29 |
+
|
| 30 |
+
def __init__(self,
|
| 31 |
+
diffusion_path,
|
| 32 |
+
num_classes,
|
| 33 |
+
ckpt_path=None,
|
| 34 |
+
pool='attention',
|
| 35 |
+
label_key=None,
|
| 36 |
+
diffusion_ckpt_path=None,
|
| 37 |
+
scheduler_config=None,
|
| 38 |
+
weight_decay=1.e-2,
|
| 39 |
+
log_steps=10,
|
| 40 |
+
monitor='val/loss',
|
| 41 |
+
*args,
|
| 42 |
+
**kwargs):
|
| 43 |
+
super().__init__(*args, **kwargs)
|
| 44 |
+
self.num_classes = num_classes
|
| 45 |
+
# get latest config of diffusion model
|
| 46 |
+
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
| 47 |
+
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
| 48 |
+
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
| 49 |
+
self.load_diffusion()
|
| 50 |
+
|
| 51 |
+
self.monitor = monitor
|
| 52 |
+
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
| 53 |
+
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
| 54 |
+
self.log_steps = log_steps
|
| 55 |
+
|
| 56 |
+
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
| 57 |
+
else self.diffusion_model.cond_stage_key
|
| 58 |
+
|
| 59 |
+
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
| 60 |
+
|
| 61 |
+
if self.label_key not in __models__:
|
| 62 |
+
raise NotImplementedError()
|
| 63 |
+
|
| 64 |
+
self.load_classifier(ckpt_path, pool)
|
| 65 |
+
|
| 66 |
+
self.scheduler_config = scheduler_config
|
| 67 |
+
self.use_scheduler = self.scheduler_config is not None
|
| 68 |
+
self.weight_decay = weight_decay
|
| 69 |
+
|
| 70 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
| 71 |
+
sd = torch.load(path, map_location="cpu")
|
| 72 |
+
if "state_dict" in list(sd.keys()):
|
| 73 |
+
sd = sd["state_dict"]
|
| 74 |
+
keys = list(sd.keys())
|
| 75 |
+
for k in keys:
|
| 76 |
+
for ik in ignore_keys:
|
| 77 |
+
if k.startswith(ik):
|
| 78 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 79 |
+
del sd[k]
|
| 80 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
| 81 |
+
sd, strict=False)
|
| 82 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 83 |
+
if len(missing) > 0:
|
| 84 |
+
print(f"Missing Keys: {missing}")
|
| 85 |
+
if len(unexpected) > 0:
|
| 86 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 87 |
+
|
| 88 |
+
def load_diffusion(self):
|
| 89 |
+
model = instantiate_from_config(self.diffusion_config)
|
| 90 |
+
self.diffusion_model = model.eval()
|
| 91 |
+
self.diffusion_model.train = disabled_train
|
| 92 |
+
for param in self.diffusion_model.parameters():
|
| 93 |
+
param.requires_grad = False
|
| 94 |
+
|
| 95 |
+
def load_classifier(self, ckpt_path, pool):
|
| 96 |
+
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
| 97 |
+
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
| 98 |
+
model_config.out_channels = self.num_classes
|
| 99 |
+
if self.label_key == 'class_label':
|
| 100 |
+
model_config.pool = pool
|
| 101 |
+
|
| 102 |
+
self.model = __models__[self.label_key](**model_config)
|
| 103 |
+
if ckpt_path is not None:
|
| 104 |
+
print('#####################################################################')
|
| 105 |
+
print(f'load from ckpt "{ckpt_path}"')
|
| 106 |
+
print('#####################################################################')
|
| 107 |
+
self.init_from_ckpt(ckpt_path)
|
| 108 |
+
|
| 109 |
+
@torch.no_grad()
|
| 110 |
+
def get_x_noisy(self, x, t, noise=None):
|
| 111 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
| 112 |
+
continuous_sqrt_alpha_cumprod = None
|
| 113 |
+
if self.diffusion_model.use_continuous_noise:
|
| 114 |
+
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
| 115 |
+
# todo: make sure t+1 is correct here
|
| 116 |
+
|
| 117 |
+
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
| 118 |
+
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
| 119 |
+
|
| 120 |
+
def forward(self, x_noisy, t, *args, **kwargs):
|
| 121 |
+
return self.model(x_noisy, t)
|
| 122 |
+
|
| 123 |
+
@torch.no_grad()
|
| 124 |
+
def get_input(self, batch, k):
|
| 125 |
+
x = batch[k]
|
| 126 |
+
if len(x.shape) == 3:
|
| 127 |
+
x = x[..., None]
|
| 128 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
| 129 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
| 130 |
+
return x
|
| 131 |
+
|
| 132 |
+
@torch.no_grad()
|
| 133 |
+
def get_conditioning(self, batch, k=None):
|
| 134 |
+
if k is None:
|
| 135 |
+
k = self.label_key
|
| 136 |
+
assert k is not None, 'Needs to provide label key'
|
| 137 |
+
|
| 138 |
+
targets = batch[k].to(self.device)
|
| 139 |
+
|
| 140 |
+
if self.label_key == 'segmentation':
|
| 141 |
+
targets = rearrange(targets, 'b h w c -> b c h w')
|
| 142 |
+
for down in range(self.numd):
|
| 143 |
+
h, w = targets.shape[-2:]
|
| 144 |
+
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
| 145 |
+
|
| 146 |
+
# targets = rearrange(targets,'b c h w -> b h w c')
|
| 147 |
+
|
| 148 |
+
return targets
|
| 149 |
+
|
| 150 |
+
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
| 151 |
+
_, top_ks = torch.topk(logits, k, dim=1)
|
| 152 |
+
if reduction == "mean":
|
| 153 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
| 154 |
+
elif reduction == "none":
|
| 155 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
| 156 |
+
|
| 157 |
+
def on_train_epoch_start(self):
|
| 158 |
+
# save some memory
|
| 159 |
+
self.diffusion_model.model.to('cpu')
|
| 160 |
+
|
| 161 |
+
@torch.no_grad()
|
| 162 |
+
def write_logs(self, loss, logits, targets):
|
| 163 |
+
log_prefix = 'train' if self.training else 'val'
|
| 164 |
+
log = {}
|
| 165 |
+
log[f"{log_prefix}/loss"] = loss.mean()
|
| 166 |
+
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
| 167 |
+
logits, targets, k=1, reduction="mean"
|
| 168 |
+
)
|
| 169 |
+
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
| 170 |
+
logits, targets, k=5, reduction="mean"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
| 174 |
+
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
| 175 |
+
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
| 176 |
+
lr = self.optimizers().param_groups[0]['lr']
|
| 177 |
+
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
| 178 |
+
|
| 179 |
+
def shared_step(self, batch, t=None):
|
| 180 |
+
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
| 181 |
+
targets = self.get_conditioning(batch)
|
| 182 |
+
if targets.dim() == 4:
|
| 183 |
+
targets = targets.argmax(dim=1)
|
| 184 |
+
if t is None:
|
| 185 |
+
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 186 |
+
else:
|
| 187 |
+
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
| 188 |
+
x_noisy = self.get_x_noisy(x, t)
|
| 189 |
+
logits = self(x_noisy, t)
|
| 190 |
+
|
| 191 |
+
loss = F.cross_entropy(logits, targets, reduction='none')
|
| 192 |
+
|
| 193 |
+
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
| 194 |
+
|
| 195 |
+
loss = loss.mean()
|
| 196 |
+
return loss, logits, x_noisy, targets
|
| 197 |
+
|
| 198 |
+
def training_step(self, batch, batch_idx):
|
| 199 |
+
loss, *_ = self.shared_step(batch)
|
| 200 |
+
return loss
|
| 201 |
+
|
| 202 |
+
def reset_noise_accs(self):
|
| 203 |
+
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
| 204 |
+
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
| 205 |
+
|
| 206 |
+
def on_validation_start(self):
|
| 207 |
+
self.reset_noise_accs()
|
| 208 |
+
|
| 209 |
+
@torch.no_grad()
|
| 210 |
+
def validation_step(self, batch, batch_idx):
|
| 211 |
+
loss, *_ = self.shared_step(batch)
|
| 212 |
+
|
| 213 |
+
for t in self.noisy_acc:
|
| 214 |
+
_, logits, _, targets = self.shared_step(batch, t)
|
| 215 |
+
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
| 216 |
+
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
| 217 |
+
|
| 218 |
+
return loss
|
| 219 |
+
|
| 220 |
+
def configure_optimizers(self):
|
| 221 |
+
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
| 222 |
+
|
| 223 |
+
if self.use_scheduler:
|
| 224 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
| 225 |
+
|
| 226 |
+
print("Setting up LambdaLR scheduler...")
|
| 227 |
+
scheduler = [
|
| 228 |
+
{
|
| 229 |
+
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
| 230 |
+
'interval': 'step',
|
| 231 |
+
'frequency': 1
|
| 232 |
+
}]
|
| 233 |
+
return [optimizer], scheduler
|
| 234 |
+
|
| 235 |
+
return optimizer
|
| 236 |
+
|
| 237 |
+
@torch.no_grad()
|
| 238 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
| 239 |
+
log = dict()
|
| 240 |
+
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
| 241 |
+
log['inputs'] = x
|
| 242 |
+
|
| 243 |
+
y = self.get_conditioning(batch)
|
| 244 |
+
|
| 245 |
+
if self.label_key == 'class_label':
|
| 246 |
+
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
| 247 |
+
log['labels'] = y
|
| 248 |
+
|
| 249 |
+
if ismap(y):
|
| 250 |
+
log['labels'] = self.diffusion_model.to_rgb(y)
|
| 251 |
+
|
| 252 |
+
for step in range(self.log_steps):
|
| 253 |
+
current_time = step * self.log_time_interval
|
| 254 |
+
|
| 255 |
+
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
| 256 |
+
|
| 257 |
+
log[f'inputs@t{current_time}'] = x_noisy
|
| 258 |
+
|
| 259 |
+
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
| 260 |
+
pred = rearrange(pred, 'b h w c -> b c h w')
|
| 261 |
+
|
| 262 |
+
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
| 263 |
+
|
| 264 |
+
for key in log:
|
| 265 |
+
log[key] = log[key][:N]
|
| 266 |
+
|
| 267 |
+
return log
|
ldm/models/diffusion/ddim.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from functools import partial
|
| 7 |
+
|
| 8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class DDIMSampler(object):
|
| 12 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.model = model
|
| 15 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 16 |
+
self.schedule = schedule
|
| 17 |
+
|
| 18 |
+
def register_buffer(self, name, attr):
|
| 19 |
+
if type(attr) == torch.Tensor:
|
| 20 |
+
if attr.device != torch.device("cuda"):
|
| 21 |
+
attr = attr.to(torch.device("cuda"))
|
| 22 |
+
setattr(self, name, attr)
|
| 23 |
+
|
| 24 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 25 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 26 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 27 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 28 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 29 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 30 |
+
|
| 31 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 32 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 33 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 34 |
+
|
| 35 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 36 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 37 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 38 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 39 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 40 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 41 |
+
|
| 42 |
+
# ddim sampling parameters
|
| 43 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 44 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 45 |
+
eta=ddim_eta,verbose=verbose)
|
| 46 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 47 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 48 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 49 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 50 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 51 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 52 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 53 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 54 |
+
|
| 55 |
+
@torch.no_grad()
|
| 56 |
+
def sample(self,
|
| 57 |
+
S,
|
| 58 |
+
batch_size,
|
| 59 |
+
shape,
|
| 60 |
+
conditioning=None,
|
| 61 |
+
callback=None,
|
| 62 |
+
normals_sequence=None,
|
| 63 |
+
img_callback=None,
|
| 64 |
+
quantize_x0=False,
|
| 65 |
+
eta=0.,
|
| 66 |
+
mask=None,
|
| 67 |
+
x0=None,
|
| 68 |
+
temperature=1.,
|
| 69 |
+
noise_dropout=0.,
|
| 70 |
+
score_corrector=None,
|
| 71 |
+
corrector_kwargs=None,
|
| 72 |
+
verbose=True,
|
| 73 |
+
x_T=None,
|
| 74 |
+
log_every_t=100,
|
| 75 |
+
unconditional_guidance_scale=1.,
|
| 76 |
+
unconditional_conditioning=None,
|
| 77 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 78 |
+
**kwargs
|
| 79 |
+
):
|
| 80 |
+
if conditioning is not None:
|
| 81 |
+
if isinstance(conditioning, dict):
|
| 82 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
| 83 |
+
if cbs != batch_size:
|
| 84 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 85 |
+
else:
|
| 86 |
+
if conditioning.shape[0] != batch_size:
|
| 87 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 88 |
+
|
| 89 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 90 |
+
# sampling
|
| 91 |
+
C, H, W = shape
|
| 92 |
+
size = (batch_size, C, H, W)
|
| 93 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
| 94 |
+
|
| 95 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
| 96 |
+
callback=callback,
|
| 97 |
+
img_callback=img_callback,
|
| 98 |
+
quantize_denoised=quantize_x0,
|
| 99 |
+
mask=mask, x0=x0,
|
| 100 |
+
ddim_use_original_steps=False,
|
| 101 |
+
noise_dropout=noise_dropout,
|
| 102 |
+
temperature=temperature,
|
| 103 |
+
score_corrector=score_corrector,
|
| 104 |
+
corrector_kwargs=corrector_kwargs,
|
| 105 |
+
x_T=x_T,
|
| 106 |
+
log_every_t=log_every_t,
|
| 107 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 108 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 109 |
+
)
|
| 110 |
+
return samples, intermediates
|
| 111 |
+
|
| 112 |
+
@torch.no_grad()
|
| 113 |
+
def ddim_sampling(self, cond, shape,
|
| 114 |
+
x_T=None, ddim_use_original_steps=False,
|
| 115 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 116 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
| 117 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 118 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
| 119 |
+
device = self.model.betas.device
|
| 120 |
+
b = shape[0]
|
| 121 |
+
if x_T is None:
|
| 122 |
+
img = torch.randn(shape, device=device)
|
| 123 |
+
else:
|
| 124 |
+
img = x_T
|
| 125 |
+
|
| 126 |
+
if timesteps is None:
|
| 127 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 128 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 129 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 130 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 131 |
+
|
| 132 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 133 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
| 134 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 135 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 136 |
+
|
| 137 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
| 138 |
+
|
| 139 |
+
for i, step in enumerate(iterator):
|
| 140 |
+
index = total_steps - i - 1
|
| 141 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 142 |
+
|
| 143 |
+
if mask is not None:
|
| 144 |
+
assert x0 is not None
|
| 145 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
| 146 |
+
img = img_orig * mask + (1. - mask) * img
|
| 147 |
+
|
| 148 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 149 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 150 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 151 |
+
corrector_kwargs=corrector_kwargs,
|
| 152 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 153 |
+
unconditional_conditioning=unconditional_conditioning)
|
| 154 |
+
img, pred_x0 = outs
|
| 155 |
+
if callback: callback(i)
|
| 156 |
+
if img_callback: img_callback(pred_x0, i)
|
| 157 |
+
|
| 158 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 159 |
+
intermediates['x_inter'].append(img)
|
| 160 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 161 |
+
|
| 162 |
+
return img, intermediates
|
| 163 |
+
|
| 164 |
+
@torch.no_grad()
|
| 165 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 166 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 167 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None):
|
| 168 |
+
b, *_, device = *x.shape, x.device
|
| 169 |
+
|
| 170 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 171 |
+
e_t = self.model.apply_model(x, t, c)
|
| 172 |
+
else:
|
| 173 |
+
x_in = torch.cat([x] * 2)
|
| 174 |
+
t_in = torch.cat([t] * 2)
|
| 175 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 176 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
| 177 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
| 178 |
+
|
| 179 |
+
if score_corrector is not None:
|
| 180 |
+
assert self.model.parameterization == "eps"
|
| 181 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 182 |
+
|
| 183 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 184 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 185 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 186 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 187 |
+
# select parameters corresponding to the currently considered timestep
|
| 188 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 189 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 190 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 191 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
| 192 |
+
|
| 193 |
+
# current prediction for x_0
|
| 194 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 195 |
+
if quantize_denoised:
|
| 196 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 197 |
+
# direction pointing to x_t
|
| 198 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 199 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 200 |
+
if noise_dropout > 0.:
|
| 201 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 202 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 203 |
+
return x_prev, pred_x0
|
ldm/models/diffusion/ddpm.py
ADDED
|
@@ -0,0 +1,1515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
wild mixture of
|
| 3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
| 5 |
+
https://github.com/CompVis/taming-transformers
|
| 6 |
+
-- merci
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pytorch_lightning as pl
|
| 13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 14 |
+
from einops import rearrange, repeat
|
| 15 |
+
from contextlib import contextmanager
|
| 16 |
+
from functools import partial
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
from torchvision.utils import make_grid
|
| 19 |
+
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
| 23 |
+
from ldm.modules.ema import LitEma
|
| 24 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
| 25 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
| 26 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like, betas_for_alpha_bar
|
| 27 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 28 |
+
|
| 29 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
| 30 |
+
'crossattn': 'c_crossattn',
|
| 31 |
+
'adm': 'y'}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def disabled_train(self, mode=True):
|
| 35 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 36 |
+
does not change anymore."""
|
| 37 |
+
return self
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def uniform_on_device(r1, r2, shape, device):
|
| 41 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class DDPM(pl.LightningModule):
|
| 45 |
+
# classic DDPM with Gaussian diffusion, in image space
|
| 46 |
+
def __init__(self,
|
| 47 |
+
unet_config,
|
| 48 |
+
timesteps=1000,
|
| 49 |
+
beta_schedule="linear", # "linear", "cosine", "sqrt_linear"
|
| 50 |
+
loss_type="l2",
|
| 51 |
+
ckpt_path=None,
|
| 52 |
+
ignore_keys=[],
|
| 53 |
+
load_only_unet=False,
|
| 54 |
+
monitor="val/loss",
|
| 55 |
+
use_ema=True,
|
| 56 |
+
first_stage_key="image",
|
| 57 |
+
image_size=256,
|
| 58 |
+
channels=3,
|
| 59 |
+
log_every_t=100,
|
| 60 |
+
clip_denoised=True,
|
| 61 |
+
linear_start=1e-4,
|
| 62 |
+
linear_end=2e-2,
|
| 63 |
+
cosine_s=8e-3,
|
| 64 |
+
given_betas=None,
|
| 65 |
+
original_elbo_weight=0.,
|
| 66 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
| 67 |
+
l_simple_weight=1.,
|
| 68 |
+
conditioning_key=None,
|
| 69 |
+
parameterization="eps", #was eps, x0 # all assuming fixed variance schedules
|
| 70 |
+
scheduler_config=None,
|
| 71 |
+
use_positional_encodings=False,
|
| 72 |
+
learn_logvar=False,
|
| 73 |
+
logvar_init=0.,
|
| 74 |
+
):
|
| 75 |
+
super().__init__()
|
| 76 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
| 77 |
+
self.parameterization = parameterization
|
| 78 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
| 79 |
+
self.cond_stage_model = None
|
| 80 |
+
self.clip_denoised = clip_denoised
|
| 81 |
+
self.log_every_t = log_every_t
|
| 82 |
+
self.first_stage_key = first_stage_key
|
| 83 |
+
self.image_size = image_size # try conv?
|
| 84 |
+
self.channels = channels
|
| 85 |
+
self.use_positional_encodings = use_positional_encodings
|
| 86 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
| 87 |
+
count_params(self.model, verbose=True)
|
| 88 |
+
self.use_ema = use_ema
|
| 89 |
+
if self.use_ema:
|
| 90 |
+
self.model_ema = LitEma(self.model)
|
| 91 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 92 |
+
|
| 93 |
+
self.use_scheduler = scheduler_config is not None
|
| 94 |
+
if self.use_scheduler:
|
| 95 |
+
self.scheduler_config = scheduler_config
|
| 96 |
+
|
| 97 |
+
self.v_posterior = v_posterior
|
| 98 |
+
self.original_elbo_weight = original_elbo_weight
|
| 99 |
+
self.l_simple_weight = l_simple_weight
|
| 100 |
+
|
| 101 |
+
if monitor is not None:
|
| 102 |
+
self.monitor = monitor
|
| 103 |
+
if ckpt_path is not None:
|
| 104 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
| 105 |
+
|
| 106 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
| 107 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
| 108 |
+
|
| 109 |
+
self.loss_type = loss_type
|
| 110 |
+
|
| 111 |
+
self.learn_logvar = learn_logvar
|
| 112 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
| 113 |
+
if self.learn_logvar:
|
| 114 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 118 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 119 |
+
#beta_schedule="edm"
|
| 120 |
+
if exists(given_betas):
|
| 121 |
+
betas = given_betas
|
| 122 |
+
elif beta_schedule=="edm":
|
| 123 |
+
alpha = 0.1
|
| 124 |
+
sigma_min = 0.002
|
| 125 |
+
sigma_max = 80
|
| 126 |
+
sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max),timesteps))
|
| 127 |
+
self.num_timesteps = int(timesteps)
|
| 128 |
+
self.sigma_min = sigma_min
|
| 129 |
+
self.sigma_max = sigma_max
|
| 130 |
+
assert sigmas.shape[0] == self.num_timesteps, 'sigmas have to be defined for each timestep'
|
| 131 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
| 132 |
+
|
| 133 |
+
alphas_cumprod = 1. - sigmas**2
|
| 134 |
+
sigma_prev = np.append(0., sigmas[:-1])
|
| 135 |
+
betas = sigmas**2 - sigma_prev**2
|
| 136 |
+
|
| 137 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(torch.ones_like(sigmas)))
|
| 138 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 139 |
+
self.register_buffer('betas', to_torch(betas))
|
| 140 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(sigmas))
|
| 141 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
| 142 |
+
self.register_buffer('sqrt_recip_alphas_cumprod',to_torch(torch.ones_like(sigmas)))
|
| 143 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(sigmas))
|
| 144 |
+
self.register_buffer('sigmas', to_torch(sigmas))
|
| 145 |
+
posterior_variance = (1 - self.v_posterior)*(sigma_prev/sigmas)**2 * (1/(betas)) + self.v_posterior*betas
|
| 146 |
+
|
| 147 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
| 148 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
| 149 |
+
|
| 150 |
+
self.register_buffer('posterior_mean_coef1', to_torch(1. - (sigma_prev/sigmas)**2))
|
| 151 |
+
self.register_buffer('posterior_mean_coef2', to_torch((sigma_prev/sigmas)**2))
|
| 152 |
+
|
| 153 |
+
if self.parameterization == "eps":
|
| 154 |
+
lvlb_weights = self.sqrt_recipm1_alphas_cumprod**2 / (2*self.posterior_variance)
|
| 155 |
+
elif self.parameterization == "x0":
|
| 156 |
+
##not changed because not needed
|
| 157 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
| 158 |
+
else:
|
| 159 |
+
raise NotImplementedError("mu not supported")
|
| 160 |
+
else:
|
| 161 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
| 162 |
+
alphas = 1. - betas
|
| 163 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
| 164 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
| 165 |
+
|
| 166 |
+
### beta_jump = alpha_
|
| 167 |
+
timesteps, = betas.shape
|
| 168 |
+
self.num_timesteps = int(timesteps)
|
| 169 |
+
self.linear_start = linear_start
|
| 170 |
+
self.linear_end = linear_end
|
| 171 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
| 172 |
+
|
| 173 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
| 174 |
+
|
| 175 |
+
self.register_buffer('betas', to_torch(betas))
|
| 176 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 177 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
| 178 |
+
|
| 179 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 180 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) ##for mean
|
| 181 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
| 182 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
| 183 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
| 184 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
| 185 |
+
|
| 186 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
| 187 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
| 188 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
| 189 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
| 190 |
+
|
| 191 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
| 192 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
| 193 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
| 194 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
| 195 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
| 196 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
| 197 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
| 198 |
+
|
| 199 |
+
if self.parameterization == "eps":
|
| 200 |
+
lvlb_weights = self.betas ** 2 / (
|
| 201 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
| 202 |
+
elif self.parameterization == "x0":
|
| 203 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
| 204 |
+
else:
|
| 205 |
+
raise NotImplementedError("mu not supported")
|
| 206 |
+
|
| 207 |
+
# TODO how to choose this term
|
| 208 |
+
lvlb_weights[0] = lvlb_weights[1]
|
| 209 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
| 210 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
| 211 |
+
|
| 212 |
+
@contextmanager
|
| 213 |
+
def ema_scope(self, context=None):
|
| 214 |
+
if self.use_ema:
|
| 215 |
+
self.model_ema.store(self.model.parameters())
|
| 216 |
+
self.model_ema.copy_to(self.model)
|
| 217 |
+
if context is not None:
|
| 218 |
+
print(f"{context}: Switched to EMA weights")
|
| 219 |
+
try:
|
| 220 |
+
yield None
|
| 221 |
+
finally:
|
| 222 |
+
if self.use_ema:
|
| 223 |
+
self.model_ema.restore(self.model.parameters())
|
| 224 |
+
if context is not None:
|
| 225 |
+
print(f"{context}: Restored training weights")
|
| 226 |
+
|
| 227 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
| 228 |
+
sd = torch.load(path, map_location="cpu")
|
| 229 |
+
if "state_dict" in list(sd.keys()):
|
| 230 |
+
sd = sd["state_dict"]
|
| 231 |
+
keys = list(sd.keys())
|
| 232 |
+
for k in keys:
|
| 233 |
+
for ik in ignore_keys:
|
| 234 |
+
if k.startswith(ik):
|
| 235 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 236 |
+
del sd[k]
|
| 237 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
| 238 |
+
sd, strict=False)
|
| 239 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 240 |
+
if len(missing) > 0:
|
| 241 |
+
print(f"Missing Keys: {missing}")
|
| 242 |
+
if len(unexpected) > 0:
|
| 243 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 244 |
+
|
| 245 |
+
def q_mean_variance(self, x_start, t):
|
| 246 |
+
"""
|
| 247 |
+
Get the distribution q(x_t | x_0).
|
| 248 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
| 249 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
| 250 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
| 251 |
+
"""
|
| 252 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
| 253 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
| 254 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
| 255 |
+
return mean, variance, log_variance
|
| 256 |
+
|
| 257 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
| 258 |
+
return (
|
| 259 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
| 260 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
| 261 |
+
)
|
| 262 |
+
##
|
| 263 |
+
|
| 264 |
+
def q_posterior(self, x_start, x_t, t):
|
| 265 |
+
posterior_mean = (
|
| 266 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
| 267 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 268 |
+
)
|
| 269 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
| 270 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
| 271 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
| 275 |
+
model_out = self.model(x, t)
|
| 276 |
+
if self.parameterization == "eps":
|
| 277 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 278 |
+
elif self.parameterization == "x0":
|
| 279 |
+
x_recon = model_out
|
| 280 |
+
if clip_denoised:
|
| 281 |
+
x_recon.clamp_(-1., 1.)
|
| 282 |
+
|
| 283 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 284 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 285 |
+
|
| 286 |
+
#@torch.no_grad()
|
| 287 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
| 288 |
+
b, *_, device = *x.shape, x.device
|
| 289 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
| 290 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
| 291 |
+
# no noise when t == 0
|
| 292 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 293 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 294 |
+
|
| 295 |
+
@torch.no_grad()
|
| 296 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
| 297 |
+
device = self.betas.device
|
| 298 |
+
b = shape[0]
|
| 299 |
+
img = torch.randn(shape, device=device)
|
| 300 |
+
intermediates = [img]
|
| 301 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
| 302 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
| 303 |
+
clip_denoised=self.clip_denoised)
|
| 304 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
| 305 |
+
intermediates.append(img)
|
| 306 |
+
if return_intermediates:
|
| 307 |
+
return img, intermediates
|
| 308 |
+
return img
|
| 309 |
+
|
| 310 |
+
#@torch.no_grad()
|
| 311 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
| 312 |
+
image_size = self.image_size
|
| 313 |
+
channels = self.channels
|
| 314 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
| 315 |
+
return_intermediates=return_intermediates)
|
| 316 |
+
|
| 317 |
+
def q_sample(self, x_start, t, noise=None):
|
| 318 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 319 |
+
first = extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape)
|
| 320 |
+
first = first * x_start
|
| 321 |
+
second = extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
| 322 |
+
second = second * noise
|
| 323 |
+
return ( first + second
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
def q_sample_seq(self, x_start, t, noise=None):
|
| 327 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 328 |
+
t_sorted, indices = torch.sort(t)
|
| 329 |
+
sigma_t = extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t_sorted, x_start.shape)
|
| 330 |
+
#sigma_prev = torch.append(0., sigma_t[:-1])
|
| 331 |
+
#sigmas_cond_prev_t =
|
| 332 |
+
|
| 333 |
+
x_t = x_start
|
| 334 |
+
x_t[0] = x_start[0] + sigma_t[0]*noise[0]
|
| 335 |
+
cum_noise = sigma_t[0]*noise[0]
|
| 336 |
+
for i in range(1,x_start.shape[0]):
|
| 337 |
+
x_t[i] = x_t[i-1] + noise[i] * torch.sqrt(sigma_t[i]**2 - sigma_t[i-1]**2)
|
| 338 |
+
cum_noise += noise[i] * torch.sqrt(sigma_t[i]**2 - sigma_t[i-1]**2)
|
| 339 |
+
noise[i] = (cum_noise)/(sigma_t[i])
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
return x_t, noise
|
| 343 |
+
|
| 344 |
+
def get_loss(self, pred, target, mean=True):
|
| 345 |
+
if self.loss_type == 'l1':
|
| 346 |
+
loss = (target - pred).abs()
|
| 347 |
+
if mean:
|
| 348 |
+
loss = loss.mean()
|
| 349 |
+
elif self.loss_type == 'l2':
|
| 350 |
+
if mean:
|
| 351 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
| 352 |
+
else:
|
| 353 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
| 354 |
+
else:
|
| 355 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
| 356 |
+
|
| 357 |
+
return loss
|
| 358 |
+
|
| 359 |
+
def p_losses(self, x_start, t, noise=None):
|
| 360 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 361 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 362 |
+
model_out = self.model(x_noisy, t)
|
| 363 |
+
|
| 364 |
+
loss_dict = {}
|
| 365 |
+
if self.parameterization == "eps":
|
| 366 |
+
target = noise
|
| 367 |
+
elif self.parameterization == "x0":
|
| 368 |
+
target = x_start
|
| 369 |
+
else:
|
| 370 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
| 371 |
+
|
| 372 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
| 373 |
+
|
| 374 |
+
log_prefix = 'train' if self.training else 'val'
|
| 375 |
+
|
| 376 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
| 377 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
| 378 |
+
|
| 379 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
| 380 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
| 381 |
+
|
| 382 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
| 383 |
+
|
| 384 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
| 385 |
+
|
| 386 |
+
return loss, loss_dict
|
| 387 |
+
|
| 388 |
+
def forward(self, x, *args, **kwargs):
|
| 389 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
| 390 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
| 391 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 392 |
+
return self.p_losses(x, t, *args, **kwargs)
|
| 393 |
+
|
| 394 |
+
def get_input(self, batch, k):
|
| 395 |
+
x = batch[k]
|
| 396 |
+
if len(x.shape) == 3:
|
| 397 |
+
x = x[..., None]
|
| 398 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
| 399 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
| 400 |
+
return x
|
| 401 |
+
|
| 402 |
+
def shared_step(self, batch):
|
| 403 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 404 |
+
loss, loss_dict = self(x)
|
| 405 |
+
return loss, loss_dict
|
| 406 |
+
|
| 407 |
+
def training_step(self, batch, batch_idx):
|
| 408 |
+
loss, loss_dict = self.shared_step(batch)
|
| 409 |
+
|
| 410 |
+
self.log_dict(loss_dict, prog_bar=True,
|
| 411 |
+
logger=True, on_step=True, on_epoch=True)
|
| 412 |
+
|
| 413 |
+
self.log("global_step", self.global_step,
|
| 414 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 415 |
+
|
| 416 |
+
if self.use_scheduler:
|
| 417 |
+
lr = self.optimizers().param_groups[0]['lr']
|
| 418 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 419 |
+
|
| 420 |
+
return loss
|
| 421 |
+
|
| 422 |
+
@torch.no_grad()
|
| 423 |
+
def validation_step(self, batch, batch_idx):
|
| 424 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
| 425 |
+
with self.ema_scope():
|
| 426 |
+
_, loss_dict_ema = self.shared_step(batch)
|
| 427 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
| 428 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 429 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 430 |
+
|
| 431 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 432 |
+
if self.use_ema:
|
| 433 |
+
self.model_ema(self.model)
|
| 434 |
+
|
| 435 |
+
def _get_rows_from_list(self, samples):
|
| 436 |
+
n_imgs_per_row = len(samples)
|
| 437 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
| 438 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
| 439 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 440 |
+
return denoise_grid
|
| 441 |
+
|
| 442 |
+
@torch.no_grad()
|
| 443 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
| 444 |
+
log = dict()
|
| 445 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 446 |
+
N = min(x.shape[0], N)
|
| 447 |
+
n_row = min(x.shape[0], n_row)
|
| 448 |
+
x = x.to(self.device)[:N]
|
| 449 |
+
log["inputs"] = x
|
| 450 |
+
|
| 451 |
+
# get diffusion row
|
| 452 |
+
diffusion_row = list()
|
| 453 |
+
x_start = x[:n_row]
|
| 454 |
+
|
| 455 |
+
for t in range(self.num_timesteps):
|
| 456 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 457 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 458 |
+
t = t.to(self.device).long()
|
| 459 |
+
noise = torch.randn_like(x_start)
|
| 460 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 461 |
+
diffusion_row.append(x_noisy)
|
| 462 |
+
|
| 463 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
| 464 |
+
|
| 465 |
+
if sample:
|
| 466 |
+
# get denoise row
|
| 467 |
+
with self.ema_scope("Plotting"):
|
| 468 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
| 469 |
+
|
| 470 |
+
log["samples"] = samples
|
| 471 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
| 472 |
+
|
| 473 |
+
if return_keys:
|
| 474 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 475 |
+
return log
|
| 476 |
+
else:
|
| 477 |
+
return {key: log[key] for key in return_keys}
|
| 478 |
+
return log
|
| 479 |
+
|
| 480 |
+
def configure_optimizers(self):
|
| 481 |
+
lr = self.learning_rate
|
| 482 |
+
params = list(self.model.parameters())
|
| 483 |
+
if self.learn_logvar:
|
| 484 |
+
params = params + [self.logvar]
|
| 485 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 486 |
+
return opt
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
class LatentDiffusion(DDPM):
|
| 490 |
+
"""main class"""
|
| 491 |
+
def __init__(self,
|
| 492 |
+
first_stage_config,
|
| 493 |
+
cond_stage_config,
|
| 494 |
+
num_timesteps_cond=None,
|
| 495 |
+
cond_stage_key="image",
|
| 496 |
+
cond_stage_trainable=False,
|
| 497 |
+
concat_mode=True,
|
| 498 |
+
cond_stage_forward=None,
|
| 499 |
+
conditioning_key=None,
|
| 500 |
+
scale_factor=1.0,
|
| 501 |
+
scale_by_std=False,
|
| 502 |
+
*args, **kwargs):
|
| 503 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
| 504 |
+
self.scale_by_std = scale_by_std
|
| 505 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
| 506 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
| 507 |
+
if conditioning_key is None:
|
| 508 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
| 509 |
+
if cond_stage_config == '__is_unconditional__':
|
| 510 |
+
conditioning_key = None
|
| 511 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
| 512 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
| 513 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
| 514 |
+
self.concat_mode = concat_mode
|
| 515 |
+
self.cond_stage_trainable = cond_stage_trainable
|
| 516 |
+
self.cond_stage_key = cond_stage_key
|
| 517 |
+
try:
|
| 518 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
| 519 |
+
except:
|
| 520 |
+
self.num_downs = 0
|
| 521 |
+
if not scale_by_std:
|
| 522 |
+
self.scale_factor = scale_factor
|
| 523 |
+
else:
|
| 524 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
| 525 |
+
self.instantiate_first_stage(first_stage_config)
|
| 526 |
+
self.instantiate_cond_stage(cond_stage_config)
|
| 527 |
+
self.cond_stage_forward = cond_stage_forward
|
| 528 |
+
self.clip_denoised = False
|
| 529 |
+
self.bbox_tokenizer = None
|
| 530 |
+
|
| 531 |
+
self.restarted_from_ckpt = False
|
| 532 |
+
if ckpt_path is not None:
|
| 533 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
| 534 |
+
self.restarted_from_ckpt = True
|
| 535 |
+
|
| 536 |
+
def make_cond_schedule(self, ):
|
| 537 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
| 538 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
| 539 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
| 540 |
+
|
| 541 |
+
@rank_zero_only
|
| 542 |
+
@torch.no_grad()
|
| 543 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
| 544 |
+
# only for very first batch
|
| 545 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
| 546 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
| 547 |
+
# set rescale weight to 1./std of encodings
|
| 548 |
+
print("### USING STD-RESCALING ###")
|
| 549 |
+
x = super().get_input(batch, self.first_stage_key)
|
| 550 |
+
x = x.to(self.device)
|
| 551 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 552 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 553 |
+
del self.scale_factor
|
| 554 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
| 555 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
| 556 |
+
print("### USING STD-RESCALING ###")
|
| 557 |
+
|
| 558 |
+
def register_schedule(self,
|
| 559 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 560 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 561 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
| 562 |
+
|
| 563 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
| 564 |
+
if self.shorten_cond_schedule:
|
| 565 |
+
self.make_cond_schedule()
|
| 566 |
+
|
| 567 |
+
def instantiate_first_stage(self, config):
|
| 568 |
+
model = instantiate_from_config(config)
|
| 569 |
+
self.first_stage_model = model.eval()
|
| 570 |
+
self.first_stage_model.train = disabled_train
|
| 571 |
+
for param in self.first_stage_model.parameters():
|
| 572 |
+
param.requires_grad = False
|
| 573 |
+
|
| 574 |
+
def instantiate_cond_stage(self, config):
|
| 575 |
+
if not self.cond_stage_trainable:
|
| 576 |
+
if config == "__is_first_stage__":
|
| 577 |
+
print("Using first stage also as cond stage.")
|
| 578 |
+
self.cond_stage_model = self.first_stage_model
|
| 579 |
+
elif config == "__is_unconditional__":
|
| 580 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
| 581 |
+
self.cond_stage_model = None
|
| 582 |
+
# self.be_unconditional = True
|
| 583 |
+
else:
|
| 584 |
+
model = instantiate_from_config(config)
|
| 585 |
+
self.cond_stage_model = model.eval()
|
| 586 |
+
self.cond_stage_model.train = disabled_train
|
| 587 |
+
for param in self.cond_stage_model.parameters():
|
| 588 |
+
param.requires_grad = False
|
| 589 |
+
else:
|
| 590 |
+
assert config != '__is_first_stage__'
|
| 591 |
+
assert config != '__is_unconditional__'
|
| 592 |
+
model = instantiate_from_config(config)
|
| 593 |
+
self.cond_stage_model = model
|
| 594 |
+
|
| 595 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
| 596 |
+
denoise_row = []
|
| 597 |
+
for zd in tqdm(samples, desc=desc):
|
| 598 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
| 599 |
+
force_not_quantize=force_no_decoder_quantization))
|
| 600 |
+
n_imgs_per_row = len(denoise_row)
|
| 601 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
| 602 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
| 603 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
| 604 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 605 |
+
return denoise_grid
|
| 606 |
+
|
| 607 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
| 608 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
| 609 |
+
z = encoder_posterior.sample()
|
| 610 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
| 611 |
+
z = encoder_posterior
|
| 612 |
+
else:
|
| 613 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
| 614 |
+
return self.scale_factor * z
|
| 615 |
+
|
| 616 |
+
def get_learned_conditioning(self, c):
|
| 617 |
+
if self.cond_stage_forward is None:
|
| 618 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
| 619 |
+
c = self.cond_stage_model.encode(c)
|
| 620 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
| 621 |
+
c = c.mode()
|
| 622 |
+
else:
|
| 623 |
+
c = self.cond_stage_model(c)
|
| 624 |
+
else:
|
| 625 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
| 626 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
| 627 |
+
return c
|
| 628 |
+
|
| 629 |
+
def meshgrid(self, h, w):
|
| 630 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
| 631 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
| 632 |
+
|
| 633 |
+
arr = torch.cat([y, x], dim=-1)
|
| 634 |
+
return arr
|
| 635 |
+
|
| 636 |
+
def delta_border(self, h, w):
|
| 637 |
+
"""
|
| 638 |
+
:param h: height
|
| 639 |
+
:param w: width
|
| 640 |
+
:return: normalized distance to image border,
|
| 641 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
| 642 |
+
"""
|
| 643 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
| 644 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
| 645 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
| 646 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
| 647 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
| 648 |
+
return edge_dist
|
| 649 |
+
|
| 650 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
| 651 |
+
weighting = self.delta_border(h, w)
|
| 652 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
| 653 |
+
self.split_input_params["clip_max_weight"], )
|
| 654 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
| 655 |
+
|
| 656 |
+
if self.split_input_params["tie_braker"]:
|
| 657 |
+
L_weighting = self.delta_border(Ly, Lx)
|
| 658 |
+
L_weighting = torch.clip(L_weighting,
|
| 659 |
+
self.split_input_params["clip_min_tie_weight"],
|
| 660 |
+
self.split_input_params["clip_max_tie_weight"])
|
| 661 |
+
|
| 662 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
| 663 |
+
weighting = weighting * L_weighting
|
| 664 |
+
return weighting
|
| 665 |
+
|
| 666 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
| 667 |
+
"""
|
| 668 |
+
:param x: img of size (bs, c, h, w)
|
| 669 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
| 670 |
+
"""
|
| 671 |
+
bs, nc, h, w = x.shape
|
| 672 |
+
|
| 673 |
+
# number of crops in image
|
| 674 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
| 675 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
| 676 |
+
|
| 677 |
+
if uf == 1 and df == 1:
|
| 678 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 679 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 680 |
+
|
| 681 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
| 682 |
+
|
| 683 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
| 684 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
| 685 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
| 686 |
+
|
| 687 |
+
elif uf > 1 and df == 1:
|
| 688 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 689 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 690 |
+
|
| 691 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
| 692 |
+
dilation=1, padding=0,
|
| 693 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
| 694 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
| 695 |
+
|
| 696 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
| 697 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
| 698 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
| 699 |
+
|
| 700 |
+
elif df > 1 and uf == 1:
|
| 701 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 702 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 703 |
+
|
| 704 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
| 705 |
+
dilation=1, padding=0,
|
| 706 |
+
stride=(stride[0] // df, stride[1] // df))
|
| 707 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
| 708 |
+
|
| 709 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
| 710 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
| 711 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
| 712 |
+
|
| 713 |
+
else:
|
| 714 |
+
raise NotImplementedError
|
| 715 |
+
|
| 716 |
+
return fold, unfold, normalization, weighting
|
| 717 |
+
|
| 718 |
+
@torch.no_grad()
|
| 719 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
| 720 |
+
cond_key=None, return_original_cond=False, bs=None):
|
| 721 |
+
x = super().get_input(batch, k)
|
| 722 |
+
if bs is not None:
|
| 723 |
+
x = x[:bs]
|
| 724 |
+
x = x.to(self.device)
|
| 725 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 726 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 727 |
+
|
| 728 |
+
if self.model.conditioning_key is not None:
|
| 729 |
+
if cond_key is None:
|
| 730 |
+
cond_key = self.cond_stage_key
|
| 731 |
+
if cond_key != self.first_stage_key:
|
| 732 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
| 733 |
+
xc = batch[cond_key]
|
| 734 |
+
elif cond_key == 'class_label':
|
| 735 |
+
xc = batch
|
| 736 |
+
else:
|
| 737 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
| 738 |
+
else:
|
| 739 |
+
xc = x
|
| 740 |
+
if not self.cond_stage_trainable or force_c_encode:
|
| 741 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
| 742 |
+
# import pudb; pudb.set_trace()
|
| 743 |
+
c = self.get_learned_conditioning(xc)
|
| 744 |
+
else:
|
| 745 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
| 746 |
+
else:
|
| 747 |
+
c = xc
|
| 748 |
+
if bs is not None:
|
| 749 |
+
c = c[:bs]
|
| 750 |
+
|
| 751 |
+
if self.use_positional_encodings:
|
| 752 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 753 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
| 754 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
| 755 |
+
|
| 756 |
+
else:
|
| 757 |
+
c = None
|
| 758 |
+
xc = None
|
| 759 |
+
if self.use_positional_encodings:
|
| 760 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 761 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
| 762 |
+
out = [z, c]
|
| 763 |
+
if return_first_stage_outputs:
|
| 764 |
+
xrec = self.decode_first_stage(z)
|
| 765 |
+
out.extend([x, xrec])
|
| 766 |
+
if return_original_cond:
|
| 767 |
+
out.append(xc)
|
| 768 |
+
return out
|
| 769 |
+
|
| 770 |
+
#@torch.no_grad()
|
| 771 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
| 772 |
+
if predict_cids:
|
| 773 |
+
if z.dim() == 4:
|
| 774 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 775 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 776 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
| 777 |
+
|
| 778 |
+
z = 1. / self.scale_factor * z
|
| 779 |
+
|
| 780 |
+
if hasattr(self, "split_input_params"):
|
| 781 |
+
if self.split_input_params["patch_distributed_vq"]:
|
| 782 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
| 783 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
| 784 |
+
uf = self.split_input_params["vqf"]
|
| 785 |
+
bs, nc, h, w = z.shape
|
| 786 |
+
if ks[0] > h or ks[1] > w:
|
| 787 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
| 788 |
+
print("reducing Kernel")
|
| 789 |
+
|
| 790 |
+
if stride[0] > h or stride[1] > w:
|
| 791 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
| 792 |
+
print("reducing stride")
|
| 793 |
+
|
| 794 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
| 795 |
+
|
| 796 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
| 797 |
+
# 1. Reshape to img shape
|
| 798 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 799 |
+
|
| 800 |
+
# 2. apply model loop over last dim
|
| 801 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 802 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
| 803 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
| 804 |
+
for i in range(z.shape[-1])]
|
| 805 |
+
else:
|
| 806 |
+
|
| 807 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
| 808 |
+
for i in range(z.shape[-1])]
|
| 809 |
+
|
| 810 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
| 811 |
+
o = o * weighting
|
| 812 |
+
# Reverse 1. reshape to img shape
|
| 813 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
| 814 |
+
# stitch crops together
|
| 815 |
+
decoded = fold(o)
|
| 816 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
| 817 |
+
return decoded
|
| 818 |
+
else:
|
| 819 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 820 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
| 821 |
+
else:
|
| 822 |
+
return self.first_stage_model.decode(z)
|
| 823 |
+
|
| 824 |
+
else:
|
| 825 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 826 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
| 827 |
+
else:
|
| 828 |
+
return self.first_stage_model.decode(z)
|
| 829 |
+
|
| 830 |
+
# same as above but without decorator
|
| 831 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
| 832 |
+
if predict_cids:
|
| 833 |
+
if z.dim() == 4:
|
| 834 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 835 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 836 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
| 837 |
+
|
| 838 |
+
z = 1. / self.scale_factor * z
|
| 839 |
+
|
| 840 |
+
if hasattr(self, "split_input_params"):
|
| 841 |
+
if self.split_input_params["patch_distributed_vq"]:
|
| 842 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
| 843 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
| 844 |
+
uf = self.split_input_params["vqf"]
|
| 845 |
+
bs, nc, h, w = z.shape
|
| 846 |
+
if ks[0] > h or ks[1] > w:
|
| 847 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
| 848 |
+
print("reducing Kernel")
|
| 849 |
+
|
| 850 |
+
if stride[0] > h or stride[1] > w:
|
| 851 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
| 852 |
+
print("reducing stride")
|
| 853 |
+
|
| 854 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
| 855 |
+
|
| 856 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
| 857 |
+
# 1. Reshape to img shape
|
| 858 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 859 |
+
|
| 860 |
+
# 2. apply model loop over last dim
|
| 861 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 862 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
| 863 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
| 864 |
+
for i in range(z.shape[-1])]
|
| 865 |
+
else:
|
| 866 |
+
|
| 867 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
| 868 |
+
for i in range(z.shape[-1])]
|
| 869 |
+
|
| 870 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
| 871 |
+
o = o * weighting
|
| 872 |
+
# Reverse 1. reshape to img shape
|
| 873 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
| 874 |
+
# stitch crops together
|
| 875 |
+
decoded = fold(o)
|
| 876 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
| 877 |
+
return decoded
|
| 878 |
+
else:
|
| 879 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 880 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
| 881 |
+
else:
|
| 882 |
+
return self.first_stage_model.decode(z)
|
| 883 |
+
|
| 884 |
+
else:
|
| 885 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
| 886 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
| 887 |
+
else:
|
| 888 |
+
return self.first_stage_model.decode(z)
|
| 889 |
+
|
| 890 |
+
#@torch.no_grad()
|
| 891 |
+
def encode_first_stage(self, x, return_all=None):
|
| 892 |
+
if hasattr(self, "split_input_params"):
|
| 893 |
+
if self.split_input_params["patch_distributed_vq"]:
|
| 894 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
| 895 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
| 896 |
+
df = self.split_input_params["vqf"]
|
| 897 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
| 898 |
+
bs, nc, h, w = x.shape
|
| 899 |
+
if ks[0] > h or ks[1] > w:
|
| 900 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
| 901 |
+
print("reducing Kernel")
|
| 902 |
+
|
| 903 |
+
if stride[0] > h or stride[1] > w:
|
| 904 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
| 905 |
+
print("reducing stride")
|
| 906 |
+
|
| 907 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
| 908 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
| 909 |
+
# Reshape to img shape
|
| 910 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 911 |
+
|
| 912 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
| 913 |
+
for i in range(z.shape[-1])]
|
| 914 |
+
|
| 915 |
+
o = torch.stack(output_list, axis=-1)
|
| 916 |
+
o = o * weighting
|
| 917 |
+
|
| 918 |
+
# Reverse reshape to img shape
|
| 919 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
| 920 |
+
# stitch crops together
|
| 921 |
+
decoded = fold(o)
|
| 922 |
+
decoded = decoded / normalization
|
| 923 |
+
return decoded
|
| 924 |
+
else:
|
| 925 |
+
return self.first_stage_model.encode(x,return_all)
|
| 926 |
+
else:
|
| 927 |
+
posterior = self.first_stage_model.encode(x, return_all) #
|
| 928 |
+
#print(self.first_stage_model.loss.logvar)
|
| 929 |
+
return posterior #
|
| 930 |
+
|
| 931 |
+
def shared_step(self, batch, **kwargs):
|
| 932 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
| 933 |
+
loss = self(x, c)
|
| 934 |
+
return loss
|
| 935 |
+
|
| 936 |
+
def forward(self, x, c, *args, **kwargs):
|
| 937 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 938 |
+
if self.model.conditioning_key is not None:
|
| 939 |
+
assert c is not None
|
| 940 |
+
if self.cond_stage_trainable:
|
| 941 |
+
c = self.get_learned_conditioning(c)
|
| 942 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
| 943 |
+
tc = self.cond_ids[t].to(self.device)
|
| 944 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
| 945 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
| 946 |
+
|
| 947 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
| 948 |
+
def rescale_bbox(bbox):
|
| 949 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
| 950 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
| 951 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
| 952 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
| 953 |
+
return x0, y0, w, h
|
| 954 |
+
|
| 955 |
+
return [rescale_bbox(b) for b in bboxes]
|
| 956 |
+
|
| 957 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
| 958 |
+
|
| 959 |
+
if isinstance(cond, dict):
|
| 960 |
+
# hybrid case, cond is exptected to be a dict
|
| 961 |
+
pass
|
| 962 |
+
else:
|
| 963 |
+
if not isinstance(cond, list):
|
| 964 |
+
cond = [cond]
|
| 965 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
| 966 |
+
cond = {key: cond}
|
| 967 |
+
|
| 968 |
+
if hasattr(self, "split_input_params"):
|
| 969 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
| 970 |
+
assert not return_ids
|
| 971 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
| 972 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
| 973 |
+
|
| 974 |
+
h, w = x_noisy.shape[-2:]
|
| 975 |
+
|
| 976 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
| 977 |
+
|
| 978 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
| 979 |
+
# Reshape to img shape
|
| 980 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 981 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
| 982 |
+
|
| 983 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
| 984 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
| 985 |
+
c_key = next(iter(cond.keys())) # get key
|
| 986 |
+
c = next(iter(cond.values())) # get value
|
| 987 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
| 988 |
+
c = c[0] # get element
|
| 989 |
+
|
| 990 |
+
c = unfold(c)
|
| 991 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
| 992 |
+
|
| 993 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
| 994 |
+
|
| 995 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
| 996 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
| 997 |
+
|
| 998 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
| 999 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
| 1000 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
| 1001 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
| 1002 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
| 1003 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
| 1004 |
+
rescale_latent = 2 ** (num_downs)
|
| 1005 |
+
|
| 1006 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
| 1007 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
| 1008 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
| 1009 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
| 1010 |
+
for patch_nr in range(z.shape[-1])]
|
| 1011 |
+
|
| 1012 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
| 1013 |
+
patch_limits = [(x_tl, y_tl,
|
| 1014 |
+
rescale_latent * ks[0] / full_img_w,
|
| 1015 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
| 1016 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
| 1017 |
+
|
| 1018 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
| 1019 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
| 1020 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
| 1021 |
+
print(patch_limits_tknzd[0].shape)
|
| 1022 |
+
# cut tknzd crop position from conditioning
|
| 1023 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
| 1024 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
| 1025 |
+
print(cut_cond.shape)
|
| 1026 |
+
|
| 1027 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
| 1028 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
| 1029 |
+
print(adapted_cond.shape)
|
| 1030 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
| 1031 |
+
print(adapted_cond.shape)
|
| 1032 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
| 1033 |
+
print(adapted_cond.shape)
|
| 1034 |
+
|
| 1035 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
| 1036 |
+
|
| 1037 |
+
else:
|
| 1038 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
| 1039 |
+
|
| 1040 |
+
# apply model by loop over crops
|
| 1041 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
| 1042 |
+
assert not isinstance(output_list[0],
|
| 1043 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
| 1044 |
+
|
| 1045 |
+
o = torch.stack(output_list, axis=-1)
|
| 1046 |
+
o = o * weighting
|
| 1047 |
+
# Reverse reshape to img shape
|
| 1048 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
| 1049 |
+
# stitch crops together
|
| 1050 |
+
x_recon = fold(o) / normalization
|
| 1051 |
+
|
| 1052 |
+
else:
|
| 1053 |
+
x_recon = self.model(x_noisy, t, **cond)
|
| 1054 |
+
|
| 1055 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
| 1056 |
+
return x_recon[0]
|
| 1057 |
+
else:
|
| 1058 |
+
return x_recon
|
| 1059 |
+
|
| 1060 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
| 1061 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
| 1062 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 1063 |
+
|
| 1064 |
+
def _prior_bpd(self, x_start):
|
| 1065 |
+
"""
|
| 1066 |
+
Get the prior KL term for the variational lower-bound, measured in
|
| 1067 |
+
bits-per-dim.
|
| 1068 |
+
This term can't be optimized, as it only depends on the encoder.
|
| 1069 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
| 1070 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
| 1071 |
+
"""
|
| 1072 |
+
batch_size = x_start.shape[0]
|
| 1073 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
| 1074 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
| 1075 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
| 1076 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
| 1077 |
+
|
| 1078 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
| 1079 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 1080 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 1081 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
| 1082 |
+
|
| 1083 |
+
loss_dict = {}
|
| 1084 |
+
prefix = 'train' if self.training else 'val'
|
| 1085 |
+
|
| 1086 |
+
if self.parameterization == "x0":
|
| 1087 |
+
target = x_start
|
| 1088 |
+
elif self.parameterization == "eps":
|
| 1089 |
+
target = noise
|
| 1090 |
+
else:
|
| 1091 |
+
raise NotImplementedError()
|
| 1092 |
+
|
| 1093 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
| 1094 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
| 1095 |
+
|
| 1096 |
+
logvar_t = self.logvar[t.cpu()].to(self.device)
|
| 1097 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
| 1098 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
| 1099 |
+
if self.learn_logvar:
|
| 1100 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
| 1101 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
| 1102 |
+
|
| 1103 |
+
loss = self.l_simple_weight * loss.mean()
|
| 1104 |
+
|
| 1105 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
| 1106 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
| 1107 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
| 1108 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
| 1109 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
| 1110 |
+
|
| 1111 |
+
return loss, loss_dict
|
| 1112 |
+
|
| 1113 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
| 1114 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
| 1115 |
+
t_in = t
|
| 1116 |
+
if c is not None:
|
| 1117 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
| 1118 |
+
else:
|
| 1119 |
+
model_out = self.model(x, t_in)
|
| 1120 |
+
|
| 1121 |
+
if score_corrector is not None:
|
| 1122 |
+
assert self.parameterization == "eps"
|
| 1123 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
| 1124 |
+
|
| 1125 |
+
if return_codebook_ids:
|
| 1126 |
+
model_out, logits = model_out
|
| 1127 |
+
|
| 1128 |
+
if self.parameterization == "eps":
|
| 1129 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 1130 |
+
elif self.parameterization == "x0":
|
| 1131 |
+
x_recon = model_out
|
| 1132 |
+
else:
|
| 1133 |
+
raise NotImplementedError()
|
| 1134 |
+
|
| 1135 |
+
if clip_denoised:
|
| 1136 |
+
x_recon.clamp_(-1., 1.)
|
| 1137 |
+
if quantize_denoised:
|
| 1138 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
| 1139 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 1140 |
+
if return_codebook_ids:
|
| 1141 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
| 1142 |
+
elif return_x0:
|
| 1143 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
| 1144 |
+
else:
|
| 1145 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 1146 |
+
|
| 1147 |
+
#@torch.no_grad()
|
| 1148 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
| 1149 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
| 1150 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
| 1151 |
+
b, *_, device = *x.shape, x.device
|
| 1152 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
| 1153 |
+
return_codebook_ids=return_codebook_ids,
|
| 1154 |
+
quantize_denoised=quantize_denoised,
|
| 1155 |
+
return_x0=return_x0,
|
| 1156 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 1157 |
+
if return_codebook_ids:
|
| 1158 |
+
raise DeprecationWarning("Support dropped.")
|
| 1159 |
+
model_mean, _, model_log_variance, logits = outputs
|
| 1160 |
+
elif return_x0:
|
| 1161 |
+
model_mean, _, model_log_variance, x0 = outputs
|
| 1162 |
+
else:
|
| 1163 |
+
model_mean, _, model_log_variance = outputs
|
| 1164 |
+
|
| 1165 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
| 1166 |
+
if noise_dropout > 0.:
|
| 1167 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 1168 |
+
# no noise when t == 0
|
| 1169 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 1170 |
+
|
| 1171 |
+
if return_codebook_ids:
|
| 1172 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
| 1173 |
+
if return_x0:
|
| 1174 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
| 1175 |
+
else:
|
| 1176 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 1177 |
+
|
| 1178 |
+
#@torch.no_grad()
|
| 1179 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
| 1180 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
| 1181 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
| 1182 |
+
log_every_t=None):
|
| 1183 |
+
if not log_every_t:
|
| 1184 |
+
log_every_t = self.log_every_t
|
| 1185 |
+
timesteps = self.num_timesteps
|
| 1186 |
+
if batch_size is not None:
|
| 1187 |
+
b = batch_size if batch_size is not None else shape[0]
|
| 1188 |
+
shape = [batch_size] + list(shape)
|
| 1189 |
+
else:
|
| 1190 |
+
b = batch_size = shape[0]
|
| 1191 |
+
if x_T is None:
|
| 1192 |
+
img = torch.randn(shape, device=self.device)
|
| 1193 |
+
else:
|
| 1194 |
+
img = x_T
|
| 1195 |
+
intermediates = []
|
| 1196 |
+
if cond is not None:
|
| 1197 |
+
if isinstance(cond, dict):
|
| 1198 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1199 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1200 |
+
else:
|
| 1201 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1202 |
+
|
| 1203 |
+
if start_T is not None:
|
| 1204 |
+
timesteps = min(timesteps, start_T)
|
| 1205 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
| 1206 |
+
total=timesteps) if verbose else reversed(
|
| 1207 |
+
range(0, timesteps))
|
| 1208 |
+
if type(temperature) == float:
|
| 1209 |
+
temperature = [temperature] * timesteps
|
| 1210 |
+
|
| 1211 |
+
for i in iterator:
|
| 1212 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
| 1213 |
+
if self.shorten_cond_schedule:
|
| 1214 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1215 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1216 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1217 |
+
|
| 1218 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
| 1219 |
+
clip_denoised=self.clip_denoised,
|
| 1220 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
| 1221 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
| 1222 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 1223 |
+
if mask is not None:
|
| 1224 |
+
assert x0 is not None
|
| 1225 |
+
img_orig = self.q_sample(x0, ts)
|
| 1226 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1227 |
+
|
| 1228 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1229 |
+
intermediates.append(x0_partial)
|
| 1230 |
+
if callback: callback(i)
|
| 1231 |
+
if img_callback: img_callback(img, i)
|
| 1232 |
+
return img, intermediates
|
| 1233 |
+
|
| 1234 |
+
@torch.no_grad()
|
| 1235 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
| 1236 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
| 1237 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
| 1238 |
+
log_every_t=None):
|
| 1239 |
+
|
| 1240 |
+
if not log_every_t:
|
| 1241 |
+
log_every_t = self.log_every_t
|
| 1242 |
+
device = self.betas.device
|
| 1243 |
+
b = shape[0]
|
| 1244 |
+
if x_T is None:
|
| 1245 |
+
img = torch.randn(shape, device=device)
|
| 1246 |
+
else:
|
| 1247 |
+
img = x_T
|
| 1248 |
+
|
| 1249 |
+
intermediates = [img]
|
| 1250 |
+
if timesteps is None:
|
| 1251 |
+
timesteps = self.num_timesteps
|
| 1252 |
+
|
| 1253 |
+
if start_T is not None:
|
| 1254 |
+
timesteps = min(timesteps, start_T)
|
| 1255 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
| 1256 |
+
range(0, timesteps))
|
| 1257 |
+
|
| 1258 |
+
if mask is not None:
|
| 1259 |
+
assert x0 is not None
|
| 1260 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
| 1261 |
+
|
| 1262 |
+
for i in iterator:
|
| 1263 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
| 1264 |
+
if self.shorten_cond_schedule:
|
| 1265 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1266 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1267 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1268 |
+
|
| 1269 |
+
img = self.p_sample(img, cond, ts,
|
| 1270 |
+
clip_denoised=self.clip_denoised,
|
| 1271 |
+
quantize_denoised=quantize_denoised)
|
| 1272 |
+
if mask is not None:
|
| 1273 |
+
img_orig = self.q_sample(x0, ts)
|
| 1274 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1275 |
+
|
| 1276 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1277 |
+
intermediates.append(img)
|
| 1278 |
+
if callback: callback(i)
|
| 1279 |
+
if img_callback: img_callback(img, i)
|
| 1280 |
+
|
| 1281 |
+
if return_intermediates:
|
| 1282 |
+
return img, intermediates
|
| 1283 |
+
return img
|
| 1284 |
+
|
| 1285 |
+
@torch.no_grad()
|
| 1286 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
| 1287 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
| 1288 |
+
mask=None, x0=None, shape=None,**kwargs):
|
| 1289 |
+
if shape is None:
|
| 1290 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
| 1291 |
+
if cond is not None:
|
| 1292 |
+
if isinstance(cond, dict):
|
| 1293 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1294 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1295 |
+
else:
|
| 1296 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1297 |
+
return self.p_sample_loop(cond,
|
| 1298 |
+
shape,
|
| 1299 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
| 1300 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
| 1301 |
+
mask=mask, x0=x0)
|
| 1302 |
+
|
| 1303 |
+
@torch.no_grad()
|
| 1304 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
| 1305 |
+
|
| 1306 |
+
if ddim:
|
| 1307 |
+
ddim_sampler = DDIMSampler(self)
|
| 1308 |
+
shape = (self.channels, self.image_size, self.image_size)
|
| 1309 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
| 1310 |
+
shape,cond,verbose=False,**kwargs)
|
| 1311 |
+
|
| 1312 |
+
else:
|
| 1313 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
| 1314 |
+
return_intermediates=True,**kwargs)
|
| 1315 |
+
|
| 1316 |
+
return samples, intermediates
|
| 1317 |
+
|
| 1318 |
+
|
| 1319 |
+
@torch.no_grad()
|
| 1320 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
| 1321 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
| 1322 |
+
plot_diffusion_rows=True, **kwargs):
|
| 1323 |
+
|
| 1324 |
+
use_ddim = ddim_steps is not None
|
| 1325 |
+
|
| 1326 |
+
log = dict()
|
| 1327 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
| 1328 |
+
return_first_stage_outputs=True,
|
| 1329 |
+
force_c_encode=True,
|
| 1330 |
+
return_original_cond=True,
|
| 1331 |
+
bs=N)
|
| 1332 |
+
N = min(x.shape[0], N)
|
| 1333 |
+
n_row = min(x.shape[0], n_row)
|
| 1334 |
+
log["inputs"] = x
|
| 1335 |
+
log["reconstruction"] = xrec
|
| 1336 |
+
if self.model.conditioning_key is not None:
|
| 1337 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1338 |
+
xc = self.cond_stage_model.decode(c)
|
| 1339 |
+
log["conditioning"] = xc
|
| 1340 |
+
elif self.cond_stage_key in ["caption"]:
|
| 1341 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
| 1342 |
+
log["conditioning"] = xc
|
| 1343 |
+
elif self.cond_stage_key == 'class_label':
|
| 1344 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
| 1345 |
+
log['conditioning'] = xc
|
| 1346 |
+
elif isimage(xc):
|
| 1347 |
+
log["conditioning"] = xc
|
| 1348 |
+
if ismap(xc):
|
| 1349 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1350 |
+
|
| 1351 |
+
if plot_diffusion_rows:
|
| 1352 |
+
# get diffusion row
|
| 1353 |
+
diffusion_row = list()
|
| 1354 |
+
z_start = z[:n_row]
|
| 1355 |
+
for t in range(self.num_timesteps):
|
| 1356 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 1357 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 1358 |
+
t = t.to(self.device).long()
|
| 1359 |
+
noise = torch.randn_like(z_start)
|
| 1360 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 1361 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 1362 |
+
|
| 1363 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 1364 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 1365 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 1366 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 1367 |
+
log["diffusion_row"] = diffusion_grid
|
| 1368 |
+
|
| 1369 |
+
if sample:
|
| 1370 |
+
# get denoise row
|
| 1371 |
+
with self.ema_scope("Plotting"):
|
| 1372 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
| 1373 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
| 1374 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
| 1375 |
+
x_samples = self.decode_first_stage(samples)
|
| 1376 |
+
log["samples"] = x_samples
|
| 1377 |
+
if plot_denoise_rows:
|
| 1378 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 1379 |
+
log["denoise_row"] = denoise_grid
|
| 1380 |
+
|
| 1381 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
| 1382 |
+
self.first_stage_model, IdentityFirstStage):
|
| 1383 |
+
# also display when quantizing x0 while sampling
|
| 1384 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
| 1385 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
| 1386 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
| 1387 |
+
quantize_denoised=True)
|
| 1388 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
| 1389 |
+
# quantize_denoised=True)
|
| 1390 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1391 |
+
log["samples_x0_quantized"] = x_samples
|
| 1392 |
+
|
| 1393 |
+
if inpaint:
|
| 1394 |
+
# make a simple center square
|
| 1395 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
| 1396 |
+
mask = torch.ones(N, h, w).to(self.device)
|
| 1397 |
+
# zeros will be filled in
|
| 1398 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
| 1399 |
+
mask = mask[:, None, ...]
|
| 1400 |
+
with self.ema_scope("Plotting Inpaint"):
|
| 1401 |
+
|
| 1402 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
| 1403 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
| 1404 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1405 |
+
log["samples_inpainting"] = x_samples
|
| 1406 |
+
log["mask"] = mask
|
| 1407 |
+
|
| 1408 |
+
# outpaint
|
| 1409 |
+
with self.ema_scope("Plotting Outpaint"):
|
| 1410 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
| 1411 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
| 1412 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1413 |
+
log["samples_outpainting"] = x_samples
|
| 1414 |
+
|
| 1415 |
+
if plot_progressive_rows:
|
| 1416 |
+
with self.ema_scope("Plotting Progressives"):
|
| 1417 |
+
img, progressives = self.progressive_denoising(c,
|
| 1418 |
+
shape=(self.channels, self.image_size, self.image_size),
|
| 1419 |
+
batch_size=N)
|
| 1420 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
| 1421 |
+
log["progressive_row"] = prog_row
|
| 1422 |
+
|
| 1423 |
+
if return_keys:
|
| 1424 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 1425 |
+
return log
|
| 1426 |
+
else:
|
| 1427 |
+
return {key: log[key] for key in return_keys}
|
| 1428 |
+
return log
|
| 1429 |
+
|
| 1430 |
+
def configure_optimizers(self):
|
| 1431 |
+
lr = self.learning_rate
|
| 1432 |
+
params = list(self.model.parameters())
|
| 1433 |
+
if self.cond_stage_trainable:
|
| 1434 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
| 1435 |
+
params = params + list(self.cond_stage_model.parameters())
|
| 1436 |
+
if self.learn_logvar:
|
| 1437 |
+
print('Diffusion model optimizing logvar')
|
| 1438 |
+
params.append(self.logvar)
|
| 1439 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 1440 |
+
if self.use_scheduler:
|
| 1441 |
+
assert 'target' in self.scheduler_config
|
| 1442 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
| 1443 |
+
|
| 1444 |
+
print("Setting up LambdaLR scheduler...")
|
| 1445 |
+
scheduler = [
|
| 1446 |
+
{
|
| 1447 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
| 1448 |
+
'interval': 'step',
|
| 1449 |
+
'frequency': 1
|
| 1450 |
+
}]
|
| 1451 |
+
return [opt], scheduler
|
| 1452 |
+
return opt
|
| 1453 |
+
|
| 1454 |
+
@torch.no_grad()
|
| 1455 |
+
def to_rgb(self, x):
|
| 1456 |
+
x = x.float()
|
| 1457 |
+
if not hasattr(self, "colorize"):
|
| 1458 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
| 1459 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
| 1460 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
| 1461 |
+
return x
|
| 1462 |
+
|
| 1463 |
+
|
| 1464 |
+
class DiffusionWrapper(pl.LightningModule):
|
| 1465 |
+
def __init__(self, diff_model_config, conditioning_key):
|
| 1466 |
+
super().__init__()
|
| 1467 |
+
#self.automatic_optimization = False
|
| 1468 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
| 1469 |
+
self.conditioning_key = conditioning_key
|
| 1470 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
|
| 1471 |
+
|
| 1472 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
|
| 1473 |
+
if self.conditioning_key is None:
|
| 1474 |
+
out = self.diffusion_model(x, t)
|
| 1475 |
+
elif self.conditioning_key == 'concat':
|
| 1476 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1477 |
+
out = self.diffusion_model(xc, t)
|
| 1478 |
+
elif self.conditioning_key == 'crossattn':
|
| 1479 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1480 |
+
out = self.diffusion_model(x, t, context=cc)
|
| 1481 |
+
elif self.conditioning_key == 'hybrid':
|
| 1482 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1483 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1484 |
+
out = self.diffusion_model(xc, t, context=cc)
|
| 1485 |
+
elif self.conditioning_key == 'adm':
|
| 1486 |
+
cc = c_crossattn[0]
|
| 1487 |
+
out = self.diffusion_model(x, t, y=cc)
|
| 1488 |
+
else:
|
| 1489 |
+
raise NotImplementedError()
|
| 1490 |
+
|
| 1491 |
+
return out
|
| 1492 |
+
|
| 1493 |
+
|
| 1494 |
+
class Layout2ImgDiffusion(LatentDiffusion):
|
| 1495 |
+
# TODO: move all layout-specific hacks to this class
|
| 1496 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
| 1497 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
| 1498 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
| 1499 |
+
|
| 1500 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
| 1501 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
| 1502 |
+
|
| 1503 |
+
key = 'train' if self.training else 'validation'
|
| 1504 |
+
dset = self.trainer.datamodule.datasets[key]
|
| 1505 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
| 1506 |
+
|
| 1507 |
+
bbox_imgs = []
|
| 1508 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
| 1509 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
| 1510 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
| 1511 |
+
bbox_imgs.append(bboximg)
|
| 1512 |
+
|
| 1513 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
| 1514 |
+
logs['bbox_image'] = cond_img
|
| 1515 |
+
return logs
|
ldm/models/diffusion/plms.py
ADDED
|
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from functools import partial
|
| 7 |
+
|
| 8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class PLMSSampler(object):
|
| 12 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.model = model
|
| 15 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 16 |
+
self.schedule = schedule
|
| 17 |
+
|
| 18 |
+
def register_buffer(self, name, attr):
|
| 19 |
+
if type(attr) == torch.Tensor:
|
| 20 |
+
if attr.device != torch.device("cuda"):
|
| 21 |
+
attr = attr.to(torch.device("cuda"))
|
| 22 |
+
setattr(self, name, attr)
|
| 23 |
+
|
| 24 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 25 |
+
if ddim_eta != 0:
|
| 26 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
| 27 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 28 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 29 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 30 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 31 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 32 |
+
|
| 33 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 36 |
+
|
| 37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 43 |
+
|
| 44 |
+
# ddim sampling parameters
|
| 45 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 46 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 47 |
+
eta=ddim_eta,verbose=verbose)
|
| 48 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 49 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 50 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 51 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 52 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 53 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 54 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 55 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 56 |
+
|
| 57 |
+
@torch.no_grad()
|
| 58 |
+
def sample(self,
|
| 59 |
+
S,
|
| 60 |
+
batch_size,
|
| 61 |
+
shape,
|
| 62 |
+
conditioning=None,
|
| 63 |
+
callback=None,
|
| 64 |
+
normals_sequence=None,
|
| 65 |
+
img_callback=None,
|
| 66 |
+
quantize_x0=False,
|
| 67 |
+
eta=0.,
|
| 68 |
+
mask=None,
|
| 69 |
+
x0=None,
|
| 70 |
+
temperature=1.,
|
| 71 |
+
noise_dropout=0.,
|
| 72 |
+
score_corrector=None,
|
| 73 |
+
corrector_kwargs=None,
|
| 74 |
+
verbose=True,
|
| 75 |
+
x_T=None,
|
| 76 |
+
log_every_t=100,
|
| 77 |
+
unconditional_guidance_scale=1.,
|
| 78 |
+
unconditional_conditioning=None,
|
| 79 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 80 |
+
**kwargs
|
| 81 |
+
):
|
| 82 |
+
if conditioning is not None:
|
| 83 |
+
if isinstance(conditioning, dict):
|
| 84 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
| 85 |
+
if cbs != batch_size:
|
| 86 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 87 |
+
else:
|
| 88 |
+
if conditioning.shape[0] != batch_size:
|
| 89 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 90 |
+
|
| 91 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 92 |
+
# sampling
|
| 93 |
+
C, H, W = shape
|
| 94 |
+
size = (batch_size, C, H, W)
|
| 95 |
+
print(f'Data shape for PLMS sampling is {size}')
|
| 96 |
+
|
| 97 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
| 98 |
+
callback=callback,
|
| 99 |
+
img_callback=img_callback,
|
| 100 |
+
quantize_denoised=quantize_x0,
|
| 101 |
+
mask=mask, x0=x0,
|
| 102 |
+
ddim_use_original_steps=False,
|
| 103 |
+
noise_dropout=noise_dropout,
|
| 104 |
+
temperature=temperature,
|
| 105 |
+
score_corrector=score_corrector,
|
| 106 |
+
corrector_kwargs=corrector_kwargs,
|
| 107 |
+
x_T=x_T,
|
| 108 |
+
log_every_t=log_every_t,
|
| 109 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 110 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 111 |
+
)
|
| 112 |
+
return samples, intermediates
|
| 113 |
+
|
| 114 |
+
@torch.no_grad()
|
| 115 |
+
def plms_sampling(self, cond, shape,
|
| 116 |
+
x_T=None, ddim_use_original_steps=False,
|
| 117 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 118 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
| 119 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 120 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
| 121 |
+
device = self.model.betas.device
|
| 122 |
+
b = shape[0]
|
| 123 |
+
if x_T is None:
|
| 124 |
+
img = torch.randn(shape, device=device)
|
| 125 |
+
else:
|
| 126 |
+
img = x_T
|
| 127 |
+
|
| 128 |
+
if timesteps is None:
|
| 129 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 130 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 131 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 132 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 133 |
+
|
| 134 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 135 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
| 136 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 137 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
| 138 |
+
|
| 139 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
| 140 |
+
old_eps = []
|
| 141 |
+
|
| 142 |
+
for i, step in enumerate(iterator):
|
| 143 |
+
index = total_steps - i - 1
|
| 144 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 145 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
| 146 |
+
|
| 147 |
+
if mask is not None:
|
| 148 |
+
assert x0 is not None
|
| 149 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
| 150 |
+
img = img_orig * mask + (1. - mask) * img
|
| 151 |
+
|
| 152 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 153 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 154 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 155 |
+
corrector_kwargs=corrector_kwargs,
|
| 156 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 157 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 158 |
+
old_eps=old_eps, t_next=ts_next)
|
| 159 |
+
img, pred_x0, e_t = outs
|
| 160 |
+
old_eps.append(e_t)
|
| 161 |
+
if len(old_eps) >= 4:
|
| 162 |
+
old_eps.pop(0)
|
| 163 |
+
if callback: callback(i)
|
| 164 |
+
if img_callback: img_callback(pred_x0, i)
|
| 165 |
+
|
| 166 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 167 |
+
intermediates['x_inter'].append(img)
|
| 168 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 169 |
+
|
| 170 |
+
return img, intermediates
|
| 171 |
+
|
| 172 |
+
@torch.no_grad()
|
| 173 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 174 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 175 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
|
| 176 |
+
b, *_, device = *x.shape, x.device
|
| 177 |
+
|
| 178 |
+
def get_model_output(x, t):
|
| 179 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 180 |
+
e_t = self.model.apply_model(x, t, c)
|
| 181 |
+
else:
|
| 182 |
+
x_in = torch.cat([x] * 2)
|
| 183 |
+
t_in = torch.cat([t] * 2)
|
| 184 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 185 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
| 186 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
| 187 |
+
|
| 188 |
+
if score_corrector is not None:
|
| 189 |
+
assert self.model.parameterization == "eps"
|
| 190 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 191 |
+
|
| 192 |
+
return e_t
|
| 193 |
+
|
| 194 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 195 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 196 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 197 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 198 |
+
|
| 199 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
| 200 |
+
# select parameters corresponding to the currently considered timestep
|
| 201 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 202 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 203 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 204 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
| 205 |
+
|
| 206 |
+
# current prediction for x_0
|
| 207 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 208 |
+
if quantize_denoised:
|
| 209 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 210 |
+
# direction pointing to x_t
|
| 211 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 212 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 213 |
+
if noise_dropout > 0.:
|
| 214 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 215 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 216 |
+
return x_prev, pred_x0
|
| 217 |
+
|
| 218 |
+
e_t = get_model_output(x, t)
|
| 219 |
+
if len(old_eps) == 0:
|
| 220 |
+
# Pseudo Improved Euler (2nd order)
|
| 221 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
| 222 |
+
e_t_next = get_model_output(x_prev, t_next)
|
| 223 |
+
e_t_prime = (e_t + e_t_next) / 2
|
| 224 |
+
elif len(old_eps) == 1:
|
| 225 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 226 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
| 227 |
+
elif len(old_eps) == 2:
|
| 228 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 229 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
| 230 |
+
elif len(old_eps) >= 3:
|
| 231 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 232 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
| 233 |
+
|
| 234 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
| 235 |
+
|
| 236 |
+
return x_prev, pred_x0, e_t
|
ldm/modules/attention.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from inspect import isfunction
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch import nn, einsum
|
| 6 |
+
from einops import rearrange, repeat
|
| 7 |
+
|
| 8 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def exists(val):
|
| 12 |
+
return val is not None
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def uniq(arr):
|
| 16 |
+
return{el: True for el in arr}.keys()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def default(val, d):
|
| 20 |
+
if exists(val):
|
| 21 |
+
return val
|
| 22 |
+
return d() if isfunction(d) else d
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def max_neg_value(t):
|
| 26 |
+
return -torch.finfo(t.dtype).max
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def init_(tensor):
|
| 30 |
+
dim = tensor.shape[-1]
|
| 31 |
+
std = 1 / math.sqrt(dim)
|
| 32 |
+
tensor.uniform_(-std, std)
|
| 33 |
+
return tensor
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# feedforward
|
| 37 |
+
class GEGLU(nn.Module):
|
| 38 |
+
def __init__(self, dim_in, dim_out):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 41 |
+
|
| 42 |
+
def forward(self, x):
|
| 43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 44 |
+
return x * F.gelu(gate)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FeedForward(nn.Module):
|
| 48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 49 |
+
super().__init__()
|
| 50 |
+
inner_dim = int(dim * mult)
|
| 51 |
+
dim_out = default(dim_out, dim)
|
| 52 |
+
project_in = nn.Sequential(
|
| 53 |
+
nn.Linear(dim, inner_dim),
|
| 54 |
+
nn.GELU()
|
| 55 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 56 |
+
|
| 57 |
+
self.net = nn.Sequential(
|
| 58 |
+
project_in,
|
| 59 |
+
nn.Dropout(dropout),
|
| 60 |
+
nn.Linear(inner_dim, dim_out)
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
def forward(self, x):
|
| 64 |
+
return self.net(x)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def zero_module(module):
|
| 68 |
+
"""
|
| 69 |
+
Zero out the parameters of a module and return it.
|
| 70 |
+
"""
|
| 71 |
+
for p in module.parameters():
|
| 72 |
+
p.detach().zero_()
|
| 73 |
+
return module
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def Normalize(in_channels):
|
| 77 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class LinearAttention(nn.Module):
|
| 81 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.heads = heads
|
| 84 |
+
hidden_dim = dim_head * heads
|
| 85 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
| 86 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
| 87 |
+
|
| 88 |
+
def forward(self, x):
|
| 89 |
+
b, c, h, w = x.shape
|
| 90 |
+
qkv = self.to_qkv(x)
|
| 91 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
| 92 |
+
k = k.softmax(dim=-1)
|
| 93 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
| 94 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
| 95 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
| 96 |
+
return self.to_out(out)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class SpatialSelfAttention(nn.Module):
|
| 100 |
+
def __init__(self, in_channels):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.in_channels = in_channels
|
| 103 |
+
|
| 104 |
+
self.norm = Normalize(in_channels)
|
| 105 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 106 |
+
in_channels,
|
| 107 |
+
kernel_size=1,
|
| 108 |
+
stride=1,
|
| 109 |
+
padding=0)
|
| 110 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 111 |
+
in_channels,
|
| 112 |
+
kernel_size=1,
|
| 113 |
+
stride=1,
|
| 114 |
+
padding=0)
|
| 115 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 116 |
+
in_channels,
|
| 117 |
+
kernel_size=1,
|
| 118 |
+
stride=1,
|
| 119 |
+
padding=0)
|
| 120 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 121 |
+
in_channels,
|
| 122 |
+
kernel_size=1,
|
| 123 |
+
stride=1,
|
| 124 |
+
padding=0)
|
| 125 |
+
|
| 126 |
+
def forward(self, x):
|
| 127 |
+
h_ = x
|
| 128 |
+
h_ = self.norm(h_)
|
| 129 |
+
q = self.q(h_)
|
| 130 |
+
k = self.k(h_)
|
| 131 |
+
v = self.v(h_)
|
| 132 |
+
|
| 133 |
+
# compute attention
|
| 134 |
+
b,c,h,w = q.shape
|
| 135 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
| 136 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
| 137 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
| 138 |
+
|
| 139 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 140 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 141 |
+
|
| 142 |
+
# attend to values
|
| 143 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
| 144 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
| 145 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
| 146 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
| 147 |
+
h_ = self.proj_out(h_)
|
| 148 |
+
|
| 149 |
+
return x+h_
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class CrossAttention(nn.Module):
|
| 153 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
| 154 |
+
super().__init__()
|
| 155 |
+
inner_dim = dim_head * heads
|
| 156 |
+
context_dim = default(context_dim, query_dim)
|
| 157 |
+
|
| 158 |
+
self.scale = dim_head ** -0.5
|
| 159 |
+
self.heads = heads
|
| 160 |
+
|
| 161 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 162 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 163 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 164 |
+
|
| 165 |
+
self.to_out = nn.Sequential(
|
| 166 |
+
nn.Linear(inner_dim, query_dim),
|
| 167 |
+
nn.Dropout(dropout)
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
def forward(self, x, context=None, mask=None):
|
| 171 |
+
h = self.heads
|
| 172 |
+
|
| 173 |
+
q = self.to_q(x)
|
| 174 |
+
context = default(context, x)
|
| 175 |
+
k = self.to_k(context)
|
| 176 |
+
v = self.to_v(context)
|
| 177 |
+
|
| 178 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 179 |
+
|
| 180 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 181 |
+
|
| 182 |
+
if exists(mask):
|
| 183 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 184 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 185 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 186 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 187 |
+
|
| 188 |
+
# attention, what we cannot get enough of
|
| 189 |
+
attn = sim.softmax(dim=-1)
|
| 190 |
+
|
| 191 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
| 192 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 193 |
+
return self.to_out(out)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class BasicTransformerBlock(nn.Module):
|
| 197 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
| 200 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 201 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
| 202 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
| 203 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 204 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 205 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 206 |
+
self.checkpoint = checkpoint
|
| 207 |
+
|
| 208 |
+
def forward(self, x, context=None):
|
| 209 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
| 210 |
+
|
| 211 |
+
def _forward(self, x, context=None):
|
| 212 |
+
x = self.attn1(self.norm1(x)) + x
|
| 213 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
| 214 |
+
x = self.ff(self.norm3(x)) + x
|
| 215 |
+
return x
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class SpatialTransformer(nn.Module):
|
| 219 |
+
"""
|
| 220 |
+
Transformer block for image-like data.
|
| 221 |
+
First, project the input (aka embedding)
|
| 222 |
+
and reshape to b, t, d.
|
| 223 |
+
Then apply standard transformer action.
|
| 224 |
+
Finally, reshape to image
|
| 225 |
+
"""
|
| 226 |
+
def __init__(self, in_channels, n_heads, d_head,
|
| 227 |
+
depth=1, dropout=0., context_dim=None):
|
| 228 |
+
super().__init__()
|
| 229 |
+
self.in_channels = in_channels
|
| 230 |
+
inner_dim = n_heads * d_head
|
| 231 |
+
self.norm = Normalize(in_channels)
|
| 232 |
+
|
| 233 |
+
self.proj_in = nn.Conv2d(in_channels,
|
| 234 |
+
inner_dim,
|
| 235 |
+
kernel_size=1,
|
| 236 |
+
stride=1,
|
| 237 |
+
padding=0)
|
| 238 |
+
|
| 239 |
+
self.transformer_blocks = nn.ModuleList(
|
| 240 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
| 241 |
+
for d in range(depth)]
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
| 245 |
+
in_channels,
|
| 246 |
+
kernel_size=1,
|
| 247 |
+
stride=1,
|
| 248 |
+
padding=0))
|
| 249 |
+
|
| 250 |
+
def forward(self, x, context=None):
|
| 251 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 252 |
+
b, c, h, w = x.shape
|
| 253 |
+
x_in = x
|
| 254 |
+
x = self.norm(x)
|
| 255 |
+
x = self.proj_in(x)
|
| 256 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
| 257 |
+
for block in self.transformer_blocks:
|
| 258 |
+
x = block(x, context=context)
|
| 259 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
| 260 |
+
x = self.proj_out(x)
|
| 261 |
+
return x + x_in
|
ldm/modules/diffusionmodules/__init__.py
ADDED
|
File without changes
|
ldm/modules/diffusionmodules/model.py
ADDED
|
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pytorch_diffusion + derived encoder decoder
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import numpy as np
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
|
| 8 |
+
from ldm.util import instantiate_from_config
|
| 9 |
+
from ldm.modules.attention import LinearAttention
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
| 13 |
+
"""
|
| 14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
| 15 |
+
From Fairseq.
|
| 16 |
+
Build sinusoidal embeddings.
|
| 17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
| 18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
| 19 |
+
"""
|
| 20 |
+
assert len(timesteps.shape) == 1
|
| 21 |
+
|
| 22 |
+
half_dim = embedding_dim // 2
|
| 23 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
| 25 |
+
emb = emb.to(device=timesteps.device)
|
| 26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
| 27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
| 28 |
+
if embedding_dim % 2 == 1: # zero pad
|
| 29 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
| 30 |
+
return emb
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def nonlinearity(x):
|
| 34 |
+
# swish
|
| 35 |
+
return x*torch.sigmoid(x)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def Normalize(in_channels, num_groups=32):
|
| 39 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class Upsample(nn.Module):
|
| 43 |
+
def __init__(self, in_channels, with_conv):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.with_conv = with_conv
|
| 46 |
+
if self.with_conv:
|
| 47 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 48 |
+
in_channels,
|
| 49 |
+
kernel_size=3,
|
| 50 |
+
stride=1,
|
| 51 |
+
padding=1)
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 55 |
+
if self.with_conv:
|
| 56 |
+
x = self.conv(x)
|
| 57 |
+
return x
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class Downsample(nn.Module):
|
| 61 |
+
def __init__(self, in_channels, with_conv):
|
| 62 |
+
super().__init__()
|
| 63 |
+
self.with_conv = with_conv
|
| 64 |
+
if self.with_conv:
|
| 65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 66 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 67 |
+
in_channels,
|
| 68 |
+
kernel_size=3,
|
| 69 |
+
stride=2,
|
| 70 |
+
padding=0)
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
if self.with_conv:
|
| 74 |
+
pad = (0,1,0,1)
|
| 75 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 76 |
+
x = self.conv(x)
|
| 77 |
+
else:
|
| 78 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
| 79 |
+
return x
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class ResnetBlock(nn.Module):
|
| 83 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
| 84 |
+
dropout, temb_channels=512):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.in_channels = in_channels
|
| 87 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 88 |
+
self.out_channels = out_channels
|
| 89 |
+
self.use_conv_shortcut = conv_shortcut
|
| 90 |
+
|
| 91 |
+
self.norm1 = Normalize(in_channels)
|
| 92 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
| 93 |
+
out_channels,
|
| 94 |
+
kernel_size=3,
|
| 95 |
+
stride=1,
|
| 96 |
+
padding=1)
|
| 97 |
+
if temb_channels > 0:
|
| 98 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
| 99 |
+
out_channels)
|
| 100 |
+
self.norm2 = Normalize(out_channels)
|
| 101 |
+
self.dropout = torch.nn.Dropout(dropout)
|
| 102 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
| 103 |
+
out_channels,
|
| 104 |
+
kernel_size=3,
|
| 105 |
+
stride=1,
|
| 106 |
+
padding=1)
|
| 107 |
+
if self.in_channels != self.out_channels:
|
| 108 |
+
if self.use_conv_shortcut:
|
| 109 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
| 110 |
+
out_channels,
|
| 111 |
+
kernel_size=3,
|
| 112 |
+
stride=1,
|
| 113 |
+
padding=1)
|
| 114 |
+
else:
|
| 115 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
| 116 |
+
out_channels,
|
| 117 |
+
kernel_size=1,
|
| 118 |
+
stride=1,
|
| 119 |
+
padding=0)
|
| 120 |
+
|
| 121 |
+
def forward(self, x, temb):
|
| 122 |
+
h = x
|
| 123 |
+
h = self.norm1(h)
|
| 124 |
+
h = nonlinearity(h)
|
| 125 |
+
h = self.conv1(h)
|
| 126 |
+
|
| 127 |
+
if temb is not None:
|
| 128 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
| 129 |
+
|
| 130 |
+
h = self.norm2(h)
|
| 131 |
+
h = nonlinearity(h)
|
| 132 |
+
h = self.dropout(h)
|
| 133 |
+
h = self.conv2(h)
|
| 134 |
+
|
| 135 |
+
if self.in_channels != self.out_channels:
|
| 136 |
+
if self.use_conv_shortcut:
|
| 137 |
+
x = self.conv_shortcut(x)
|
| 138 |
+
else:
|
| 139 |
+
x = self.nin_shortcut(x)
|
| 140 |
+
|
| 141 |
+
return x+h
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
class LinAttnBlock(LinearAttention):
|
| 145 |
+
"""to match AttnBlock usage"""
|
| 146 |
+
def __init__(self, in_channels):
|
| 147 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class AttnBlock(nn.Module):
|
| 151 |
+
def __init__(self, in_channels):
|
| 152 |
+
super().__init__()
|
| 153 |
+
self.in_channels = in_channels
|
| 154 |
+
|
| 155 |
+
self.norm = Normalize(in_channels)
|
| 156 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 157 |
+
in_channels,
|
| 158 |
+
kernel_size=1,
|
| 159 |
+
stride=1,
|
| 160 |
+
padding=0)
|
| 161 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 162 |
+
in_channels,
|
| 163 |
+
kernel_size=1,
|
| 164 |
+
stride=1,
|
| 165 |
+
padding=0)
|
| 166 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 167 |
+
in_channels,
|
| 168 |
+
kernel_size=1,
|
| 169 |
+
stride=1,
|
| 170 |
+
padding=0)
|
| 171 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 172 |
+
in_channels,
|
| 173 |
+
kernel_size=1,
|
| 174 |
+
stride=1,
|
| 175 |
+
padding=0)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def forward(self, x):
|
| 179 |
+
h_ = x
|
| 180 |
+
h_ = self.norm(h_)
|
| 181 |
+
q = self.q(h_)
|
| 182 |
+
k = self.k(h_)
|
| 183 |
+
v = self.v(h_)
|
| 184 |
+
|
| 185 |
+
# compute attention
|
| 186 |
+
b,c,h,w = q.shape
|
| 187 |
+
q = q.reshape(b,c,h*w)
|
| 188 |
+
q = q.permute(0,2,1) # b,hw,c
|
| 189 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
| 190 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
| 191 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 192 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 193 |
+
|
| 194 |
+
# attend to values
|
| 195 |
+
v = v.reshape(b,c,h*w)
|
| 196 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
| 197 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
| 198 |
+
h_ = h_.reshape(b,c,h,w)
|
| 199 |
+
|
| 200 |
+
h_ = self.proj_out(h_)
|
| 201 |
+
|
| 202 |
+
return x+h_
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
| 206 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
| 207 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
| 208 |
+
if attn_type == "vanilla":
|
| 209 |
+
return AttnBlock(in_channels)
|
| 210 |
+
elif attn_type == "none":
|
| 211 |
+
return nn.Identity(in_channels)
|
| 212 |
+
else:
|
| 213 |
+
return LinAttnBlock(in_channels)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class Model(nn.Module):
|
| 217 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 218 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 219 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
| 220 |
+
super().__init__()
|
| 221 |
+
if use_linear_attn: attn_type = "linear"
|
| 222 |
+
self.ch = ch
|
| 223 |
+
self.temb_ch = self.ch*4
|
| 224 |
+
self.num_resolutions = len(ch_mult)
|
| 225 |
+
self.num_res_blocks = num_res_blocks
|
| 226 |
+
self.resolution = resolution
|
| 227 |
+
self.in_channels = in_channels
|
| 228 |
+
|
| 229 |
+
self.use_timestep = use_timestep
|
| 230 |
+
if self.use_timestep:
|
| 231 |
+
# timestep embedding
|
| 232 |
+
self.temb = nn.Module()
|
| 233 |
+
self.temb.dense = nn.ModuleList([
|
| 234 |
+
torch.nn.Linear(self.ch,
|
| 235 |
+
self.temb_ch),
|
| 236 |
+
torch.nn.Linear(self.temb_ch,
|
| 237 |
+
self.temb_ch),
|
| 238 |
+
])
|
| 239 |
+
|
| 240 |
+
# downsampling
|
| 241 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 242 |
+
self.ch,
|
| 243 |
+
kernel_size=3,
|
| 244 |
+
stride=1,
|
| 245 |
+
padding=1)
|
| 246 |
+
|
| 247 |
+
curr_res = resolution
|
| 248 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 249 |
+
self.down = nn.ModuleList()
|
| 250 |
+
for i_level in range(self.num_resolutions):
|
| 251 |
+
block = nn.ModuleList()
|
| 252 |
+
attn = nn.ModuleList()
|
| 253 |
+
block_in = ch*in_ch_mult[i_level]
|
| 254 |
+
block_out = ch*ch_mult[i_level]
|
| 255 |
+
for i_block in range(self.num_res_blocks):
|
| 256 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 257 |
+
out_channels=block_out,
|
| 258 |
+
temb_channels=self.temb_ch,
|
| 259 |
+
dropout=dropout))
|
| 260 |
+
block_in = block_out
|
| 261 |
+
if curr_res in attn_resolutions:
|
| 262 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 263 |
+
down = nn.Module()
|
| 264 |
+
down.block = block
|
| 265 |
+
down.attn = attn
|
| 266 |
+
if i_level != self.num_resolutions-1:
|
| 267 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 268 |
+
curr_res = curr_res // 2
|
| 269 |
+
self.down.append(down)
|
| 270 |
+
|
| 271 |
+
# middle
|
| 272 |
+
self.mid = nn.Module()
|
| 273 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 274 |
+
out_channels=block_in,
|
| 275 |
+
temb_channels=self.temb_ch,
|
| 276 |
+
dropout=dropout)
|
| 277 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 278 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 279 |
+
out_channels=block_in,
|
| 280 |
+
temb_channels=self.temb_ch,
|
| 281 |
+
dropout=dropout)
|
| 282 |
+
|
| 283 |
+
# upsampling
|
| 284 |
+
self.up = nn.ModuleList()
|
| 285 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 286 |
+
block = nn.ModuleList()
|
| 287 |
+
attn = nn.ModuleList()
|
| 288 |
+
block_out = ch*ch_mult[i_level]
|
| 289 |
+
skip_in = ch*ch_mult[i_level]
|
| 290 |
+
for i_block in range(self.num_res_blocks+1):
|
| 291 |
+
if i_block == self.num_res_blocks:
|
| 292 |
+
skip_in = ch*in_ch_mult[i_level]
|
| 293 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
| 294 |
+
out_channels=block_out,
|
| 295 |
+
temb_channels=self.temb_ch,
|
| 296 |
+
dropout=dropout))
|
| 297 |
+
block_in = block_out
|
| 298 |
+
if curr_res in attn_resolutions:
|
| 299 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 300 |
+
up = nn.Module()
|
| 301 |
+
up.block = block
|
| 302 |
+
up.attn = attn
|
| 303 |
+
if i_level != 0:
|
| 304 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 305 |
+
curr_res = curr_res * 2
|
| 306 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 307 |
+
|
| 308 |
+
# end
|
| 309 |
+
self.norm_out = Normalize(block_in)
|
| 310 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 311 |
+
out_ch,
|
| 312 |
+
kernel_size=3,
|
| 313 |
+
stride=1,
|
| 314 |
+
padding=1)
|
| 315 |
+
|
| 316 |
+
def forward(self, x, t=None, context=None):
|
| 317 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
| 318 |
+
if context is not None:
|
| 319 |
+
# assume aligned context, cat along channel axis
|
| 320 |
+
x = torch.cat((x, context), dim=1)
|
| 321 |
+
if self.use_timestep:
|
| 322 |
+
# timestep embedding
|
| 323 |
+
assert t is not None
|
| 324 |
+
temb = get_timestep_embedding(t, self.ch)
|
| 325 |
+
temb = self.temb.dense[0](temb)
|
| 326 |
+
temb = nonlinearity(temb)
|
| 327 |
+
temb = self.temb.dense[1](temb)
|
| 328 |
+
else:
|
| 329 |
+
temb = None
|
| 330 |
+
|
| 331 |
+
# downsampling
|
| 332 |
+
hs = [self.conv_in(x)]
|
| 333 |
+
for i_level in range(self.num_resolutions):
|
| 334 |
+
for i_block in range(self.num_res_blocks):
|
| 335 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 336 |
+
if len(self.down[i_level].attn) > 0:
|
| 337 |
+
h = self.down[i_level].attn[i_block](h)
|
| 338 |
+
hs.append(h)
|
| 339 |
+
if i_level != self.num_resolutions-1:
|
| 340 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 341 |
+
|
| 342 |
+
# middle
|
| 343 |
+
h = hs[-1]
|
| 344 |
+
h = self.mid.block_1(h, temb)
|
| 345 |
+
h = self.mid.attn_1(h)
|
| 346 |
+
h = self.mid.block_2(h, temb)
|
| 347 |
+
|
| 348 |
+
# upsampling
|
| 349 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 350 |
+
for i_block in range(self.num_res_blocks+1):
|
| 351 |
+
h = self.up[i_level].block[i_block](
|
| 352 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
| 353 |
+
if len(self.up[i_level].attn) > 0:
|
| 354 |
+
h = self.up[i_level].attn[i_block](h)
|
| 355 |
+
if i_level != 0:
|
| 356 |
+
h = self.up[i_level].upsample(h)
|
| 357 |
+
|
| 358 |
+
# end
|
| 359 |
+
h = self.norm_out(h)
|
| 360 |
+
h = nonlinearity(h)
|
| 361 |
+
h = self.conv_out(h)
|
| 362 |
+
return h
|
| 363 |
+
|
| 364 |
+
def get_last_layer(self):
|
| 365 |
+
return self.conv_out.weight
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class Encoder(nn.Module):
|
| 369 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 370 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 371 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
| 372 |
+
**ignore_kwargs):
|
| 373 |
+
super().__init__()
|
| 374 |
+
if use_linear_attn: attn_type = "linear"
|
| 375 |
+
self.ch = ch
|
| 376 |
+
self.temb_ch = 0
|
| 377 |
+
self.num_resolutions = len(ch_mult)
|
| 378 |
+
self.num_res_blocks = num_res_blocks
|
| 379 |
+
self.resolution = resolution
|
| 380 |
+
self.in_channels = in_channels
|
| 381 |
+
|
| 382 |
+
# downsampling
|
| 383 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
| 384 |
+
self.ch,
|
| 385 |
+
kernel_size=3,
|
| 386 |
+
stride=1,
|
| 387 |
+
padding=1)
|
| 388 |
+
|
| 389 |
+
curr_res = resolution
|
| 390 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 391 |
+
self.in_ch_mult = in_ch_mult
|
| 392 |
+
self.down = nn.ModuleList()
|
| 393 |
+
for i_level in range(self.num_resolutions):
|
| 394 |
+
block = nn.ModuleList()
|
| 395 |
+
attn = nn.ModuleList()
|
| 396 |
+
block_in = ch*in_ch_mult[i_level]
|
| 397 |
+
block_out = ch*ch_mult[i_level]
|
| 398 |
+
for i_block in range(self.num_res_blocks):
|
| 399 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 400 |
+
out_channels=block_out,
|
| 401 |
+
temb_channels=self.temb_ch,
|
| 402 |
+
dropout=dropout))
|
| 403 |
+
block_in = block_out
|
| 404 |
+
if curr_res in attn_resolutions:
|
| 405 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 406 |
+
down = nn.Module()
|
| 407 |
+
down.block = block
|
| 408 |
+
down.attn = attn
|
| 409 |
+
if i_level != self.num_resolutions-1:
|
| 410 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
| 411 |
+
curr_res = curr_res // 2
|
| 412 |
+
self.down.append(down)
|
| 413 |
+
|
| 414 |
+
# middle
|
| 415 |
+
self.mid = nn.Module()
|
| 416 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 417 |
+
out_channels=block_in,
|
| 418 |
+
temb_channels=self.temb_ch,
|
| 419 |
+
dropout=dropout)
|
| 420 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 421 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 422 |
+
out_channels=block_in,
|
| 423 |
+
temb_channels=self.temb_ch,
|
| 424 |
+
dropout=dropout)
|
| 425 |
+
|
| 426 |
+
# end
|
| 427 |
+
self.norm_out = Normalize(block_in)
|
| 428 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 429 |
+
2*z_channels if double_z else z_channels,
|
| 430 |
+
kernel_size=3,
|
| 431 |
+
stride=1,
|
| 432 |
+
padding=1)
|
| 433 |
+
|
| 434 |
+
def forward(self, x):
|
| 435 |
+
# timestep embedding
|
| 436 |
+
temb = None
|
| 437 |
+
|
| 438 |
+
# downsampling
|
| 439 |
+
hs = [self.conv_in(x)]
|
| 440 |
+
for i_level in range(self.num_resolutions):
|
| 441 |
+
for i_block in range(self.num_res_blocks):
|
| 442 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
| 443 |
+
if len(self.down[i_level].attn) > 0:
|
| 444 |
+
h = self.down[i_level].attn[i_block](h)
|
| 445 |
+
hs.append(h)
|
| 446 |
+
if i_level != self.num_resolutions-1:
|
| 447 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
| 448 |
+
|
| 449 |
+
# middle
|
| 450 |
+
h = hs[-1]
|
| 451 |
+
h = self.mid.block_1(h, temb)
|
| 452 |
+
h = self.mid.attn_1(h)
|
| 453 |
+
h = self.mid.block_2(h, temb)
|
| 454 |
+
|
| 455 |
+
# end
|
| 456 |
+
h = self.norm_out(h)
|
| 457 |
+
h = nonlinearity(h)
|
| 458 |
+
h = self.conv_out(h)
|
| 459 |
+
return h
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
class Decoder(nn.Module):
|
| 463 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
| 464 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
| 465 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
| 466 |
+
attn_type="vanilla", **ignorekwargs):
|
| 467 |
+
super().__init__()
|
| 468 |
+
if use_linear_attn: attn_type = "linear"
|
| 469 |
+
self.ch = ch
|
| 470 |
+
self.temb_ch = 0
|
| 471 |
+
self.num_resolutions = len(ch_mult)
|
| 472 |
+
self.num_res_blocks = num_res_blocks
|
| 473 |
+
self.resolution = resolution
|
| 474 |
+
self.in_channels = in_channels
|
| 475 |
+
self.give_pre_end = give_pre_end
|
| 476 |
+
self.tanh_out = tanh_out
|
| 477 |
+
|
| 478 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
| 479 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
| 480 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
| 481 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
| 482 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
| 483 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
| 484 |
+
self.z_shape, np.prod(self.z_shape)))
|
| 485 |
+
|
| 486 |
+
# z to block_in
|
| 487 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
| 488 |
+
block_in,
|
| 489 |
+
kernel_size=3,
|
| 490 |
+
stride=1,
|
| 491 |
+
padding=1)
|
| 492 |
+
|
| 493 |
+
# middle
|
| 494 |
+
self.mid = nn.Module()
|
| 495 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
| 496 |
+
out_channels=block_in,
|
| 497 |
+
temb_channels=self.temb_ch,
|
| 498 |
+
dropout=dropout)
|
| 499 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
| 500 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
| 501 |
+
out_channels=block_in,
|
| 502 |
+
temb_channels=self.temb_ch,
|
| 503 |
+
dropout=dropout)
|
| 504 |
+
|
| 505 |
+
# upsampling
|
| 506 |
+
self.up = nn.ModuleList()
|
| 507 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 508 |
+
block = nn.ModuleList()
|
| 509 |
+
attn = nn.ModuleList()
|
| 510 |
+
block_out = ch*ch_mult[i_level]
|
| 511 |
+
for i_block in range(self.num_res_blocks+1):
|
| 512 |
+
block.append(ResnetBlock(in_channels=block_in,
|
| 513 |
+
out_channels=block_out,
|
| 514 |
+
temb_channels=self.temb_ch,
|
| 515 |
+
dropout=dropout))
|
| 516 |
+
block_in = block_out
|
| 517 |
+
if curr_res in attn_resolutions:
|
| 518 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
| 519 |
+
up = nn.Module()
|
| 520 |
+
up.block = block
|
| 521 |
+
up.attn = attn
|
| 522 |
+
if i_level != 0:
|
| 523 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
| 524 |
+
curr_res = curr_res * 2
|
| 525 |
+
self.up.insert(0, up) # prepend to get consistent order
|
| 526 |
+
|
| 527 |
+
# end
|
| 528 |
+
self.norm_out = Normalize(block_in)
|
| 529 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 530 |
+
out_ch,
|
| 531 |
+
kernel_size=3,
|
| 532 |
+
stride=1,
|
| 533 |
+
padding=1)
|
| 534 |
+
|
| 535 |
+
def forward(self, z):
|
| 536 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
| 537 |
+
self.last_z_shape = z.shape
|
| 538 |
+
|
| 539 |
+
# timestep embedding
|
| 540 |
+
temb = None
|
| 541 |
+
|
| 542 |
+
# z to block_in
|
| 543 |
+
h = self.conv_in(z)
|
| 544 |
+
|
| 545 |
+
# middle
|
| 546 |
+
h = self.mid.block_1(h, temb)
|
| 547 |
+
h = self.mid.attn_1(h)
|
| 548 |
+
h = self.mid.block_2(h, temb)
|
| 549 |
+
|
| 550 |
+
# upsampling
|
| 551 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 552 |
+
for i_block in range(self.num_res_blocks+1):
|
| 553 |
+
h = self.up[i_level].block[i_block](h, temb)
|
| 554 |
+
if len(self.up[i_level].attn) > 0:
|
| 555 |
+
h = self.up[i_level].attn[i_block](h)
|
| 556 |
+
if i_level != 0:
|
| 557 |
+
h = self.up[i_level].upsample(h)
|
| 558 |
+
|
| 559 |
+
# end
|
| 560 |
+
if self.give_pre_end:
|
| 561 |
+
return h
|
| 562 |
+
|
| 563 |
+
h = self.norm_out(h)
|
| 564 |
+
h = nonlinearity(h)
|
| 565 |
+
h = self.conv_out(h)
|
| 566 |
+
if self.tanh_out:
|
| 567 |
+
h = torch.tanh(h)
|
| 568 |
+
return h
|
| 569 |
+
|
| 570 |
+
|
| 571 |
+
class SimpleDecoder(nn.Module):
|
| 572 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
| 573 |
+
super().__init__()
|
| 574 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
| 575 |
+
ResnetBlock(in_channels=in_channels,
|
| 576 |
+
out_channels=2 * in_channels,
|
| 577 |
+
temb_channels=0, dropout=0.0),
|
| 578 |
+
ResnetBlock(in_channels=2 * in_channels,
|
| 579 |
+
out_channels=4 * in_channels,
|
| 580 |
+
temb_channels=0, dropout=0.0),
|
| 581 |
+
ResnetBlock(in_channels=4 * in_channels,
|
| 582 |
+
out_channels=2 * in_channels,
|
| 583 |
+
temb_channels=0, dropout=0.0),
|
| 584 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
| 585 |
+
Upsample(in_channels, with_conv=True)])
|
| 586 |
+
# end
|
| 587 |
+
self.norm_out = Normalize(in_channels)
|
| 588 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
| 589 |
+
out_channels,
|
| 590 |
+
kernel_size=3,
|
| 591 |
+
stride=1,
|
| 592 |
+
padding=1)
|
| 593 |
+
|
| 594 |
+
def forward(self, x):
|
| 595 |
+
for i, layer in enumerate(self.model):
|
| 596 |
+
if i in [1,2,3]:
|
| 597 |
+
x = layer(x, None)
|
| 598 |
+
else:
|
| 599 |
+
x = layer(x)
|
| 600 |
+
|
| 601 |
+
h = self.norm_out(x)
|
| 602 |
+
h = nonlinearity(h)
|
| 603 |
+
x = self.conv_out(h)
|
| 604 |
+
return x
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
class UpsampleDecoder(nn.Module):
|
| 608 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
| 609 |
+
ch_mult=(2,2), dropout=0.0):
|
| 610 |
+
super().__init__()
|
| 611 |
+
# upsampling
|
| 612 |
+
self.temb_ch = 0
|
| 613 |
+
self.num_resolutions = len(ch_mult)
|
| 614 |
+
self.num_res_blocks = num_res_blocks
|
| 615 |
+
block_in = in_channels
|
| 616 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
| 617 |
+
self.res_blocks = nn.ModuleList()
|
| 618 |
+
self.upsample_blocks = nn.ModuleList()
|
| 619 |
+
for i_level in range(self.num_resolutions):
|
| 620 |
+
res_block = []
|
| 621 |
+
block_out = ch * ch_mult[i_level]
|
| 622 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 623 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
| 624 |
+
out_channels=block_out,
|
| 625 |
+
temb_channels=self.temb_ch,
|
| 626 |
+
dropout=dropout))
|
| 627 |
+
block_in = block_out
|
| 628 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
| 629 |
+
if i_level != self.num_resolutions - 1:
|
| 630 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
| 631 |
+
curr_res = curr_res * 2
|
| 632 |
+
|
| 633 |
+
# end
|
| 634 |
+
self.norm_out = Normalize(block_in)
|
| 635 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
| 636 |
+
out_channels,
|
| 637 |
+
kernel_size=3,
|
| 638 |
+
stride=1,
|
| 639 |
+
padding=1)
|
| 640 |
+
|
| 641 |
+
def forward(self, x):
|
| 642 |
+
# upsampling
|
| 643 |
+
h = x
|
| 644 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
| 645 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 646 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
| 647 |
+
if i_level != self.num_resolutions - 1:
|
| 648 |
+
h = self.upsample_blocks[k](h)
|
| 649 |
+
h = self.norm_out(h)
|
| 650 |
+
h = nonlinearity(h)
|
| 651 |
+
h = self.conv_out(h)
|
| 652 |
+
return h
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
class LatentRescaler(nn.Module):
|
| 656 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
| 657 |
+
super().__init__()
|
| 658 |
+
# residual block, interpolate, residual block
|
| 659 |
+
self.factor = factor
|
| 660 |
+
self.conv_in = nn.Conv2d(in_channels,
|
| 661 |
+
mid_channels,
|
| 662 |
+
kernel_size=3,
|
| 663 |
+
stride=1,
|
| 664 |
+
padding=1)
|
| 665 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
| 666 |
+
out_channels=mid_channels,
|
| 667 |
+
temb_channels=0,
|
| 668 |
+
dropout=0.0) for _ in range(depth)])
|
| 669 |
+
self.attn = AttnBlock(mid_channels)
|
| 670 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
| 671 |
+
out_channels=mid_channels,
|
| 672 |
+
temb_channels=0,
|
| 673 |
+
dropout=0.0) for _ in range(depth)])
|
| 674 |
+
|
| 675 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
| 676 |
+
out_channels,
|
| 677 |
+
kernel_size=1,
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
def forward(self, x):
|
| 681 |
+
x = self.conv_in(x)
|
| 682 |
+
for block in self.res_block1:
|
| 683 |
+
x = block(x, None)
|
| 684 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
| 685 |
+
x = self.attn(x)
|
| 686 |
+
for block in self.res_block2:
|
| 687 |
+
x = block(x, None)
|
| 688 |
+
x = self.conv_out(x)
|
| 689 |
+
return x
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
class MergedRescaleEncoder(nn.Module):
|
| 693 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
| 694 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
| 695 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
| 696 |
+
super().__init__()
|
| 697 |
+
intermediate_chn = ch * ch_mult[-1]
|
| 698 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
| 699 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
| 700 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
| 701 |
+
out_ch=None)
|
| 702 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
| 703 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
| 704 |
+
|
| 705 |
+
def forward(self, x):
|
| 706 |
+
x = self.encoder(x)
|
| 707 |
+
x = self.rescaler(x)
|
| 708 |
+
return x
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
class MergedRescaleDecoder(nn.Module):
|
| 712 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
| 713 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
| 714 |
+
super().__init__()
|
| 715 |
+
tmp_chn = z_channels*ch_mult[-1]
|
| 716 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
| 717 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
| 718 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
| 719 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
| 720 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
| 721 |
+
|
| 722 |
+
def forward(self, x):
|
| 723 |
+
x = self.rescaler(x)
|
| 724 |
+
x = self.decoder(x)
|
| 725 |
+
return x
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
class Upsampler(nn.Module):
|
| 729 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
| 730 |
+
super().__init__()
|
| 731 |
+
assert out_size >= in_size
|
| 732 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
| 733 |
+
factor_up = 1.+ (out_size % in_size)
|
| 734 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
| 735 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
| 736 |
+
out_channels=in_channels)
|
| 737 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
| 738 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
| 739 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
| 740 |
+
|
| 741 |
+
def forward(self, x):
|
| 742 |
+
x = self.rescaler(x)
|
| 743 |
+
x = self.decoder(x)
|
| 744 |
+
return x
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
class Resize(nn.Module):
|
| 748 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
| 749 |
+
super().__init__()
|
| 750 |
+
self.with_conv = learned
|
| 751 |
+
self.mode = mode
|
| 752 |
+
if self.with_conv:
|
| 753 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
| 754 |
+
raise NotImplementedError()
|
| 755 |
+
assert in_channels is not None
|
| 756 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 757 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 758 |
+
in_channels,
|
| 759 |
+
kernel_size=4,
|
| 760 |
+
stride=2,
|
| 761 |
+
padding=1)
|
| 762 |
+
|
| 763 |
+
def forward(self, x, scale_factor=1.0):
|
| 764 |
+
if scale_factor==1.0:
|
| 765 |
+
return x
|
| 766 |
+
else:
|
| 767 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
| 768 |
+
return x
|
| 769 |
+
|
| 770 |
+
class FirstStagePostProcessor(nn.Module):
|
| 771 |
+
|
| 772 |
+
def __init__(self, ch_mult:list, in_channels,
|
| 773 |
+
pretrained_model:nn.Module=None,
|
| 774 |
+
reshape=False,
|
| 775 |
+
n_channels=None,
|
| 776 |
+
dropout=0.,
|
| 777 |
+
pretrained_config=None):
|
| 778 |
+
super().__init__()
|
| 779 |
+
if pretrained_config is None:
|
| 780 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
| 781 |
+
self.pretrained_model = pretrained_model
|
| 782 |
+
else:
|
| 783 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
| 784 |
+
self.instantiate_pretrained(pretrained_config)
|
| 785 |
+
|
| 786 |
+
self.do_reshape = reshape
|
| 787 |
+
|
| 788 |
+
if n_channels is None:
|
| 789 |
+
n_channels = self.pretrained_model.encoder.ch
|
| 790 |
+
|
| 791 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
| 792 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
| 793 |
+
stride=1,padding=1)
|
| 794 |
+
|
| 795 |
+
blocks = []
|
| 796 |
+
downs = []
|
| 797 |
+
ch_in = n_channels
|
| 798 |
+
for m in ch_mult:
|
| 799 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
| 800 |
+
ch_in = m * n_channels
|
| 801 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
| 802 |
+
|
| 803 |
+
self.model = nn.ModuleList(blocks)
|
| 804 |
+
self.downsampler = nn.ModuleList(downs)
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
def instantiate_pretrained(self, config):
|
| 808 |
+
model = instantiate_from_config(config)
|
| 809 |
+
self.pretrained_model = model.eval()
|
| 810 |
+
# self.pretrained_model.train = False
|
| 811 |
+
for param in self.pretrained_model.parameters():
|
| 812 |
+
param.requires_grad = False
|
| 813 |
+
|
| 814 |
+
|
| 815 |
+
@torch.no_grad()
|
| 816 |
+
def encode_with_pretrained(self,x):
|
| 817 |
+
c = self.pretrained_model.encode(x)
|
| 818 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
| 819 |
+
c = c.mode()
|
| 820 |
+
return c
|
| 821 |
+
|
| 822 |
+
def forward(self,x):
|
| 823 |
+
z_fs = self.encode_with_pretrained(x)
|
| 824 |
+
z = self.proj_norm(z_fs)
|
| 825 |
+
z = self.proj(z)
|
| 826 |
+
z = nonlinearity(z)
|
| 827 |
+
|
| 828 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
| 829 |
+
z = submodel(z,temb=None)
|
| 830 |
+
z = downmodel(z)
|
| 831 |
+
|
| 832 |
+
if self.do_reshape:
|
| 833 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
| 834 |
+
return z
|
| 835 |
+
|
ldm/modules/diffusionmodules/openaimodel.py
ADDED
|
@@ -0,0 +1,963 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
from functools import partial
|
| 3 |
+
import math
|
| 4 |
+
from typing import Iterable
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch as th
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
|
| 11 |
+
from ldm.modules.diffusionmodules.util import (
|
| 12 |
+
checkpoint,
|
| 13 |
+
conv_nd,
|
| 14 |
+
linear,
|
| 15 |
+
avg_pool_nd,
|
| 16 |
+
zero_module,
|
| 17 |
+
normalization,
|
| 18 |
+
timestep_embedding,
|
| 19 |
+
)
|
| 20 |
+
from ldm.modules.attention import SpatialTransformer
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# dummy replace
|
| 24 |
+
def convert_module_to_f16(x):
|
| 25 |
+
pass
|
| 26 |
+
|
| 27 |
+
def convert_module_to_f32(x):
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
## go
|
| 32 |
+
class AttentionPool2d(nn.Module):
|
| 33 |
+
"""
|
| 34 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __init__(
|
| 38 |
+
self,
|
| 39 |
+
spacial_dim: int,
|
| 40 |
+
embed_dim: int,
|
| 41 |
+
num_heads_channels: int,
|
| 42 |
+
output_dim: int = None,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
| 46 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
| 47 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
| 48 |
+
self.num_heads = embed_dim // num_heads_channels
|
| 49 |
+
self.attention = QKVAttention(self.num_heads)
|
| 50 |
+
|
| 51 |
+
def forward(self, x):
|
| 52 |
+
b, c, *_spatial = x.shape
|
| 53 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
| 54 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
| 55 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
| 56 |
+
x = self.qkv_proj(x)
|
| 57 |
+
x = self.attention(x)
|
| 58 |
+
x = self.c_proj(x)
|
| 59 |
+
return x[:, :, 0]
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class TimestepBlock(nn.Module):
|
| 63 |
+
"""
|
| 64 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
@abstractmethod
|
| 68 |
+
def forward(self, x, emb):
|
| 69 |
+
"""
|
| 70 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
| 75 |
+
"""
|
| 76 |
+
A sequential module that passes timestep embeddings to the children that
|
| 77 |
+
support it as an extra input.
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
def forward(self, x, emb, context=None):
|
| 81 |
+
for layer in self:
|
| 82 |
+
if isinstance(layer, TimestepBlock):
|
| 83 |
+
x = layer(x, emb)
|
| 84 |
+
elif isinstance(layer, SpatialTransformer):
|
| 85 |
+
x = layer(x, context)
|
| 86 |
+
else:
|
| 87 |
+
x = layer(x)
|
| 88 |
+
return x
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class Upsample(nn.Module):
|
| 92 |
+
"""
|
| 93 |
+
An upsampling layer with an optional convolution.
|
| 94 |
+
:param channels: channels in the inputs and outputs.
|
| 95 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 96 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 97 |
+
upsampling occurs in the inner-two dimensions.
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.channels = channels
|
| 103 |
+
self.out_channels = out_channels or channels
|
| 104 |
+
self.use_conv = use_conv
|
| 105 |
+
self.dims = dims
|
| 106 |
+
if use_conv:
|
| 107 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
assert x.shape[1] == self.channels
|
| 111 |
+
if self.dims == 3:
|
| 112 |
+
x = F.interpolate(
|
| 113 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
| 114 |
+
)
|
| 115 |
+
else:
|
| 116 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
| 117 |
+
if self.use_conv:
|
| 118 |
+
x = self.conv(x)
|
| 119 |
+
return x
|
| 120 |
+
|
| 121 |
+
class TransposedUpsample(nn.Module):
|
| 122 |
+
'Learned 2x upsampling without padding'
|
| 123 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.channels = channels
|
| 126 |
+
self.out_channels = out_channels or channels
|
| 127 |
+
|
| 128 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
| 129 |
+
|
| 130 |
+
def forward(self,x):
|
| 131 |
+
return self.up(x)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class Downsample(nn.Module):
|
| 135 |
+
"""
|
| 136 |
+
A downsampling layer with an optional convolution.
|
| 137 |
+
:param channels: channels in the inputs and outputs.
|
| 138 |
+
:param use_conv: a bool determining if a convolution is applied.
|
| 139 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
| 140 |
+
downsampling occurs in the inner-two dimensions.
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
| 144 |
+
super().__init__()
|
| 145 |
+
self.channels = channels
|
| 146 |
+
self.out_channels = out_channels or channels
|
| 147 |
+
self.use_conv = use_conv
|
| 148 |
+
self.dims = dims
|
| 149 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
| 150 |
+
if use_conv:
|
| 151 |
+
self.op = conv_nd(
|
| 152 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
| 153 |
+
)
|
| 154 |
+
else:
|
| 155 |
+
assert self.channels == self.out_channels
|
| 156 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
| 157 |
+
|
| 158 |
+
def forward(self, x):
|
| 159 |
+
assert x.shape[1] == self.channels
|
| 160 |
+
return self.op(x)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class ResBlock(TimestepBlock):
|
| 164 |
+
"""
|
| 165 |
+
A residual block that can optionally change the number of channels.
|
| 166 |
+
:param channels: the number of input channels.
|
| 167 |
+
:param emb_channels: the number of timestep embedding channels.
|
| 168 |
+
:param dropout: the rate of dropout.
|
| 169 |
+
:param out_channels: if specified, the number of out channels.
|
| 170 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
| 171 |
+
convolution instead of a smaller 1x1 convolution to change the
|
| 172 |
+
channels in the skip connection.
|
| 173 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 174 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
| 175 |
+
:param up: if True, use this block for upsampling.
|
| 176 |
+
:param down: if True, use this block for downsampling.
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
def __init__(
|
| 180 |
+
self,
|
| 181 |
+
channels,
|
| 182 |
+
emb_channels,
|
| 183 |
+
dropout,
|
| 184 |
+
out_channels=None,
|
| 185 |
+
use_conv=False,
|
| 186 |
+
use_scale_shift_norm=False,
|
| 187 |
+
dims=2,
|
| 188 |
+
use_checkpoint=False,
|
| 189 |
+
up=False,
|
| 190 |
+
down=False,
|
| 191 |
+
):
|
| 192 |
+
super().__init__()
|
| 193 |
+
self.channels = channels
|
| 194 |
+
self.emb_channels = emb_channels
|
| 195 |
+
self.dropout = dropout
|
| 196 |
+
self.out_channels = out_channels or channels
|
| 197 |
+
self.use_conv = use_conv
|
| 198 |
+
self.use_checkpoint = use_checkpoint
|
| 199 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
| 200 |
+
|
| 201 |
+
self.in_layers = nn.Sequential(
|
| 202 |
+
normalization(channels),
|
| 203 |
+
nn.SiLU(),
|
| 204 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
self.updown = up or down
|
| 208 |
+
|
| 209 |
+
if up:
|
| 210 |
+
self.h_upd = Upsample(channels, False, dims)
|
| 211 |
+
self.x_upd = Upsample(channels, False, dims)
|
| 212 |
+
elif down:
|
| 213 |
+
self.h_upd = Downsample(channels, False, dims)
|
| 214 |
+
self.x_upd = Downsample(channels, False, dims)
|
| 215 |
+
else:
|
| 216 |
+
self.h_upd = self.x_upd = nn.Identity()
|
| 217 |
+
|
| 218 |
+
self.emb_layers = nn.Sequential(
|
| 219 |
+
nn.SiLU(),
|
| 220 |
+
linear(
|
| 221 |
+
emb_channels,
|
| 222 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
| 223 |
+
),
|
| 224 |
+
)
|
| 225 |
+
self.out_layers = nn.Sequential(
|
| 226 |
+
normalization(self.out_channels),
|
| 227 |
+
nn.SiLU(),
|
| 228 |
+
nn.Dropout(p=dropout),
|
| 229 |
+
zero_module(
|
| 230 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
| 231 |
+
),
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
if self.out_channels == channels:
|
| 235 |
+
self.skip_connection = nn.Identity()
|
| 236 |
+
elif use_conv:
|
| 237 |
+
self.skip_connection = conv_nd(
|
| 238 |
+
dims, channels, self.out_channels, 3, padding=1
|
| 239 |
+
)
|
| 240 |
+
else:
|
| 241 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
| 242 |
+
|
| 243 |
+
def forward(self, x, emb):
|
| 244 |
+
"""
|
| 245 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
| 246 |
+
:param x: an [N x C x ...] Tensor of features.
|
| 247 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
| 248 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 249 |
+
"""
|
| 250 |
+
return checkpoint(
|
| 251 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def _forward(self, x, emb):
|
| 256 |
+
if self.updown:
|
| 257 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
| 258 |
+
h = in_rest(x)
|
| 259 |
+
h = self.h_upd(h)
|
| 260 |
+
x = self.x_upd(x)
|
| 261 |
+
h = in_conv(h)
|
| 262 |
+
else:
|
| 263 |
+
h = self.in_layers(x)
|
| 264 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
| 265 |
+
while len(emb_out.shape) < len(h.shape):
|
| 266 |
+
emb_out = emb_out[..., None]
|
| 267 |
+
if self.use_scale_shift_norm:
|
| 268 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
| 269 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
| 270 |
+
h = out_norm(h) * (1 + scale) + shift
|
| 271 |
+
h = out_rest(h)
|
| 272 |
+
else:
|
| 273 |
+
h = h + emb_out
|
| 274 |
+
h = self.out_layers(h)
|
| 275 |
+
return self.skip_connection(x) + h
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class AttentionBlock(nn.Module):
|
| 279 |
+
"""
|
| 280 |
+
An attention block that allows spatial positions to attend to each other.
|
| 281 |
+
Originally ported from here, but adapted to the N-d case.
|
| 282 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
| 283 |
+
"""
|
| 284 |
+
|
| 285 |
+
def __init__(
|
| 286 |
+
self,
|
| 287 |
+
channels,
|
| 288 |
+
num_heads=1,
|
| 289 |
+
num_head_channels=-1,
|
| 290 |
+
use_checkpoint=False,
|
| 291 |
+
use_new_attention_order=False,
|
| 292 |
+
):
|
| 293 |
+
super().__init__()
|
| 294 |
+
self.channels = channels
|
| 295 |
+
if num_head_channels == -1:
|
| 296 |
+
self.num_heads = num_heads
|
| 297 |
+
else:
|
| 298 |
+
assert (
|
| 299 |
+
channels % num_head_channels == 0
|
| 300 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
| 301 |
+
self.num_heads = channels // num_head_channels
|
| 302 |
+
self.use_checkpoint = use_checkpoint
|
| 303 |
+
self.norm = normalization(channels)
|
| 304 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
| 305 |
+
if use_new_attention_order:
|
| 306 |
+
# split qkv before split heads
|
| 307 |
+
self.attention = QKVAttention(self.num_heads)
|
| 308 |
+
else:
|
| 309 |
+
# split heads before split qkv
|
| 310 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
| 311 |
+
|
| 312 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
| 313 |
+
|
| 314 |
+
def forward(self, x):
|
| 315 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
| 316 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
| 317 |
+
|
| 318 |
+
def _forward(self, x):
|
| 319 |
+
b, c, *spatial = x.shape
|
| 320 |
+
x = x.reshape(b, c, -1)
|
| 321 |
+
qkv = self.qkv(self.norm(x))
|
| 322 |
+
h = self.attention(qkv)
|
| 323 |
+
h = self.proj_out(h)
|
| 324 |
+
return (x + h).reshape(b, c, *spatial)
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
def count_flops_attn(model, _x, y):
|
| 328 |
+
"""
|
| 329 |
+
A counter for the `thop` package to count the operations in an
|
| 330 |
+
attention operation.
|
| 331 |
+
Meant to be used like:
|
| 332 |
+
macs, params = thop.profile(
|
| 333 |
+
model,
|
| 334 |
+
inputs=(inputs, timestamps),
|
| 335 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
| 336 |
+
)
|
| 337 |
+
"""
|
| 338 |
+
b, c, *spatial = y[0].shape
|
| 339 |
+
num_spatial = int(np.prod(spatial))
|
| 340 |
+
# We perform two matmuls with the same number of ops.
|
| 341 |
+
# The first computes the weight matrix, the second computes
|
| 342 |
+
# the combination of the value vectors.
|
| 343 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
| 344 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
class QKVAttentionLegacy(nn.Module):
|
| 348 |
+
"""
|
| 349 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
| 350 |
+
"""
|
| 351 |
+
|
| 352 |
+
def __init__(self, n_heads):
|
| 353 |
+
super().__init__()
|
| 354 |
+
self.n_heads = n_heads
|
| 355 |
+
|
| 356 |
+
def forward(self, qkv):
|
| 357 |
+
"""
|
| 358 |
+
Apply QKV attention.
|
| 359 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
| 360 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 361 |
+
"""
|
| 362 |
+
bs, width, length = qkv.shape
|
| 363 |
+
assert width % (3 * self.n_heads) == 0
|
| 364 |
+
ch = width // (3 * self.n_heads)
|
| 365 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
| 366 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 367 |
+
weight = th.einsum(
|
| 368 |
+
"bct,bcs->bts", q * scale, k * scale
|
| 369 |
+
) # More stable with f16 than dividing afterwards
|
| 370 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 371 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
| 372 |
+
return a.reshape(bs, -1, length)
|
| 373 |
+
|
| 374 |
+
@staticmethod
|
| 375 |
+
def count_flops(model, _x, y):
|
| 376 |
+
return count_flops_attn(model, _x, y)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
class QKVAttention(nn.Module):
|
| 380 |
+
"""
|
| 381 |
+
A module which performs QKV attention and splits in a different order.
|
| 382 |
+
"""
|
| 383 |
+
|
| 384 |
+
def __init__(self, n_heads):
|
| 385 |
+
super().__init__()
|
| 386 |
+
self.n_heads = n_heads
|
| 387 |
+
|
| 388 |
+
def forward(self, qkv):
|
| 389 |
+
"""
|
| 390 |
+
Apply QKV attention.
|
| 391 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
| 392 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
| 393 |
+
"""
|
| 394 |
+
bs, width, length = qkv.shape
|
| 395 |
+
assert width % (3 * self.n_heads) == 0
|
| 396 |
+
ch = width // (3 * self.n_heads)
|
| 397 |
+
q, k, v = qkv.chunk(3, dim=1)
|
| 398 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
| 399 |
+
weight = th.einsum(
|
| 400 |
+
"bct,bcs->bts",
|
| 401 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
| 402 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
| 403 |
+
) # More stable with f16 than dividing afterwards
|
| 404 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 405 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
| 406 |
+
return a.reshape(bs, -1, length)
|
| 407 |
+
|
| 408 |
+
@staticmethod
|
| 409 |
+
def count_flops(model, _x, y):
|
| 410 |
+
return count_flops_attn(model, _x, y)
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
class UNetModel(nn.Module):
|
| 414 |
+
"""
|
| 415 |
+
The full UNet model with attention and timestep embedding.
|
| 416 |
+
:param in_channels: channels in the input Tensor.
|
| 417 |
+
:param model_channels: base channel count for the model.
|
| 418 |
+
:param out_channels: channels in the output Tensor.
|
| 419 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
| 420 |
+
:param attention_resolutions: a collection of downsample rates at which
|
| 421 |
+
attention will take place. May be a set, list, or tuple.
|
| 422 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
| 423 |
+
will be used.
|
| 424 |
+
:param dropout: the dropout probability.
|
| 425 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
| 426 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
| 427 |
+
downsampling.
|
| 428 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
| 429 |
+
:param num_classes: if specified (as an int), then this model will be
|
| 430 |
+
class-conditional with `num_classes` classes.
|
| 431 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
| 432 |
+
:param num_heads: the number of attention heads in each attention layer.
|
| 433 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
| 434 |
+
a fixed channel width per attention head.
|
| 435 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
| 436 |
+
of heads for upsampling. Deprecated.
|
| 437 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
| 438 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
| 439 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
| 440 |
+
increased efficiency.
|
| 441 |
+
"""
|
| 442 |
+
|
| 443 |
+
def __init__(
|
| 444 |
+
self,
|
| 445 |
+
image_size,
|
| 446 |
+
in_channels,
|
| 447 |
+
model_channels,
|
| 448 |
+
out_channels,
|
| 449 |
+
num_res_blocks,
|
| 450 |
+
attention_resolutions,
|
| 451 |
+
dropout=0,
|
| 452 |
+
channel_mult=(1, 2, 4, 8),
|
| 453 |
+
conv_resample=True,
|
| 454 |
+
dims=2,
|
| 455 |
+
num_classes=None,
|
| 456 |
+
use_checkpoint=False,
|
| 457 |
+
use_fp16=False,
|
| 458 |
+
num_heads=-1,
|
| 459 |
+
num_head_channels=-1,
|
| 460 |
+
num_heads_upsample=-1,
|
| 461 |
+
use_scale_shift_norm=False,
|
| 462 |
+
resblock_updown=False,
|
| 463 |
+
use_new_attention_order=False,
|
| 464 |
+
use_spatial_transformer=False, # custom transformer support
|
| 465 |
+
transformer_depth=1, # custom transformer support
|
| 466 |
+
context_dim=None, # custom transformer support
|
| 467 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 468 |
+
legacy=True,
|
| 469 |
+
):
|
| 470 |
+
super().__init__()
|
| 471 |
+
if use_spatial_transformer:
|
| 472 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
| 473 |
+
|
| 474 |
+
if context_dim is not None:
|
| 475 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
| 476 |
+
from omegaconf.listconfig import ListConfig
|
| 477 |
+
if type(context_dim) == ListConfig:
|
| 478 |
+
context_dim = list(context_dim)
|
| 479 |
+
|
| 480 |
+
if num_heads_upsample == -1:
|
| 481 |
+
num_heads_upsample = num_heads
|
| 482 |
+
|
| 483 |
+
if num_heads == -1:
|
| 484 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 485 |
+
|
| 486 |
+
if num_head_channels == -1:
|
| 487 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 488 |
+
|
| 489 |
+
self.image_size = image_size
|
| 490 |
+
self.in_channels = in_channels
|
| 491 |
+
self.model_channels = model_channels
|
| 492 |
+
self.out_channels = out_channels
|
| 493 |
+
self.num_res_blocks = num_res_blocks
|
| 494 |
+
self.attention_resolutions = attention_resolutions
|
| 495 |
+
self.dropout = dropout
|
| 496 |
+
self.channel_mult = channel_mult
|
| 497 |
+
self.conv_resample = conv_resample
|
| 498 |
+
self.num_classes = num_classes
|
| 499 |
+
self.use_checkpoint = use_checkpoint
|
| 500 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 501 |
+
self.num_heads = num_heads
|
| 502 |
+
self.num_head_channels = num_head_channels
|
| 503 |
+
self.num_heads_upsample = num_heads_upsample
|
| 504 |
+
self.predict_codebook_ids = n_embed is not None
|
| 505 |
+
|
| 506 |
+
time_embed_dim = model_channels * 4
|
| 507 |
+
self.time_embed = nn.Sequential(
|
| 508 |
+
linear(model_channels, time_embed_dim),
|
| 509 |
+
nn.SiLU(),
|
| 510 |
+
linear(time_embed_dim, time_embed_dim),
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
if self.num_classes is not None:
|
| 514 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 515 |
+
|
| 516 |
+
self.input_blocks = nn.ModuleList(
|
| 517 |
+
[
|
| 518 |
+
TimestepEmbedSequential(
|
| 519 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 520 |
+
)
|
| 521 |
+
]
|
| 522 |
+
)
|
| 523 |
+
self._feature_size = model_channels
|
| 524 |
+
input_block_chans = [model_channels]
|
| 525 |
+
ch = model_channels
|
| 526 |
+
ds = 1
|
| 527 |
+
for level, mult in enumerate(channel_mult):
|
| 528 |
+
for _ in range(num_res_blocks):
|
| 529 |
+
layers = [
|
| 530 |
+
ResBlock(
|
| 531 |
+
ch,
|
| 532 |
+
time_embed_dim,
|
| 533 |
+
dropout,
|
| 534 |
+
out_channels=mult * model_channels,
|
| 535 |
+
dims=dims,
|
| 536 |
+
use_checkpoint=use_checkpoint,
|
| 537 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 538 |
+
)
|
| 539 |
+
]
|
| 540 |
+
ch = mult * model_channels
|
| 541 |
+
if ds in attention_resolutions:
|
| 542 |
+
if num_head_channels == -1:
|
| 543 |
+
dim_head = ch // num_heads
|
| 544 |
+
else:
|
| 545 |
+
num_heads = ch // num_head_channels
|
| 546 |
+
dim_head = num_head_channels
|
| 547 |
+
if legacy:
|
| 548 |
+
#num_heads = 1
|
| 549 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 550 |
+
layers.append(
|
| 551 |
+
AttentionBlock(
|
| 552 |
+
ch,
|
| 553 |
+
use_checkpoint=use_checkpoint,
|
| 554 |
+
num_heads=num_heads,
|
| 555 |
+
num_head_channels=dim_head,
|
| 556 |
+
use_new_attention_order=use_new_attention_order,
|
| 557 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
| 558 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
| 559 |
+
)
|
| 560 |
+
)
|
| 561 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 562 |
+
self._feature_size += ch
|
| 563 |
+
input_block_chans.append(ch)
|
| 564 |
+
if level != len(channel_mult) - 1:
|
| 565 |
+
out_ch = ch
|
| 566 |
+
self.input_blocks.append(
|
| 567 |
+
TimestepEmbedSequential(
|
| 568 |
+
ResBlock(
|
| 569 |
+
ch,
|
| 570 |
+
time_embed_dim,
|
| 571 |
+
dropout,
|
| 572 |
+
out_channels=out_ch,
|
| 573 |
+
dims=dims,
|
| 574 |
+
use_checkpoint=use_checkpoint,
|
| 575 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 576 |
+
down=True,
|
| 577 |
+
)
|
| 578 |
+
if resblock_updown
|
| 579 |
+
else Downsample(
|
| 580 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 581 |
+
)
|
| 582 |
+
)
|
| 583 |
+
)
|
| 584 |
+
ch = out_ch
|
| 585 |
+
input_block_chans.append(ch)
|
| 586 |
+
ds *= 2
|
| 587 |
+
self._feature_size += ch
|
| 588 |
+
|
| 589 |
+
if num_head_channels == -1:
|
| 590 |
+
dim_head = ch // num_heads
|
| 591 |
+
else:
|
| 592 |
+
num_heads = ch // num_head_channels
|
| 593 |
+
dim_head = num_head_channels
|
| 594 |
+
if legacy:
|
| 595 |
+
#num_heads = 1
|
| 596 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 597 |
+
self.middle_block = TimestepEmbedSequential(
|
| 598 |
+
ResBlock(
|
| 599 |
+
ch,
|
| 600 |
+
time_embed_dim,
|
| 601 |
+
dropout,
|
| 602 |
+
dims=dims,
|
| 603 |
+
use_checkpoint=use_checkpoint,
|
| 604 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 605 |
+
),
|
| 606 |
+
AttentionBlock(
|
| 607 |
+
ch,
|
| 608 |
+
use_checkpoint=use_checkpoint,
|
| 609 |
+
num_heads=num_heads,
|
| 610 |
+
num_head_channels=dim_head,
|
| 611 |
+
use_new_attention_order=use_new_attention_order,
|
| 612 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
| 613 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
| 614 |
+
),
|
| 615 |
+
ResBlock(
|
| 616 |
+
ch,
|
| 617 |
+
time_embed_dim,
|
| 618 |
+
dropout,
|
| 619 |
+
dims=dims,
|
| 620 |
+
use_checkpoint=use_checkpoint,
|
| 621 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 622 |
+
),
|
| 623 |
+
)
|
| 624 |
+
self._feature_size += ch
|
| 625 |
+
|
| 626 |
+
self.output_blocks = nn.ModuleList([])
|
| 627 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
| 628 |
+
for i in range(num_res_blocks + 1):
|
| 629 |
+
ich = input_block_chans.pop()
|
| 630 |
+
layers = [
|
| 631 |
+
ResBlock(
|
| 632 |
+
ch + ich,
|
| 633 |
+
time_embed_dim,
|
| 634 |
+
dropout,
|
| 635 |
+
out_channels=model_channels * mult,
|
| 636 |
+
dims=dims,
|
| 637 |
+
use_checkpoint=use_checkpoint,
|
| 638 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 639 |
+
)
|
| 640 |
+
]
|
| 641 |
+
ch = model_channels * mult
|
| 642 |
+
if ds in attention_resolutions:
|
| 643 |
+
if num_head_channels == -1:
|
| 644 |
+
dim_head = ch // num_heads
|
| 645 |
+
else:
|
| 646 |
+
num_heads = ch // num_head_channels
|
| 647 |
+
dim_head = num_head_channels
|
| 648 |
+
if legacy:
|
| 649 |
+
#num_heads = 1
|
| 650 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 651 |
+
layers.append(
|
| 652 |
+
AttentionBlock(
|
| 653 |
+
ch,
|
| 654 |
+
use_checkpoint=use_checkpoint,
|
| 655 |
+
num_heads=num_heads_upsample,
|
| 656 |
+
num_head_channels=dim_head,
|
| 657 |
+
use_new_attention_order=use_new_attention_order,
|
| 658 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
| 659 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
| 660 |
+
)
|
| 661 |
+
)
|
| 662 |
+
if level and i == num_res_blocks:
|
| 663 |
+
out_ch = ch
|
| 664 |
+
layers.append(
|
| 665 |
+
ResBlock(
|
| 666 |
+
ch,
|
| 667 |
+
time_embed_dim,
|
| 668 |
+
dropout,
|
| 669 |
+
out_channels=out_ch,
|
| 670 |
+
dims=dims,
|
| 671 |
+
use_checkpoint=use_checkpoint,
|
| 672 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 673 |
+
up=True,
|
| 674 |
+
)
|
| 675 |
+
if resblock_updown
|
| 676 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
| 677 |
+
)
|
| 678 |
+
ds //= 2
|
| 679 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
| 680 |
+
self._feature_size += ch
|
| 681 |
+
|
| 682 |
+
self.out = nn.Sequential(
|
| 683 |
+
normalization(ch),
|
| 684 |
+
nn.SiLU(),
|
| 685 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
| 686 |
+
)
|
| 687 |
+
if self.predict_codebook_ids:
|
| 688 |
+
self.id_predictor = nn.Sequential(
|
| 689 |
+
normalization(ch),
|
| 690 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
| 691 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
| 692 |
+
)
|
| 693 |
+
|
| 694 |
+
def convert_to_fp16(self):
|
| 695 |
+
"""
|
| 696 |
+
Convert the torso of the model to float16.
|
| 697 |
+
"""
|
| 698 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 699 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 700 |
+
self.output_blocks.apply(convert_module_to_f16)
|
| 701 |
+
|
| 702 |
+
def convert_to_fp32(self):
|
| 703 |
+
"""
|
| 704 |
+
Convert the torso of the model to float32.
|
| 705 |
+
"""
|
| 706 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 707 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 708 |
+
self.output_blocks.apply(convert_module_to_f32)
|
| 709 |
+
|
| 710 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
| 711 |
+
"""
|
| 712 |
+
Apply the model to an input batch.
|
| 713 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 714 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 715 |
+
:param context: conditioning plugged in via crossattn
|
| 716 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
| 717 |
+
:return: an [N x C x ...] Tensor of outputs.
|
| 718 |
+
"""
|
| 719 |
+
assert (y is not None) == (
|
| 720 |
+
self.num_classes is not None
|
| 721 |
+
), "must specify y if and only if the model is class-conditional"
|
| 722 |
+
hs = []
|
| 723 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
| 724 |
+
emb = self.time_embed(t_emb)
|
| 725 |
+
|
| 726 |
+
if self.num_classes is not None:
|
| 727 |
+
assert y.shape == (x.shape[0],)
|
| 728 |
+
emb = emb + self.label_emb(y)
|
| 729 |
+
|
| 730 |
+
h = x.type(self.dtype)
|
| 731 |
+
|
| 732 |
+
for module in self.input_blocks:
|
| 733 |
+
h = module(h, emb, context)
|
| 734 |
+
hs.append(h)
|
| 735 |
+
|
| 736 |
+
h = self.middle_block(h, emb, context)
|
| 737 |
+
for module in self.output_blocks:
|
| 738 |
+
h = th.cat([h, hs.pop()], dim=1)
|
| 739 |
+
h = module(h, emb, context)
|
| 740 |
+
h = h.type(x.dtype)
|
| 741 |
+
if self.predict_codebook_ids:
|
| 742 |
+
return self.id_predictor(h)
|
| 743 |
+
else:
|
| 744 |
+
return self.out(h)
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
class EncoderUNetModel(nn.Module):
|
| 748 |
+
"""
|
| 749 |
+
The half UNet model with attention and timestep embedding.
|
| 750 |
+
For usage, see UNet.
|
| 751 |
+
"""
|
| 752 |
+
|
| 753 |
+
def __init__(
|
| 754 |
+
self,
|
| 755 |
+
image_size,
|
| 756 |
+
in_channels,
|
| 757 |
+
model_channels,
|
| 758 |
+
out_channels,
|
| 759 |
+
num_res_blocks,
|
| 760 |
+
attention_resolutions,
|
| 761 |
+
dropout=0,
|
| 762 |
+
channel_mult=(1, 2, 4, 8),
|
| 763 |
+
conv_resample=True,
|
| 764 |
+
dims=2,
|
| 765 |
+
use_checkpoint=False,
|
| 766 |
+
use_fp16=False,
|
| 767 |
+
num_heads=1,
|
| 768 |
+
num_head_channels=-1,
|
| 769 |
+
num_heads_upsample=-1,
|
| 770 |
+
use_scale_shift_norm=False,
|
| 771 |
+
resblock_updown=False,
|
| 772 |
+
use_new_attention_order=False,
|
| 773 |
+
pool="adaptive",
|
| 774 |
+
*args,
|
| 775 |
+
**kwargs
|
| 776 |
+
):
|
| 777 |
+
super().__init__()
|
| 778 |
+
|
| 779 |
+
if num_heads_upsample == -1:
|
| 780 |
+
num_heads_upsample = num_heads
|
| 781 |
+
|
| 782 |
+
self.in_channels = in_channels
|
| 783 |
+
self.model_channels = model_channels
|
| 784 |
+
self.out_channels = out_channels
|
| 785 |
+
self.num_res_blocks = num_res_blocks
|
| 786 |
+
self.attention_resolutions = attention_resolutions
|
| 787 |
+
self.dropout = dropout
|
| 788 |
+
self.channel_mult = channel_mult
|
| 789 |
+
self.conv_resample = conv_resample
|
| 790 |
+
self.use_checkpoint = use_checkpoint
|
| 791 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
| 792 |
+
self.num_heads = num_heads
|
| 793 |
+
self.num_head_channels = num_head_channels
|
| 794 |
+
self.num_heads_upsample = num_heads_upsample
|
| 795 |
+
|
| 796 |
+
time_embed_dim = model_channels * 4
|
| 797 |
+
self.time_embed = nn.Sequential(
|
| 798 |
+
linear(model_channels, time_embed_dim),
|
| 799 |
+
nn.SiLU(),
|
| 800 |
+
linear(time_embed_dim, time_embed_dim),
|
| 801 |
+
)
|
| 802 |
+
|
| 803 |
+
self.input_blocks = nn.ModuleList(
|
| 804 |
+
[
|
| 805 |
+
TimestepEmbedSequential(
|
| 806 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
| 807 |
+
)
|
| 808 |
+
]
|
| 809 |
+
)
|
| 810 |
+
self._feature_size = model_channels
|
| 811 |
+
input_block_chans = [model_channels]
|
| 812 |
+
ch = model_channels
|
| 813 |
+
ds = 1
|
| 814 |
+
for level, mult in enumerate(channel_mult):
|
| 815 |
+
for _ in range(num_res_blocks):
|
| 816 |
+
layers = [
|
| 817 |
+
ResBlock(
|
| 818 |
+
ch,
|
| 819 |
+
time_embed_dim,
|
| 820 |
+
dropout,
|
| 821 |
+
out_channels=mult * model_channels,
|
| 822 |
+
dims=dims,
|
| 823 |
+
use_checkpoint=use_checkpoint,
|
| 824 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 825 |
+
)
|
| 826 |
+
]
|
| 827 |
+
ch = mult * model_channels
|
| 828 |
+
if ds in attention_resolutions:
|
| 829 |
+
layers.append(
|
| 830 |
+
AttentionBlock(
|
| 831 |
+
ch,
|
| 832 |
+
use_checkpoint=use_checkpoint,
|
| 833 |
+
num_heads=num_heads,
|
| 834 |
+
num_head_channels=num_head_channels,
|
| 835 |
+
use_new_attention_order=use_new_attention_order,
|
| 836 |
+
)
|
| 837 |
+
)
|
| 838 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 839 |
+
self._feature_size += ch
|
| 840 |
+
input_block_chans.append(ch)
|
| 841 |
+
if level != len(channel_mult) - 1:
|
| 842 |
+
out_ch = ch
|
| 843 |
+
self.input_blocks.append(
|
| 844 |
+
TimestepEmbedSequential(
|
| 845 |
+
ResBlock(
|
| 846 |
+
ch,
|
| 847 |
+
time_embed_dim,
|
| 848 |
+
dropout,
|
| 849 |
+
out_channels=out_ch,
|
| 850 |
+
dims=dims,
|
| 851 |
+
use_checkpoint=use_checkpoint,
|
| 852 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 853 |
+
down=True,
|
| 854 |
+
)
|
| 855 |
+
if resblock_updown
|
| 856 |
+
else Downsample(
|
| 857 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
| 858 |
+
)
|
| 859 |
+
)
|
| 860 |
+
)
|
| 861 |
+
ch = out_ch
|
| 862 |
+
input_block_chans.append(ch)
|
| 863 |
+
ds *= 2
|
| 864 |
+
self._feature_size += ch
|
| 865 |
+
|
| 866 |
+
self.middle_block = TimestepEmbedSequential(
|
| 867 |
+
ResBlock(
|
| 868 |
+
ch,
|
| 869 |
+
time_embed_dim,
|
| 870 |
+
dropout,
|
| 871 |
+
dims=dims,
|
| 872 |
+
use_checkpoint=use_checkpoint,
|
| 873 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 874 |
+
),
|
| 875 |
+
AttentionBlock(
|
| 876 |
+
ch,
|
| 877 |
+
use_checkpoint=use_checkpoint,
|
| 878 |
+
num_heads=num_heads,
|
| 879 |
+
num_head_channels=num_head_channels,
|
| 880 |
+
use_new_attention_order=use_new_attention_order,
|
| 881 |
+
),
|
| 882 |
+
ResBlock(
|
| 883 |
+
ch,
|
| 884 |
+
time_embed_dim,
|
| 885 |
+
dropout,
|
| 886 |
+
dims=dims,
|
| 887 |
+
use_checkpoint=use_checkpoint,
|
| 888 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 889 |
+
),
|
| 890 |
+
)
|
| 891 |
+
self._feature_size += ch
|
| 892 |
+
self.pool = pool
|
| 893 |
+
if pool == "adaptive":
|
| 894 |
+
self.out = nn.Sequential(
|
| 895 |
+
normalization(ch),
|
| 896 |
+
nn.SiLU(),
|
| 897 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
| 898 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
| 899 |
+
nn.Flatten(),
|
| 900 |
+
)
|
| 901 |
+
elif pool == "attention":
|
| 902 |
+
assert num_head_channels != -1
|
| 903 |
+
self.out = nn.Sequential(
|
| 904 |
+
normalization(ch),
|
| 905 |
+
nn.SiLU(),
|
| 906 |
+
AttentionPool2d(
|
| 907 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
| 908 |
+
),
|
| 909 |
+
)
|
| 910 |
+
elif pool == "spatial":
|
| 911 |
+
self.out = nn.Sequential(
|
| 912 |
+
nn.Linear(self._feature_size, 2048),
|
| 913 |
+
nn.ReLU(),
|
| 914 |
+
nn.Linear(2048, self.out_channels),
|
| 915 |
+
)
|
| 916 |
+
elif pool == "spatial_v2":
|
| 917 |
+
self.out = nn.Sequential(
|
| 918 |
+
nn.Linear(self._feature_size, 2048),
|
| 919 |
+
normalization(2048),
|
| 920 |
+
nn.SiLU(),
|
| 921 |
+
nn.Linear(2048, self.out_channels),
|
| 922 |
+
)
|
| 923 |
+
else:
|
| 924 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
| 925 |
+
|
| 926 |
+
def convert_to_fp16(self):
|
| 927 |
+
"""
|
| 928 |
+
Convert the torso of the model to float16.
|
| 929 |
+
"""
|
| 930 |
+
self.input_blocks.apply(convert_module_to_f16)
|
| 931 |
+
self.middle_block.apply(convert_module_to_f16)
|
| 932 |
+
|
| 933 |
+
def convert_to_fp32(self):
|
| 934 |
+
"""
|
| 935 |
+
Convert the torso of the model to float32.
|
| 936 |
+
"""
|
| 937 |
+
self.input_blocks.apply(convert_module_to_f32)
|
| 938 |
+
self.middle_block.apply(convert_module_to_f32)
|
| 939 |
+
|
| 940 |
+
def forward(self, x, timesteps):
|
| 941 |
+
"""
|
| 942 |
+
Apply the model to an input batch.
|
| 943 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
| 944 |
+
:param timesteps: a 1-D batch of timesteps.
|
| 945 |
+
:return: an [N x K] Tensor of outputs.
|
| 946 |
+
"""
|
| 947 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
| 948 |
+
|
| 949 |
+
results = []
|
| 950 |
+
h = x.type(self.dtype)
|
| 951 |
+
for module in self.input_blocks:
|
| 952 |
+
h = module(h, emb)
|
| 953 |
+
if self.pool.startswith("spatial"):
|
| 954 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
| 955 |
+
h = self.middle_block(h, emb)
|
| 956 |
+
if self.pool.startswith("spatial"):
|
| 957 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
| 958 |
+
h = th.cat(results, axis=-1)
|
| 959 |
+
return self.out(h)
|
| 960 |
+
else:
|
| 961 |
+
h = h.type(x.dtype)
|
| 962 |
+
return self.out(h)
|
| 963 |
+
|
ldm/modules/diffusionmodules/util.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# adopted from
|
| 2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
| 3 |
+
# and
|
| 4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 5 |
+
# and
|
| 6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
| 7 |
+
#
|
| 8 |
+
# thanks!
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import math
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
import numpy as np
|
| 16 |
+
from einops import repeat
|
| 17 |
+
|
| 18 |
+
from ldm.util import instantiate_from_config
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 22 |
+
if schedule == "linear":
|
| 23 |
+
betas = (
|
| 24 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
| 25 |
+
)
|
| 26 |
+
elif schedule == "cosine":
|
| 27 |
+
timesteps = (
|
| 28 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
| 29 |
+
)
|
| 30 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
| 31 |
+
alphas = torch.cos(alphas).pow(2)
|
| 32 |
+
alphas = alphas / alphas[0]
|
| 33 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
| 34 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
| 35 |
+
elif schedule == "sqrt_linear":
|
| 36 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
| 37 |
+
elif schedule == "sqrt":
|
| 38 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
| 39 |
+
elif schedule == "sqrt_2linear":
|
| 40 |
+
betas = (torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64))** 0.5
|
| 41 |
+
else:
|
| 42 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
| 43 |
+
return betas.numpy()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
| 47 |
+
if ddim_discr_method == 'uniform':
|
| 48 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
| 49 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
| 50 |
+
elif ddim_discr_method == 'quad':
|
| 51 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
| 52 |
+
else:
|
| 53 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
| 54 |
+
|
| 55 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
| 56 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
| 57 |
+
steps_out = ddim_timesteps + 1
|
| 58 |
+
if verbose:
|
| 59 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
| 60 |
+
return steps_out
|
| 61 |
+
|
| 62 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
| 63 |
+
# select alphas for computing the variance schedule
|
| 64 |
+
alphas = alphacums[ddim_timesteps.copy()]
|
| 65 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1].copy()].tolist())
|
| 66 |
+
|
| 67 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
| 68 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) #torch.zeros_like(alphas).cuda() #
|
| 69 |
+
if verbose:
|
| 70 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
| 71 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
| 72 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
| 73 |
+
return sigmas, alphas, alphas_prev
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
| 77 |
+
"""
|
| 78 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
| 79 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
| 80 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
| 81 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
| 82 |
+
produces the cumulative product of (1-beta) up to that
|
| 83 |
+
part of the diffusion process.
|
| 84 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
| 85 |
+
prevent singularities.
|
| 86 |
+
"""
|
| 87 |
+
betas = []
|
| 88 |
+
for i in range(num_diffusion_timesteps):
|
| 89 |
+
t1 = i / num_diffusion_timesteps
|
| 90 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
| 91 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
| 92 |
+
return np.array(betas)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def extract_into_tensor(a, t, x_shape):
|
| 96 |
+
b, *_ = t.shape
|
| 97 |
+
out = a.gather(-1, t)
|
| 98 |
+
return out.reshape(b,1,1,1) # (1, * (len(x_shape) - 1))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def checkpoint(func, inputs, params, flag):
|
| 102 |
+
"""
|
| 103 |
+
Evaluate a function without caching intermediate activations, allowing for
|
| 104 |
+
reduced memory at the expense of extra compute in the backward pass.
|
| 105 |
+
:param func: the function to evaluate.
|
| 106 |
+
:param inputs: the argument sequence to pass to `func`.
|
| 107 |
+
:param params: a sequence of parameters `func` depends on but does not
|
| 108 |
+
explicitly take as arguments.
|
| 109 |
+
:param flag: if False, disable gradient checkpointing.
|
| 110 |
+
"""
|
| 111 |
+
if flag:
|
| 112 |
+
args = tuple(inputs) + tuple(params)
|
| 113 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
| 114 |
+
else:
|
| 115 |
+
return func(*inputs)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class CheckpointFunction(torch.autograd.Function):
|
| 119 |
+
@staticmethod
|
| 120 |
+
def forward(ctx, run_function, length, *args):
|
| 121 |
+
ctx.run_function = run_function
|
| 122 |
+
ctx.input_tensors = list(args[:length])
|
| 123 |
+
ctx.input_params = list(args[length:])
|
| 124 |
+
|
| 125 |
+
with torch.no_grad():
|
| 126 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
| 127 |
+
return output_tensors
|
| 128 |
+
|
| 129 |
+
@staticmethod
|
| 130 |
+
def backward(ctx, *output_grads):
|
| 131 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
| 132 |
+
with torch.enable_grad():
|
| 133 |
+
# Fixes a bug where the first op in run_function modifies the
|
| 134 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
| 135 |
+
# Tensors.
|
| 136 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
| 137 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
| 138 |
+
input_grads = torch.autograd.grad(
|
| 139 |
+
output_tensors,
|
| 140 |
+
ctx.input_tensors + ctx.input_params,
|
| 141 |
+
output_grads,
|
| 142 |
+
allow_unused=True,
|
| 143 |
+
)
|
| 144 |
+
del ctx.input_tensors
|
| 145 |
+
del ctx.input_params
|
| 146 |
+
del output_tensors
|
| 147 |
+
return (None, None) + input_grads
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
| 151 |
+
"""
|
| 152 |
+
Create sinusoidal timestep embeddings.
|
| 153 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 154 |
+
These may be fractional.
|
| 155 |
+
:param dim: the dimension of the output.
|
| 156 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 157 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
| 158 |
+
"""
|
| 159 |
+
if not repeat_only:
|
| 160 |
+
half = dim // 2
|
| 161 |
+
freqs = torch.exp(
|
| 162 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 163 |
+
).to(device=timesteps.device)
|
| 164 |
+
args = timesteps[:, None].float() * freqs[None]
|
| 165 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 166 |
+
if dim % 2:
|
| 167 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 168 |
+
else:
|
| 169 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
| 170 |
+
return embedding
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def zero_module(module):
|
| 174 |
+
"""
|
| 175 |
+
Zero out the parameters of a module and return it.
|
| 176 |
+
"""
|
| 177 |
+
for p in module.parameters():
|
| 178 |
+
p.detach().zero_()
|
| 179 |
+
return module
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def scale_module(module, scale):
|
| 183 |
+
"""
|
| 184 |
+
Scale the parameters of a module and return it.
|
| 185 |
+
"""
|
| 186 |
+
for p in module.parameters():
|
| 187 |
+
p.detach().mul_(scale)
|
| 188 |
+
return module
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def mean_flat(tensor):
|
| 192 |
+
"""
|
| 193 |
+
Take the mean over all non-batch dimensions.
|
| 194 |
+
"""
|
| 195 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def normalization(channels):
|
| 199 |
+
"""
|
| 200 |
+
Make a standard normalization layer.
|
| 201 |
+
:param channels: number of input channels.
|
| 202 |
+
:return: an nn.Module for normalization.
|
| 203 |
+
"""
|
| 204 |
+
return GroupNorm32(32, channels)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
| 208 |
+
class SiLU(nn.Module):
|
| 209 |
+
def forward(self, x):
|
| 210 |
+
return x * torch.sigmoid(x)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class GroupNorm32(nn.GroupNorm):
|
| 214 |
+
def forward(self, x):
|
| 215 |
+
return super().forward(x.float()).type(x.dtype)
|
| 216 |
+
|
| 217 |
+
def conv_nd(dims, *args, **kwargs):
|
| 218 |
+
"""
|
| 219 |
+
Create a 1D, 2D, or 3D convolution module.
|
| 220 |
+
"""
|
| 221 |
+
if dims == 1:
|
| 222 |
+
return nn.Conv1d(*args, **kwargs)
|
| 223 |
+
elif dims == 2:
|
| 224 |
+
return nn.Conv2d(*args, **kwargs)
|
| 225 |
+
elif dims == 3:
|
| 226 |
+
return nn.Conv3d(*args, **kwargs)
|
| 227 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def linear(*args, **kwargs):
|
| 231 |
+
"""
|
| 232 |
+
Create a linear module.
|
| 233 |
+
"""
|
| 234 |
+
return nn.Linear(*args, **kwargs)
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
| 238 |
+
"""
|
| 239 |
+
Create a 1D, 2D, or 3D average pooling module.
|
| 240 |
+
"""
|
| 241 |
+
if dims == 1:
|
| 242 |
+
return nn.AvgPool1d(*args, **kwargs)
|
| 243 |
+
elif dims == 2:
|
| 244 |
+
return nn.AvgPool2d(*args, **kwargs)
|
| 245 |
+
elif dims == 3:
|
| 246 |
+
return nn.AvgPool3d(*args, **kwargs)
|
| 247 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
class HybridConditioner(nn.Module):
|
| 251 |
+
|
| 252 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
| 253 |
+
super().__init__()
|
| 254 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
| 255 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
| 256 |
+
|
| 257 |
+
def forward(self, c_concat, c_crossattn):
|
| 258 |
+
c_concat = self.concat_conditioner(c_concat)
|
| 259 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
| 260 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def noise_like(shape, device, repeat=False):
|
| 264 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
| 265 |
+
noise = lambda: torch.randn(shape, device=device)
|
| 266 |
+
return repeat_noise() if repeat else noise()
|
ldm/modules/distributions/.ipynb_checkpoints/distributions-checkpoint.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class AbstractDistribution:
|
| 6 |
+
def sample(self):
|
| 7 |
+
raise NotImplementedError()
|
| 8 |
+
|
| 9 |
+
def mode(self):
|
| 10 |
+
raise NotImplementedError()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DiracDistribution(AbstractDistribution):
|
| 14 |
+
def __init__(self, value):
|
| 15 |
+
self.value = value
|
| 16 |
+
|
| 17 |
+
def sample(self):
|
| 18 |
+
return self.value
|
| 19 |
+
|
| 20 |
+
def mode(self):
|
| 21 |
+
return self.value
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class DiagonalGaussianDistribution(object):
|
| 25 |
+
def __init__(self, parameters, deterministic=False):
|
| 26 |
+
self.parameters = parameters
|
| 27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
| 28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 29 |
+
self.deterministic = deterministic
|
| 30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 31 |
+
self.var = torch.exp(self.logvar)
|
| 32 |
+
if self.deterministic:
|
| 33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
| 34 |
+
|
| 35 |
+
def sample(self):
|
| 36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
| 37 |
+
return x
|
| 38 |
+
|
| 39 |
+
def sample(self,K):
|
| 40 |
+
mean = torch.Tensor.repeat(self.mean,[K,1,1,1])
|
| 41 |
+
std = torch.Tensor.repeat(self.std,[K,1,1,1])
|
| 42 |
+
x = mean + std * torch.randn(mean.shape).to(device=self.parameters.device)
|
| 43 |
+
return x
|
| 44 |
+
|
| 45 |
+
def kl(self, other=None):
|
| 46 |
+
if self.deterministic:
|
| 47 |
+
return torch.Tensor([0.])
|
| 48 |
+
else:
|
| 49 |
+
if other is None:
|
| 50 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
| 51 |
+
+ self.var - 1.0 - self.logvar,
|
| 52 |
+
dim=[1, 2, 3])
|
| 53 |
+
else:
|
| 54 |
+
return 0.5 * torch.sum(
|
| 55 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 56 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
| 57 |
+
dim=[1, 2, 3])
|
| 58 |
+
|
| 59 |
+
def nll(self, sample, dims=[1,2,3]):
|
| 60 |
+
if self.deterministic:
|
| 61 |
+
return torch.Tensor([0.])
|
| 62 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 63 |
+
return 0.5 * torch.sum(
|
| 64 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
| 65 |
+
dim=dims)
|
| 66 |
+
|
| 67 |
+
def mode(self):
|
| 68 |
+
return self.mean
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
| 72 |
+
"""
|
| 73 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
| 74 |
+
Compute the KL divergence between two gaussians.
|
| 75 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
| 76 |
+
scalars, among other use cases.
|
| 77 |
+
"""
|
| 78 |
+
tensor = None
|
| 79 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
| 80 |
+
if isinstance(obj, torch.Tensor):
|
| 81 |
+
tensor = obj
|
| 82 |
+
break
|
| 83 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
| 84 |
+
|
| 85 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
| 86 |
+
# Tensors, but it does not work for torch.exp().
|
| 87 |
+
logvar1, logvar2 = [
|
| 88 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
| 89 |
+
for x in (logvar1, logvar2)
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
return 0.5 * (
|
| 93 |
+
-1.0
|
| 94 |
+
+ logvar2
|
| 95 |
+
- logvar1
|
| 96 |
+
+ torch.exp(logvar1 - logvar2)
|
| 97 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
| 98 |
+
)
|
ldm/modules/distributions/__init__.py
ADDED
|
File without changes
|
ldm/modules/distributions/distributions.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class AbstractDistribution:
|
| 6 |
+
def sample(self):
|
| 7 |
+
raise NotImplementedError()
|
| 8 |
+
|
| 9 |
+
def mode(self):
|
| 10 |
+
raise NotImplementedError()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DiracDistribution(AbstractDistribution):
|
| 14 |
+
def __init__(self, value):
|
| 15 |
+
self.value = value
|
| 16 |
+
|
| 17 |
+
def sample(self):
|
| 18 |
+
return self.value
|
| 19 |
+
|
| 20 |
+
def mode(self):
|
| 21 |
+
return self.value
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class DiagonalGaussianDistribution(object):
|
| 25 |
+
def __init__(self, parameters, deterministic=False):
|
| 26 |
+
self.parameters = parameters
|
| 27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
| 28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 29 |
+
self.deterministic = deterministic
|
| 30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 31 |
+
self.var = torch.exp(self.logvar)
|
| 32 |
+
if self.deterministic:
|
| 33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
| 34 |
+
|
| 35 |
+
def sample(self):
|
| 36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
| 37 |
+
return x
|
| 38 |
+
|
| 39 |
+
def sample(self,K):
|
| 40 |
+
mean = torch.Tensor.repeat(self.mean,[K,1,1,1])
|
| 41 |
+
std = torch.Tensor.repeat(self.std,[K,1,1,1])
|
| 42 |
+
x = mean + std * torch.randn(mean.shape).to(device=self.parameters.device)
|
| 43 |
+
return x
|
| 44 |
+
|
| 45 |
+
def kl(self, other=None):
|
| 46 |
+
if self.deterministic:
|
| 47 |
+
return torch.Tensor([0.])
|
| 48 |
+
else:
|
| 49 |
+
if other is None:
|
| 50 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
| 51 |
+
+ self.var - 1.0 - self.logvar,
|
| 52 |
+
dim=[1, 2, 3])
|
| 53 |
+
else:
|
| 54 |
+
return 0.5 * torch.sum(
|
| 55 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 56 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
| 57 |
+
dim=[1, 2, 3])
|
| 58 |
+
|
| 59 |
+
def nll(self, sample, dims=[1,2,3]):
|
| 60 |
+
if self.deterministic:
|
| 61 |
+
return torch.Tensor([0.])
|
| 62 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 63 |
+
return 0.5 * torch.sum(
|
| 64 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
| 65 |
+
dim=dims)
|
| 66 |
+
|
| 67 |
+
def mode(self):
|
| 68 |
+
return self.mean
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
| 72 |
+
"""
|
| 73 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
| 74 |
+
Compute the KL divergence between two gaussians.
|
| 75 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
| 76 |
+
scalars, among other use cases.
|
| 77 |
+
"""
|
| 78 |
+
tensor = None
|
| 79 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
| 80 |
+
if isinstance(obj, torch.Tensor):
|
| 81 |
+
tensor = obj
|
| 82 |
+
break
|
| 83 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
| 84 |
+
|
| 85 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
| 86 |
+
# Tensors, but it does not work for torch.exp().
|
| 87 |
+
logvar1, logvar2 = [
|
| 88 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
| 89 |
+
for x in (logvar1, logvar2)
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
return 0.5 * (
|
| 93 |
+
-1.0
|
| 94 |
+
+ logvar2
|
| 95 |
+
- logvar1
|
| 96 |
+
+ torch.exp(logvar1 - logvar2)
|
| 97 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
| 98 |
+
)
|
ldm/modules/ema.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class LitEma(nn.Module):
|
| 6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
| 7 |
+
super().__init__()
|
| 8 |
+
if decay < 0.0 or decay > 1.0:
|
| 9 |
+
raise ValueError('Decay must be between 0 and 1')
|
| 10 |
+
|
| 11 |
+
self.m_name2s_name = {}
|
| 12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
| 13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
| 14 |
+
else torch.tensor(-1,dtype=torch.int))
|
| 15 |
+
|
| 16 |
+
for name, p in model.named_parameters():
|
| 17 |
+
if p.requires_grad:
|
| 18 |
+
#remove as '.'-character is not allowed in buffers
|
| 19 |
+
s_name = name.replace('.','')
|
| 20 |
+
self.m_name2s_name.update({name:s_name})
|
| 21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
| 22 |
+
|
| 23 |
+
self.collected_params = []
|
| 24 |
+
|
| 25 |
+
def forward(self,model):
|
| 26 |
+
decay = self.decay
|
| 27 |
+
|
| 28 |
+
if self.num_updates >= 0:
|
| 29 |
+
self.num_updates += 1
|
| 30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
| 31 |
+
|
| 32 |
+
one_minus_decay = 1.0 - decay
|
| 33 |
+
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
m_param = dict(model.named_parameters())
|
| 36 |
+
shadow_params = dict(self.named_buffers())
|
| 37 |
+
|
| 38 |
+
for key in m_param:
|
| 39 |
+
if m_param[key].requires_grad:
|
| 40 |
+
sname = self.m_name2s_name[key]
|
| 41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
| 42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
| 43 |
+
else:
|
| 44 |
+
assert not key in self.m_name2s_name
|
| 45 |
+
|
| 46 |
+
def copy_to(self, model):
|
| 47 |
+
m_param = dict(model.named_parameters())
|
| 48 |
+
shadow_params = dict(self.named_buffers())
|
| 49 |
+
for key in m_param:
|
| 50 |
+
if m_param[key].requires_grad:
|
| 51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
| 52 |
+
else:
|
| 53 |
+
assert not key in self.m_name2s_name
|
| 54 |
+
|
| 55 |
+
def store(self, parameters):
|
| 56 |
+
"""
|
| 57 |
+
Save the current parameters for restoring later.
|
| 58 |
+
Args:
|
| 59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
| 60 |
+
temporarily stored.
|
| 61 |
+
"""
|
| 62 |
+
self.collected_params = [param.clone() for param in parameters]
|
| 63 |
+
|
| 64 |
+
def restore(self, parameters):
|
| 65 |
+
"""
|
| 66 |
+
Restore the parameters stored with the `store` method.
|
| 67 |
+
Useful to validate the model with EMA parameters without affecting the
|
| 68 |
+
original optimization process. Store the parameters before the
|
| 69 |
+
`copy_to` method. After validation (or model saving), use this to
|
| 70 |
+
restore the former parameters.
|
| 71 |
+
Args:
|
| 72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
| 73 |
+
updated with the stored parameters.
|
| 74 |
+
"""
|
| 75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
| 76 |
+
param.data.copy_(c_param.data)
|
ldm/modules/encoders/__init__.py
ADDED
|
File without changes
|
ldm/modules/encoders/modules.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from functools import partial
|
| 4 |
+
import clip
|
| 5 |
+
from einops import rearrange, repeat
|
| 6 |
+
import kornia
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class AbstractEncoder(nn.Module):
|
| 13 |
+
def __init__(self):
|
| 14 |
+
super().__init__()
|
| 15 |
+
|
| 16 |
+
def encode(self, *args, **kwargs):
|
| 17 |
+
raise NotImplementedError
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class ClassEmbedder(nn.Module):
|
| 22 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.key = key
|
| 25 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
| 26 |
+
|
| 27 |
+
def forward(self, batch, key=None):
|
| 28 |
+
if key is None:
|
| 29 |
+
key = self.key
|
| 30 |
+
# this is for use in crossattn
|
| 31 |
+
c = batch[key][:, None]
|
| 32 |
+
c = self.embedding(c)
|
| 33 |
+
return c
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class TransformerEmbedder(AbstractEncoder):
|
| 37 |
+
"""Some transformer encoder layers"""
|
| 38 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.device = device
|
| 41 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
| 42 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
| 43 |
+
|
| 44 |
+
def forward(self, tokens):
|
| 45 |
+
tokens = tokens.to(self.device) # meh
|
| 46 |
+
z = self.transformer(tokens, return_embeddings=True)
|
| 47 |
+
return z
|
| 48 |
+
|
| 49 |
+
def encode(self, x):
|
| 50 |
+
return self(x)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class BERTTokenizer(AbstractEncoder):
|
| 54 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
| 55 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
| 56 |
+
super().__init__()
|
| 57 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
| 58 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
| 59 |
+
self.device = device
|
| 60 |
+
self.vq_interface = vq_interface
|
| 61 |
+
self.max_length = max_length
|
| 62 |
+
|
| 63 |
+
def forward(self, text):
|
| 64 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
| 65 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
| 66 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
| 67 |
+
return tokens
|
| 68 |
+
|
| 69 |
+
@torch.no_grad()
|
| 70 |
+
def encode(self, text):
|
| 71 |
+
tokens = self(text)
|
| 72 |
+
if not self.vq_interface:
|
| 73 |
+
return tokens
|
| 74 |
+
return None, None, [None, None, tokens]
|
| 75 |
+
|
| 76 |
+
def decode(self, text):
|
| 77 |
+
return text
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class BERTEmbedder(AbstractEncoder):
|
| 81 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
| 82 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
| 83 |
+
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
| 84 |
+
super().__init__()
|
| 85 |
+
self.use_tknz_fn = use_tokenizer
|
| 86 |
+
if self.use_tknz_fn:
|
| 87 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
| 88 |
+
self.device = device
|
| 89 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
| 90 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
| 91 |
+
emb_dropout=embedding_dropout)
|
| 92 |
+
|
| 93 |
+
def forward(self, text):
|
| 94 |
+
if self.use_tknz_fn:
|
| 95 |
+
tokens = self.tknz_fn(text)#.to(self.device)
|
| 96 |
+
else:
|
| 97 |
+
tokens = text
|
| 98 |
+
z = self.transformer(tokens, return_embeddings=True)
|
| 99 |
+
return z
|
| 100 |
+
|
| 101 |
+
def encode(self, text):
|
| 102 |
+
# output of length 77
|
| 103 |
+
return self(text)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class SpatialRescaler(nn.Module):
|
| 107 |
+
def __init__(self,
|
| 108 |
+
n_stages=1,
|
| 109 |
+
method='bilinear',
|
| 110 |
+
multiplier=0.5,
|
| 111 |
+
in_channels=3,
|
| 112 |
+
out_channels=None,
|
| 113 |
+
bias=False):
|
| 114 |
+
super().__init__()
|
| 115 |
+
self.n_stages = n_stages
|
| 116 |
+
assert self.n_stages >= 0
|
| 117 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
| 118 |
+
self.multiplier = multiplier
|
| 119 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
| 120 |
+
self.remap_output = out_channels is not None
|
| 121 |
+
if self.remap_output:
|
| 122 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
| 123 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
| 124 |
+
|
| 125 |
+
def forward(self,x):
|
| 126 |
+
for stage in range(self.n_stages):
|
| 127 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if self.remap_output:
|
| 131 |
+
x = self.channel_mapper(x)
|
| 132 |
+
return x
|
| 133 |
+
|
| 134 |
+
def encode(self, x):
|
| 135 |
+
return self(x)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class FrozenCLIPTextEmbedder(nn.Module):
|
| 139 |
+
"""
|
| 140 |
+
Uses the CLIP transformer encoder for text.
|
| 141 |
+
"""
|
| 142 |
+
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
|
| 143 |
+
super().__init__()
|
| 144 |
+
self.model, _ = clip.load(version, jit=False, device="cpu")
|
| 145 |
+
self.device = device
|
| 146 |
+
self.max_length = max_length
|
| 147 |
+
self.n_repeat = n_repeat
|
| 148 |
+
self.normalize = normalize
|
| 149 |
+
|
| 150 |
+
def freeze(self):
|
| 151 |
+
self.model = self.model.eval()
|
| 152 |
+
for param in self.parameters():
|
| 153 |
+
param.requires_grad = False
|
| 154 |
+
|
| 155 |
+
def forward(self, text):
|
| 156 |
+
tokens = clip.tokenize(text).to(self.device)
|
| 157 |
+
z = self.model.encode_text(tokens)
|
| 158 |
+
if self.normalize:
|
| 159 |
+
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
| 160 |
+
return z
|
| 161 |
+
|
| 162 |
+
def encode(self, text):
|
| 163 |
+
z = self(text)
|
| 164 |
+
if z.ndim==2:
|
| 165 |
+
z = z[:, None, :]
|
| 166 |
+
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
|
| 167 |
+
return z
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
class FrozenClipImageEmbedder(nn.Module):
|
| 171 |
+
"""
|
| 172 |
+
Uses the CLIP image encoder.
|
| 173 |
+
"""
|
| 174 |
+
def __init__(
|
| 175 |
+
self,
|
| 176 |
+
model,
|
| 177 |
+
jit=False,
|
| 178 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
| 179 |
+
antialias=False,
|
| 180 |
+
):
|
| 181 |
+
super().__init__()
|
| 182 |
+
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
| 183 |
+
|
| 184 |
+
self.antialias = antialias
|
| 185 |
+
|
| 186 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
| 187 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
| 188 |
+
|
| 189 |
+
def preprocess(self, x):
|
| 190 |
+
# normalize to [0,1]
|
| 191 |
+
x = kornia.geometry.resize(x, (224, 224),
|
| 192 |
+
interpolation='bicubic',align_corners=True,
|
| 193 |
+
antialias=self.antialias)
|
| 194 |
+
x = (x + 1.) / 2.
|
| 195 |
+
# renormalize according to clip
|
| 196 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
| 197 |
+
return x
|
| 198 |
+
|
| 199 |
+
def forward(self, x):
|
| 200 |
+
# x is assumed to be in range [-1,1]
|
| 201 |
+
return self.model.encode_image(self.preprocess(x))
|
| 202 |
+
|
ldm/modules/image_degradation/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
| 2 |
+
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
ldm/modules/image_degradation/bsrgan.py
ADDED
|
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
# --------------------------------------------
|
| 4 |
+
# Super-Resolution
|
| 5 |
+
# --------------------------------------------
|
| 6 |
+
#
|
| 7 |
+
# Kai Zhang ([email protected])
|
| 8 |
+
# https://github.com/cszn
|
| 9 |
+
# From 2019/03--2021/08
|
| 10 |
+
# --------------------------------------------
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
import cv2
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
from functools import partial
|
| 18 |
+
import random
|
| 19 |
+
from scipy import ndimage
|
| 20 |
+
import scipy
|
| 21 |
+
import scipy.stats as ss
|
| 22 |
+
from scipy.interpolate import interp2d
|
| 23 |
+
from scipy.linalg import orth
|
| 24 |
+
import albumentations
|
| 25 |
+
|
| 26 |
+
import ldm.modules.image_degradation.utils_image as util
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def modcrop_np(img, sf):
|
| 30 |
+
'''
|
| 31 |
+
Args:
|
| 32 |
+
img: numpy image, WxH or WxHxC
|
| 33 |
+
sf: scale factor
|
| 34 |
+
Return:
|
| 35 |
+
cropped image
|
| 36 |
+
'''
|
| 37 |
+
w, h = img.shape[:2]
|
| 38 |
+
im = np.copy(img)
|
| 39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
"""
|
| 43 |
+
# --------------------------------------------
|
| 44 |
+
# anisotropic Gaussian kernels
|
| 45 |
+
# --------------------------------------------
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def analytic_kernel(k):
|
| 50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
| 51 |
+
k_size = k.shape[0]
|
| 52 |
+
# Calculate the big kernels size
|
| 53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
| 54 |
+
# Loop over the small kernel to fill the big one
|
| 55 |
+
for r in range(k_size):
|
| 56 |
+
for c in range(k_size):
|
| 57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
| 58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
| 59 |
+
crop = k_size // 2
|
| 60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
| 61 |
+
# Normalize to 1
|
| 62 |
+
return cropped_big_k / cropped_big_k.sum()
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
| 66 |
+
""" generate an anisotropic Gaussian kernel
|
| 67 |
+
Args:
|
| 68 |
+
ksize : e.g., 15, kernel size
|
| 69 |
+
theta : [0, pi], rotation angle range
|
| 70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
| 71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
| 72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
| 73 |
+
Returns:
|
| 74 |
+
k : kernel
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
| 78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
| 79 |
+
D = np.array([[l1, 0], [0, l2]])
|
| 80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
| 81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
| 82 |
+
|
| 83 |
+
return k
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
| 87 |
+
center = size / 2.0 + 0.5
|
| 88 |
+
k = np.zeros([size, size])
|
| 89 |
+
for y in range(size):
|
| 90 |
+
for x in range(size):
|
| 91 |
+
cy = y - center + 1
|
| 92 |
+
cx = x - center + 1
|
| 93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
| 94 |
+
|
| 95 |
+
k = k / np.sum(k)
|
| 96 |
+
return k
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def shift_pixel(x, sf, upper_left=True):
|
| 100 |
+
"""shift pixel for super-resolution with different scale factors
|
| 101 |
+
Args:
|
| 102 |
+
x: WxHxC or WxH
|
| 103 |
+
sf: scale factor
|
| 104 |
+
upper_left: shift direction
|
| 105 |
+
"""
|
| 106 |
+
h, w = x.shape[:2]
|
| 107 |
+
shift = (sf - 1) * 0.5
|
| 108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
| 109 |
+
if upper_left:
|
| 110 |
+
x1 = xv + shift
|
| 111 |
+
y1 = yv + shift
|
| 112 |
+
else:
|
| 113 |
+
x1 = xv - shift
|
| 114 |
+
y1 = yv - shift
|
| 115 |
+
|
| 116 |
+
x1 = np.clip(x1, 0, w - 1)
|
| 117 |
+
y1 = np.clip(y1, 0, h - 1)
|
| 118 |
+
|
| 119 |
+
if x.ndim == 2:
|
| 120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
| 121 |
+
if x.ndim == 3:
|
| 122 |
+
for i in range(x.shape[-1]):
|
| 123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
| 124 |
+
|
| 125 |
+
return x
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def blur(x, k):
|
| 129 |
+
'''
|
| 130 |
+
x: image, NxcxHxW
|
| 131 |
+
k: kernel, Nx1xhxw
|
| 132 |
+
'''
|
| 133 |
+
n, c = x.shape[:2]
|
| 134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
| 135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
| 136 |
+
k = k.repeat(1, c, 1, 1)
|
| 137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
| 138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
| 139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
| 140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
| 141 |
+
|
| 142 |
+
return x
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
| 146 |
+
""""
|
| 147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
| 148 |
+
# Kai Zhang
|
| 149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
| 150 |
+
# max_var = 2.5 * sf
|
| 151 |
+
"""
|
| 152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
| 153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
| 154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
| 155 |
+
theta = np.random.rand() * np.pi # random theta
|
| 156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
| 157 |
+
|
| 158 |
+
# Set COV matrix using Lambdas and Theta
|
| 159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
| 160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
| 161 |
+
[np.sin(theta), np.cos(theta)]])
|
| 162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
| 163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
| 164 |
+
|
| 165 |
+
# Set expectation position (shifting kernel for aligned image)
|
| 166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
| 167 |
+
MU = MU[None, None, :, None]
|
| 168 |
+
|
| 169 |
+
# Create meshgrid for Gaussian
|
| 170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
| 171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
| 172 |
+
|
| 173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
| 174 |
+
ZZ = Z - MU
|
| 175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
| 176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
| 177 |
+
|
| 178 |
+
# shift the kernel so it will be centered
|
| 179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
| 180 |
+
|
| 181 |
+
# Normalize the kernel and return
|
| 182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
| 183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
| 184 |
+
return kernel
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def fspecial_gaussian(hsize, sigma):
|
| 188 |
+
hsize = [hsize, hsize]
|
| 189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
| 190 |
+
std = sigma
|
| 191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
| 192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
| 193 |
+
h = np.exp(arg)
|
| 194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
| 195 |
+
sumh = h.sum()
|
| 196 |
+
if sumh != 0:
|
| 197 |
+
h = h / sumh
|
| 198 |
+
return h
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def fspecial_laplacian(alpha):
|
| 202 |
+
alpha = max([0, min([alpha, 1])])
|
| 203 |
+
h1 = alpha / (alpha + 1)
|
| 204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
| 205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
| 206 |
+
h = np.array(h)
|
| 207 |
+
return h
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def fspecial(filter_type, *args, **kwargs):
|
| 211 |
+
'''
|
| 212 |
+
python code from:
|
| 213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
| 214 |
+
'''
|
| 215 |
+
if filter_type == 'gaussian':
|
| 216 |
+
return fspecial_gaussian(*args, **kwargs)
|
| 217 |
+
if filter_type == 'laplacian':
|
| 218 |
+
return fspecial_laplacian(*args, **kwargs)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
"""
|
| 222 |
+
# --------------------------------------------
|
| 223 |
+
# degradation models
|
| 224 |
+
# --------------------------------------------
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def bicubic_degradation(x, sf=3):
|
| 229 |
+
'''
|
| 230 |
+
Args:
|
| 231 |
+
x: HxWxC image, [0, 1]
|
| 232 |
+
sf: down-scale factor
|
| 233 |
+
Return:
|
| 234 |
+
bicubicly downsampled LR image
|
| 235 |
+
'''
|
| 236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
| 237 |
+
return x
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def srmd_degradation(x, k, sf=3):
|
| 241 |
+
''' blur + bicubic downsampling
|
| 242 |
+
Args:
|
| 243 |
+
x: HxWxC image, [0, 1]
|
| 244 |
+
k: hxw, double
|
| 245 |
+
sf: down-scale factor
|
| 246 |
+
Return:
|
| 247 |
+
downsampled LR image
|
| 248 |
+
Reference:
|
| 249 |
+
@inproceedings{zhang2018learning,
|
| 250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
| 251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
| 252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
| 253 |
+
pages={3262--3271},
|
| 254 |
+
year={2018}
|
| 255 |
+
}
|
| 256 |
+
'''
|
| 257 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
| 258 |
+
x = bicubic_degradation(x, sf=sf)
|
| 259 |
+
return x
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def dpsr_degradation(x, k, sf=3):
|
| 263 |
+
''' bicubic downsampling + blur
|
| 264 |
+
Args:
|
| 265 |
+
x: HxWxC image, [0, 1]
|
| 266 |
+
k: hxw, double
|
| 267 |
+
sf: down-scale factor
|
| 268 |
+
Return:
|
| 269 |
+
downsampled LR image
|
| 270 |
+
Reference:
|
| 271 |
+
@inproceedings{zhang2019deep,
|
| 272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
| 273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
| 274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
| 275 |
+
pages={1671--1681},
|
| 276 |
+
year={2019}
|
| 277 |
+
}
|
| 278 |
+
'''
|
| 279 |
+
x = bicubic_degradation(x, sf=sf)
|
| 280 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
| 281 |
+
return x
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def classical_degradation(x, k, sf=3):
|
| 285 |
+
''' blur + downsampling
|
| 286 |
+
Args:
|
| 287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
| 288 |
+
k: hxw, double
|
| 289 |
+
sf: down-scale factor
|
| 290 |
+
Return:
|
| 291 |
+
downsampled LR image
|
| 292 |
+
'''
|
| 293 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
| 294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
| 295 |
+
st = 0
|
| 296 |
+
return x[st::sf, st::sf, ...]
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
| 300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
| 301 |
+
Input image: I; Blurry image: B.
|
| 302 |
+
1. K = I + weight * (I - B)
|
| 303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
| 304 |
+
3. Blur mask:
|
| 305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
| 306 |
+
Args:
|
| 307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
| 308 |
+
weight (float): Sharp weight. Default: 1.
|
| 309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
| 310 |
+
threshold (int):
|
| 311 |
+
"""
|
| 312 |
+
if radius % 2 == 0:
|
| 313 |
+
radius += 1
|
| 314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
| 315 |
+
residual = img - blur
|
| 316 |
+
mask = np.abs(residual) * 255 > threshold
|
| 317 |
+
mask = mask.astype('float32')
|
| 318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
| 319 |
+
|
| 320 |
+
K = img + weight * residual
|
| 321 |
+
K = np.clip(K, 0, 1)
|
| 322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def add_blur(img, sf=4):
|
| 326 |
+
wd2 = 4.0 + sf
|
| 327 |
+
wd = 2.0 + 0.2 * sf
|
| 328 |
+
if random.random() < 0.5:
|
| 329 |
+
l1 = wd2 * random.random()
|
| 330 |
+
l2 = wd2 * random.random()
|
| 331 |
+
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
| 332 |
+
else:
|
| 333 |
+
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
| 334 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
| 335 |
+
|
| 336 |
+
return img
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def add_resize(img, sf=4):
|
| 340 |
+
rnum = np.random.rand()
|
| 341 |
+
if rnum > 0.8: # up
|
| 342 |
+
sf1 = random.uniform(1, 2)
|
| 343 |
+
elif rnum < 0.7: # down
|
| 344 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
| 345 |
+
else:
|
| 346 |
+
sf1 = 1.0
|
| 347 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
| 348 |
+
img = np.clip(img, 0.0, 1.0)
|
| 349 |
+
|
| 350 |
+
return img
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
| 354 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
| 355 |
+
# rnum = np.random.rand()
|
| 356 |
+
# if rnum > 0.6: # add color Gaussian noise
|
| 357 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
| 358 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
| 359 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
| 360 |
+
# else: # add noise
|
| 361 |
+
# L = noise_level2 / 255.
|
| 362 |
+
# D = np.diag(np.random.rand(3))
|
| 363 |
+
# U = orth(np.random.rand(3, 3))
|
| 364 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
| 365 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
| 366 |
+
# img = np.clip(img, 0.0, 1.0)
|
| 367 |
+
# return img
|
| 368 |
+
|
| 369 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
| 370 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
| 371 |
+
rnum = np.random.rand()
|
| 372 |
+
if rnum > 0.6: # add color Gaussian noise
|
| 373 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
| 374 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
| 375 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
| 376 |
+
else: # add noise
|
| 377 |
+
L = noise_level2 / 255.
|
| 378 |
+
D = np.diag(np.random.rand(3))
|
| 379 |
+
U = orth(np.random.rand(3, 3))
|
| 380 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
| 381 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
| 382 |
+
img = np.clip(img, 0.0, 1.0)
|
| 383 |
+
return img
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
| 387 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
| 388 |
+
img = np.clip(img, 0.0, 1.0)
|
| 389 |
+
rnum = random.random()
|
| 390 |
+
if rnum > 0.6:
|
| 391 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
| 392 |
+
elif rnum < 0.4:
|
| 393 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
| 394 |
+
else:
|
| 395 |
+
L = noise_level2 / 255.
|
| 396 |
+
D = np.diag(np.random.rand(3))
|
| 397 |
+
U = orth(np.random.rand(3, 3))
|
| 398 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
| 399 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
| 400 |
+
img = np.clip(img, 0.0, 1.0)
|
| 401 |
+
return img
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
def add_Poisson_noise(img):
|
| 405 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
| 406 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
| 407 |
+
if random.random() < 0.5:
|
| 408 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
| 409 |
+
else:
|
| 410 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
| 411 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
| 412 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
| 413 |
+
img += noise_gray[:, :, np.newaxis]
|
| 414 |
+
img = np.clip(img, 0.0, 1.0)
|
| 415 |
+
return img
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def add_JPEG_noise(img):
|
| 419 |
+
quality_factor = random.randint(30, 95)
|
| 420 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
| 421 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
| 422 |
+
img = cv2.imdecode(encimg, 1)
|
| 423 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
| 424 |
+
return img
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
| 428 |
+
h, w = lq.shape[:2]
|
| 429 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
| 430 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
| 431 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
| 432 |
+
|
| 433 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
| 434 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
| 435 |
+
return lq, hq
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
| 439 |
+
"""
|
| 440 |
+
This is the degradation model of BSRGAN from the paper
|
| 441 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
| 442 |
+
----------
|
| 443 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
| 444 |
+
sf: scale factor
|
| 445 |
+
isp_model: camera ISP model
|
| 446 |
+
Returns
|
| 447 |
+
-------
|
| 448 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
| 449 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
| 450 |
+
"""
|
| 451 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
| 452 |
+
sf_ori = sf
|
| 453 |
+
|
| 454 |
+
h1, w1 = img.shape[:2]
|
| 455 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
| 456 |
+
h, w = img.shape[:2]
|
| 457 |
+
|
| 458 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
| 459 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
| 460 |
+
|
| 461 |
+
hq = img.copy()
|
| 462 |
+
|
| 463 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
| 464 |
+
if np.random.rand() < 0.5:
|
| 465 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
| 466 |
+
interpolation=random.choice([1, 2, 3]))
|
| 467 |
+
else:
|
| 468 |
+
img = util.imresize_np(img, 1 / 2, True)
|
| 469 |
+
img = np.clip(img, 0.0, 1.0)
|
| 470 |
+
sf = 2
|
| 471 |
+
|
| 472 |
+
shuffle_order = random.sample(range(7), 7)
|
| 473 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
| 474 |
+
if idx1 > idx2: # keep downsample3 last
|
| 475 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
| 476 |
+
|
| 477 |
+
for i in shuffle_order:
|
| 478 |
+
|
| 479 |
+
if i == 0:
|
| 480 |
+
img = add_blur(img, sf=sf)
|
| 481 |
+
|
| 482 |
+
elif i == 1:
|
| 483 |
+
img = add_blur(img, sf=sf)
|
| 484 |
+
|
| 485 |
+
elif i == 2:
|
| 486 |
+
a, b = img.shape[1], img.shape[0]
|
| 487 |
+
# downsample2
|
| 488 |
+
if random.random() < 0.75:
|
| 489 |
+
sf1 = random.uniform(1, 2 * sf)
|
| 490 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
| 491 |
+
interpolation=random.choice([1, 2, 3]))
|
| 492 |
+
else:
|
| 493 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
| 494 |
+
k_shifted = shift_pixel(k, sf)
|
| 495 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
| 496 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
| 497 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
| 498 |
+
img = np.clip(img, 0.0, 1.0)
|
| 499 |
+
|
| 500 |
+
elif i == 3:
|
| 501 |
+
# downsample3
|
| 502 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
| 503 |
+
img = np.clip(img, 0.0, 1.0)
|
| 504 |
+
|
| 505 |
+
elif i == 4:
|
| 506 |
+
# add Gaussian noise
|
| 507 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
| 508 |
+
|
| 509 |
+
elif i == 5:
|
| 510 |
+
# add JPEG noise
|
| 511 |
+
if random.random() < jpeg_prob:
|
| 512 |
+
img = add_JPEG_noise(img)
|
| 513 |
+
|
| 514 |
+
elif i == 6:
|
| 515 |
+
# add processed camera sensor noise
|
| 516 |
+
if random.random() < isp_prob and isp_model is not None:
|
| 517 |
+
with torch.no_grad():
|
| 518 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
| 519 |
+
|
| 520 |
+
# add final JPEG compression noise
|
| 521 |
+
img = add_JPEG_noise(img)
|
| 522 |
+
|
| 523 |
+
# random crop
|
| 524 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
| 525 |
+
|
| 526 |
+
return img, hq
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
# todo no isp_model?
|
| 530 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
| 531 |
+
"""
|
| 532 |
+
This is the degradation model of BSRGAN from the paper
|
| 533 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
| 534 |
+
----------
|
| 535 |
+
sf: scale factor
|
| 536 |
+
isp_model: camera ISP model
|
| 537 |
+
Returns
|
| 538 |
+
-------
|
| 539 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
| 540 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
| 541 |
+
"""
|
| 542 |
+
image = util.uint2single(image)
|
| 543 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
| 544 |
+
sf_ori = sf
|
| 545 |
+
|
| 546 |
+
h1, w1 = image.shape[:2]
|
| 547 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
| 548 |
+
h, w = image.shape[:2]
|
| 549 |
+
|
| 550 |
+
hq = image.copy()
|
| 551 |
+
|
| 552 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
| 553 |
+
if np.random.rand() < 0.5:
|
| 554 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
| 555 |
+
interpolation=random.choice([1, 2, 3]))
|
| 556 |
+
else:
|
| 557 |
+
image = util.imresize_np(image, 1 / 2, True)
|
| 558 |
+
image = np.clip(image, 0.0, 1.0)
|
| 559 |
+
sf = 2
|
| 560 |
+
|
| 561 |
+
shuffle_order = random.sample(range(7), 7)
|
| 562 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
| 563 |
+
if idx1 > idx2: # keep downsample3 last
|
| 564 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
| 565 |
+
|
| 566 |
+
for i in shuffle_order:
|
| 567 |
+
|
| 568 |
+
if i == 0:
|
| 569 |
+
image = add_blur(image, sf=sf)
|
| 570 |
+
|
| 571 |
+
elif i == 1:
|
| 572 |
+
image = add_blur(image, sf=sf)
|
| 573 |
+
|
| 574 |
+
elif i == 2:
|
| 575 |
+
a, b = image.shape[1], image.shape[0]
|
| 576 |
+
# downsample2
|
| 577 |
+
if random.random() < 0.75:
|
| 578 |
+
sf1 = random.uniform(1, 2 * sf)
|
| 579 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
| 580 |
+
interpolation=random.choice([1, 2, 3]))
|
| 581 |
+
else:
|
| 582 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
| 583 |
+
k_shifted = shift_pixel(k, sf)
|
| 584 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
| 585 |
+
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
| 586 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
| 587 |
+
image = np.clip(image, 0.0, 1.0)
|
| 588 |
+
|
| 589 |
+
elif i == 3:
|
| 590 |
+
# downsample3
|
| 591 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
| 592 |
+
image = np.clip(image, 0.0, 1.0)
|
| 593 |
+
|
| 594 |
+
elif i == 4:
|
| 595 |
+
# add Gaussian noise
|
| 596 |
+
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
|
| 597 |
+
|
| 598 |
+
elif i == 5:
|
| 599 |
+
# add JPEG noise
|
| 600 |
+
if random.random() < jpeg_prob:
|
| 601 |
+
image = add_JPEG_noise(image)
|
| 602 |
+
|
| 603 |
+
# elif i == 6:
|
| 604 |
+
# # add processed camera sensor noise
|
| 605 |
+
# if random.random() < isp_prob and isp_model is not None:
|
| 606 |
+
# with torch.no_grad():
|
| 607 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
| 608 |
+
|
| 609 |
+
# add final JPEG compression noise
|
| 610 |
+
image = add_JPEG_noise(image)
|
| 611 |
+
image = util.single2uint(image)
|
| 612 |
+
example = {"image":image}
|
| 613 |
+
return example
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
| 617 |
+
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
| 618 |
+
"""
|
| 619 |
+
This is an extended degradation model by combining
|
| 620 |
+
the degradation models of BSRGAN and Real-ESRGAN
|
| 621 |
+
----------
|
| 622 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
| 623 |
+
sf: scale factor
|
| 624 |
+
use_shuffle: the degradation shuffle
|
| 625 |
+
use_sharp: sharpening the img
|
| 626 |
+
Returns
|
| 627 |
+
-------
|
| 628 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
| 629 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
| 630 |
+
"""
|
| 631 |
+
|
| 632 |
+
h1, w1 = img.shape[:2]
|
| 633 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
| 634 |
+
h, w = img.shape[:2]
|
| 635 |
+
|
| 636 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
| 637 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
| 638 |
+
|
| 639 |
+
if use_sharp:
|
| 640 |
+
img = add_sharpening(img)
|
| 641 |
+
hq = img.copy()
|
| 642 |
+
|
| 643 |
+
if random.random() < shuffle_prob:
|
| 644 |
+
shuffle_order = random.sample(range(13), 13)
|
| 645 |
+
else:
|
| 646 |
+
shuffle_order = list(range(13))
|
| 647 |
+
# local shuffle for noise, JPEG is always the last one
|
| 648 |
+
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
| 649 |
+
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
| 650 |
+
|
| 651 |
+
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
| 652 |
+
|
| 653 |
+
for i in shuffle_order:
|
| 654 |
+
if i == 0:
|
| 655 |
+
img = add_blur(img, sf=sf)
|
| 656 |
+
elif i == 1:
|
| 657 |
+
img = add_resize(img, sf=sf)
|
| 658 |
+
elif i == 2:
|
| 659 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
| 660 |
+
elif i == 3:
|
| 661 |
+
if random.random() < poisson_prob:
|
| 662 |
+
img = add_Poisson_noise(img)
|
| 663 |
+
elif i == 4:
|
| 664 |
+
if random.random() < speckle_prob:
|
| 665 |
+
img = add_speckle_noise(img)
|
| 666 |
+
elif i == 5:
|
| 667 |
+
if random.random() < isp_prob and isp_model is not None:
|
| 668 |
+
with torch.no_grad():
|
| 669 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
| 670 |
+
elif i == 6:
|
| 671 |
+
img = add_JPEG_noise(img)
|
| 672 |
+
elif i == 7:
|
| 673 |
+
img = add_blur(img, sf=sf)
|
| 674 |
+
elif i == 8:
|
| 675 |
+
img = add_resize(img, sf=sf)
|
| 676 |
+
elif i == 9:
|
| 677 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
| 678 |
+
elif i == 10:
|
| 679 |
+
if random.random() < poisson_prob:
|
| 680 |
+
img = add_Poisson_noise(img)
|
| 681 |
+
elif i == 11:
|
| 682 |
+
if random.random() < speckle_prob:
|
| 683 |
+
img = add_speckle_noise(img)
|
| 684 |
+
elif i == 12:
|
| 685 |
+
if random.random() < isp_prob and isp_model is not None:
|
| 686 |
+
with torch.no_grad():
|
| 687 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
| 688 |
+
else:
|
| 689 |
+
print('check the shuffle!')
|
| 690 |
+
|
| 691 |
+
# resize to desired size
|
| 692 |
+
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
| 693 |
+
interpolation=random.choice([1, 2, 3]))
|
| 694 |
+
|
| 695 |
+
# add final JPEG compression noise
|
| 696 |
+
img = add_JPEG_noise(img)
|
| 697 |
+
|
| 698 |
+
# random crop
|
| 699 |
+
img, hq = random_crop(img, hq, sf, lq_patchsize)
|
| 700 |
+
|
| 701 |
+
return img, hq
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
if __name__ == '__main__':
|
| 705 |
+
print("hey")
|
| 706 |
+
img = util.imread_uint('utils/test.png', 3)
|
| 707 |
+
print(img)
|
| 708 |
+
img = util.uint2single(img)
|
| 709 |
+
print(img)
|
| 710 |
+
img = img[:448, :448]
|
| 711 |
+
h = img.shape[0] // 4
|
| 712 |
+
print("resizing to", h)
|
| 713 |
+
sf = 4
|
| 714 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
| 715 |
+
for i in range(20):
|
| 716 |
+
print(i)
|
| 717 |
+
img_lq = deg_fn(img)
|
| 718 |
+
print(img_lq)
|
| 719 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
| 720 |
+
print(img_lq.shape)
|
| 721 |
+
print("bicubic", img_lq_bicubic.shape)
|
| 722 |
+
print(img_hq.shape)
|
| 723 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
| 724 |
+
interpolation=0)
|
| 725 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
| 726 |
+
interpolation=0)
|
| 727 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
| 728 |
+
util.imsave(img_concat, str(i) + '.png')
|
| 729 |
+
|
| 730 |
+
|
ldm/modules/image_degradation/bsrgan_light.py
ADDED
|
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from functools import partial
|
| 7 |
+
import random
|
| 8 |
+
from scipy import ndimage
|
| 9 |
+
import scipy
|
| 10 |
+
import scipy.stats as ss
|
| 11 |
+
from scipy.interpolate import interp2d
|
| 12 |
+
from scipy.linalg import orth
|
| 13 |
+
import albumentations
|
| 14 |
+
|
| 15 |
+
import ldm.modules.image_degradation.utils_image as util
|
| 16 |
+
|
| 17 |
+
"""
|
| 18 |
+
# --------------------------------------------
|
| 19 |
+
# Super-Resolution
|
| 20 |
+
# --------------------------------------------
|
| 21 |
+
#
|
| 22 |
+
# Kai Zhang ([email protected])
|
| 23 |
+
# https://github.com/cszn
|
| 24 |
+
# From 2019/03--2021/08
|
| 25 |
+
# --------------------------------------------
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def modcrop_np(img, sf):
|
| 30 |
+
'''
|
| 31 |
+
Args:
|
| 32 |
+
img: numpy image, WxH or WxHxC
|
| 33 |
+
sf: scale factor
|
| 34 |
+
Return:
|
| 35 |
+
cropped image
|
| 36 |
+
'''
|
| 37 |
+
w, h = img.shape[:2]
|
| 38 |
+
im = np.copy(img)
|
| 39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
"""
|
| 43 |
+
# --------------------------------------------
|
| 44 |
+
# anisotropic Gaussian kernels
|
| 45 |
+
# --------------------------------------------
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def analytic_kernel(k):
|
| 50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
| 51 |
+
k_size = k.shape[0]
|
| 52 |
+
# Calculate the big kernels size
|
| 53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
| 54 |
+
# Loop over the small kernel to fill the big one
|
| 55 |
+
for r in range(k_size):
|
| 56 |
+
for c in range(k_size):
|
| 57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
| 58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
| 59 |
+
crop = k_size // 2
|
| 60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
| 61 |
+
# Normalize to 1
|
| 62 |
+
return cropped_big_k / cropped_big_k.sum()
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
| 66 |
+
""" generate an anisotropic Gaussian kernel
|
| 67 |
+
Args:
|
| 68 |
+
ksize : e.g., 15, kernel size
|
| 69 |
+
theta : [0, pi], rotation angle range
|
| 70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
| 71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
| 72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
| 73 |
+
Returns:
|
| 74 |
+
k : kernel
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
| 78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
| 79 |
+
D = np.array([[l1, 0], [0, l2]])
|
| 80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
| 81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
| 82 |
+
|
| 83 |
+
return k
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
| 87 |
+
center = size / 2.0 + 0.5
|
| 88 |
+
k = np.zeros([size, size])
|
| 89 |
+
for y in range(size):
|
| 90 |
+
for x in range(size):
|
| 91 |
+
cy = y - center + 1
|
| 92 |
+
cx = x - center + 1
|
| 93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
| 94 |
+
|
| 95 |
+
k = k / np.sum(k)
|
| 96 |
+
return k
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def shift_pixel(x, sf, upper_left=True):
|
| 100 |
+
"""shift pixel for super-resolution with different scale factors
|
| 101 |
+
Args:
|
| 102 |
+
x: WxHxC or WxH
|
| 103 |
+
sf: scale factor
|
| 104 |
+
upper_left: shift direction
|
| 105 |
+
"""
|
| 106 |
+
h, w = x.shape[:2]
|
| 107 |
+
shift = (sf - 1) * 0.5
|
| 108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
| 109 |
+
if upper_left:
|
| 110 |
+
x1 = xv + shift
|
| 111 |
+
y1 = yv + shift
|
| 112 |
+
else:
|
| 113 |
+
x1 = xv - shift
|
| 114 |
+
y1 = yv - shift
|
| 115 |
+
|
| 116 |
+
x1 = np.clip(x1, 0, w - 1)
|
| 117 |
+
y1 = np.clip(y1, 0, h - 1)
|
| 118 |
+
|
| 119 |
+
if x.ndim == 2:
|
| 120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
| 121 |
+
if x.ndim == 3:
|
| 122 |
+
for i in range(x.shape[-1]):
|
| 123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
| 124 |
+
|
| 125 |
+
return x
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def blur(x, k):
|
| 129 |
+
'''
|
| 130 |
+
x: image, NxcxHxW
|
| 131 |
+
k: kernel, Nx1xhxw
|
| 132 |
+
'''
|
| 133 |
+
n, c = x.shape[:2]
|
| 134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
| 135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
| 136 |
+
k = k.repeat(1, c, 1, 1)
|
| 137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
| 138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
| 139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
| 140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
| 141 |
+
|
| 142 |
+
return x
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
| 146 |
+
""""
|
| 147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
| 148 |
+
# Kai Zhang
|
| 149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
| 150 |
+
# max_var = 2.5 * sf
|
| 151 |
+
"""
|
| 152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
| 153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
| 154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
| 155 |
+
theta = np.random.rand() * np.pi # random theta
|
| 156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
| 157 |
+
|
| 158 |
+
# Set COV matrix using Lambdas and Theta
|
| 159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
| 160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
| 161 |
+
[np.sin(theta), np.cos(theta)]])
|
| 162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
| 163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
| 164 |
+
|
| 165 |
+
# Set expectation position (shifting kernel for aligned image)
|
| 166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
| 167 |
+
MU = MU[None, None, :, None]
|
| 168 |
+
|
| 169 |
+
# Create meshgrid for Gaussian
|
| 170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
| 171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
| 172 |
+
|
| 173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
| 174 |
+
ZZ = Z - MU
|
| 175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
| 176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
| 177 |
+
|
| 178 |
+
# shift the kernel so it will be centered
|
| 179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
| 180 |
+
|
| 181 |
+
# Normalize the kernel and return
|
| 182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
| 183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
| 184 |
+
return kernel
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def fspecial_gaussian(hsize, sigma):
|
| 188 |
+
hsize = [hsize, hsize]
|
| 189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
| 190 |
+
std = sigma
|
| 191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
| 192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
| 193 |
+
h = np.exp(arg)
|
| 194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
| 195 |
+
sumh = h.sum()
|
| 196 |
+
if sumh != 0:
|
| 197 |
+
h = h / sumh
|
| 198 |
+
return h
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def fspecial_laplacian(alpha):
|
| 202 |
+
alpha = max([0, min([alpha, 1])])
|
| 203 |
+
h1 = alpha / (alpha + 1)
|
| 204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
| 205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
| 206 |
+
h = np.array(h)
|
| 207 |
+
return h
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def fspecial(filter_type, *args, **kwargs):
|
| 211 |
+
'''
|
| 212 |
+
python code from:
|
| 213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
| 214 |
+
'''
|
| 215 |
+
if filter_type == 'gaussian':
|
| 216 |
+
return fspecial_gaussian(*args, **kwargs)
|
| 217 |
+
if filter_type == 'laplacian':
|
| 218 |
+
return fspecial_laplacian(*args, **kwargs)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
"""
|
| 222 |
+
# --------------------------------------------
|
| 223 |
+
# degradation models
|
| 224 |
+
# --------------------------------------------
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def bicubic_degradation(x, sf=3):
|
| 229 |
+
'''
|
| 230 |
+
Args:
|
| 231 |
+
x: HxWxC image, [0, 1]
|
| 232 |
+
sf: down-scale factor
|
| 233 |
+
Return:
|
| 234 |
+
bicubicly downsampled LR image
|
| 235 |
+
'''
|
| 236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
| 237 |
+
return x
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def srmd_degradation(x, k, sf=3):
|
| 241 |
+
''' blur + bicubic downsampling
|
| 242 |
+
Args:
|
| 243 |
+
x: HxWxC image, [0, 1]
|
| 244 |
+
k: hxw, double
|
| 245 |
+
sf: down-scale factor
|
| 246 |
+
Return:
|
| 247 |
+
downsampled LR image
|
| 248 |
+
Reference:
|
| 249 |
+
@inproceedings{zhang2018learning,
|
| 250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
| 251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
| 252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
| 253 |
+
pages={3262--3271},
|
| 254 |
+
year={2018}
|
| 255 |
+
}
|
| 256 |
+
'''
|
| 257 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
| 258 |
+
x = bicubic_degradation(x, sf=sf)
|
| 259 |
+
return x
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def dpsr_degradation(x, k, sf=3):
|
| 263 |
+
''' bicubic downsampling + blur
|
| 264 |
+
Args:
|
| 265 |
+
x: HxWxC image, [0, 1]
|
| 266 |
+
k: hxw, double
|
| 267 |
+
sf: down-scale factor
|
| 268 |
+
Return:
|
| 269 |
+
downsampled LR image
|
| 270 |
+
Reference:
|
| 271 |
+
@inproceedings{zhang2019deep,
|
| 272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
| 273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
| 274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
| 275 |
+
pages={1671--1681},
|
| 276 |
+
year={2019}
|
| 277 |
+
}
|
| 278 |
+
'''
|
| 279 |
+
x = bicubic_degradation(x, sf=sf)
|
| 280 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
| 281 |
+
return x
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def classical_degradation(x, k, sf=3):
|
| 285 |
+
''' blur + downsampling
|
| 286 |
+
Args:
|
| 287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
| 288 |
+
k: hxw, double
|
| 289 |
+
sf: down-scale factor
|
| 290 |
+
Return:
|
| 291 |
+
downsampled LR image
|
| 292 |
+
'''
|
| 293 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
| 294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
| 295 |
+
st = 0
|
| 296 |
+
return x[st::sf, st::sf, ...]
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
| 300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
| 301 |
+
Input image: I; Blurry image: B.
|
| 302 |
+
1. K = I + weight * (I - B)
|
| 303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
| 304 |
+
3. Blur mask:
|
| 305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
| 306 |
+
Args:
|
| 307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
| 308 |
+
weight (float): Sharp weight. Default: 1.
|
| 309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
| 310 |
+
threshold (int):
|
| 311 |
+
"""
|
| 312 |
+
if radius % 2 == 0:
|
| 313 |
+
radius += 1
|
| 314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
| 315 |
+
residual = img - blur
|
| 316 |
+
mask = np.abs(residual) * 255 > threshold
|
| 317 |
+
mask = mask.astype('float32')
|
| 318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
| 319 |
+
|
| 320 |
+
K = img + weight * residual
|
| 321 |
+
K = np.clip(K, 0, 1)
|
| 322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def add_blur(img, sf=4):
|
| 326 |
+
wd2 = 4.0 + sf
|
| 327 |
+
wd = 2.0 + 0.2 * sf
|
| 328 |
+
|
| 329 |
+
wd2 = wd2/4
|
| 330 |
+
wd = wd/4
|
| 331 |
+
|
| 332 |
+
if random.random() < 0.5:
|
| 333 |
+
l1 = wd2 * random.random()
|
| 334 |
+
l2 = wd2 * random.random()
|
| 335 |
+
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
| 336 |
+
else:
|
| 337 |
+
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
| 338 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
| 339 |
+
|
| 340 |
+
return img
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def add_resize(img, sf=4):
|
| 344 |
+
rnum = np.random.rand()
|
| 345 |
+
if rnum > 0.8: # up
|
| 346 |
+
sf1 = random.uniform(1, 2)
|
| 347 |
+
elif rnum < 0.7: # down
|
| 348 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
| 349 |
+
else:
|
| 350 |
+
sf1 = 1.0
|
| 351 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
| 352 |
+
img = np.clip(img, 0.0, 1.0)
|
| 353 |
+
|
| 354 |
+
return img
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
| 358 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
| 359 |
+
# rnum = np.random.rand()
|
| 360 |
+
# if rnum > 0.6: # add color Gaussian noise
|
| 361 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
| 362 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
| 363 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
| 364 |
+
# else: # add noise
|
| 365 |
+
# L = noise_level2 / 255.
|
| 366 |
+
# D = np.diag(np.random.rand(3))
|
| 367 |
+
# U = orth(np.random.rand(3, 3))
|
| 368 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
| 369 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
| 370 |
+
# img = np.clip(img, 0.0, 1.0)
|
| 371 |
+
# return img
|
| 372 |
+
|
| 373 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
| 374 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
| 375 |
+
rnum = np.random.rand()
|
| 376 |
+
if rnum > 0.6: # add color Gaussian noise
|
| 377 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
| 378 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
| 379 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
| 380 |
+
else: # add noise
|
| 381 |
+
L = noise_level2 / 255.
|
| 382 |
+
D = np.diag(np.random.rand(3))
|
| 383 |
+
U = orth(np.random.rand(3, 3))
|
| 384 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
| 385 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
| 386 |
+
img = np.clip(img, 0.0, 1.0)
|
| 387 |
+
return img
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
| 391 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
| 392 |
+
img = np.clip(img, 0.0, 1.0)
|
| 393 |
+
rnum = random.random()
|
| 394 |
+
if rnum > 0.6:
|
| 395 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
| 396 |
+
elif rnum < 0.4:
|
| 397 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
| 398 |
+
else:
|
| 399 |
+
L = noise_level2 / 255.
|
| 400 |
+
D = np.diag(np.random.rand(3))
|
| 401 |
+
U = orth(np.random.rand(3, 3))
|
| 402 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
| 403 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
| 404 |
+
img = np.clip(img, 0.0, 1.0)
|
| 405 |
+
return img
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def add_Poisson_noise(img):
|
| 409 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
| 410 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
| 411 |
+
if random.random() < 0.5:
|
| 412 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
| 413 |
+
else:
|
| 414 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
| 415 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
| 416 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
| 417 |
+
img += noise_gray[:, :, np.newaxis]
|
| 418 |
+
img = np.clip(img, 0.0, 1.0)
|
| 419 |
+
return img
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
def add_JPEG_noise(img):
|
| 423 |
+
quality_factor = random.randint(80, 95)
|
| 424 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
| 425 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
| 426 |
+
img = cv2.imdecode(encimg, 1)
|
| 427 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
| 428 |
+
return img
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
| 432 |
+
h, w = lq.shape[:2]
|
| 433 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
| 434 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
| 435 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
| 436 |
+
|
| 437 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
| 438 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
| 439 |
+
return lq, hq
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
| 443 |
+
"""
|
| 444 |
+
This is the degradation model of BSRGAN from the paper
|
| 445 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
| 446 |
+
----------
|
| 447 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
| 448 |
+
sf: scale factor
|
| 449 |
+
isp_model: camera ISP model
|
| 450 |
+
Returns
|
| 451 |
+
-------
|
| 452 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
| 453 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
| 454 |
+
"""
|
| 455 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
| 456 |
+
sf_ori = sf
|
| 457 |
+
|
| 458 |
+
h1, w1 = img.shape[:2]
|
| 459 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
| 460 |
+
h, w = img.shape[:2]
|
| 461 |
+
|
| 462 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
| 463 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
| 464 |
+
|
| 465 |
+
hq = img.copy()
|
| 466 |
+
|
| 467 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
| 468 |
+
if np.random.rand() < 0.5:
|
| 469 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
| 470 |
+
interpolation=random.choice([1, 2, 3]))
|
| 471 |
+
else:
|
| 472 |
+
img = util.imresize_np(img, 1 / 2, True)
|
| 473 |
+
img = np.clip(img, 0.0, 1.0)
|
| 474 |
+
sf = 2
|
| 475 |
+
|
| 476 |
+
shuffle_order = random.sample(range(7), 7)
|
| 477 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
| 478 |
+
if idx1 > idx2: # keep downsample3 last
|
| 479 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
| 480 |
+
|
| 481 |
+
for i in shuffle_order:
|
| 482 |
+
|
| 483 |
+
if i == 0:
|
| 484 |
+
img = add_blur(img, sf=sf)
|
| 485 |
+
|
| 486 |
+
elif i == 1:
|
| 487 |
+
img = add_blur(img, sf=sf)
|
| 488 |
+
|
| 489 |
+
elif i == 2:
|
| 490 |
+
a, b = img.shape[1], img.shape[0]
|
| 491 |
+
# downsample2
|
| 492 |
+
if random.random() < 0.75:
|
| 493 |
+
sf1 = random.uniform(1, 2 * sf)
|
| 494 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
| 495 |
+
interpolation=random.choice([1, 2, 3]))
|
| 496 |
+
else:
|
| 497 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
| 498 |
+
k_shifted = shift_pixel(k, sf)
|
| 499 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
| 500 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
| 501 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
| 502 |
+
img = np.clip(img, 0.0, 1.0)
|
| 503 |
+
|
| 504 |
+
elif i == 3:
|
| 505 |
+
# downsample3
|
| 506 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
| 507 |
+
img = np.clip(img, 0.0, 1.0)
|
| 508 |
+
|
| 509 |
+
elif i == 4:
|
| 510 |
+
# add Gaussian noise
|
| 511 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
|
| 512 |
+
|
| 513 |
+
elif i == 5:
|
| 514 |
+
# add JPEG noise
|
| 515 |
+
if random.random() < jpeg_prob:
|
| 516 |
+
img = add_JPEG_noise(img)
|
| 517 |
+
|
| 518 |
+
elif i == 6:
|
| 519 |
+
# add processed camera sensor noise
|
| 520 |
+
if random.random() < isp_prob and isp_model is not None:
|
| 521 |
+
with torch.no_grad():
|
| 522 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
| 523 |
+
|
| 524 |
+
# add final JPEG compression noise
|
| 525 |
+
img = add_JPEG_noise(img)
|
| 526 |
+
|
| 527 |
+
# random crop
|
| 528 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
| 529 |
+
|
| 530 |
+
return img, hq
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
# todo no isp_model?
|
| 534 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
| 535 |
+
"""
|
| 536 |
+
This is the degradation model of BSRGAN from the paper
|
| 537 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
| 538 |
+
----------
|
| 539 |
+
sf: scale factor
|
| 540 |
+
isp_model: camera ISP model
|
| 541 |
+
Returns
|
| 542 |
+
-------
|
| 543 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
| 544 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
| 545 |
+
"""
|
| 546 |
+
image = util.uint2single(image)
|
| 547 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
| 548 |
+
sf_ori = sf
|
| 549 |
+
|
| 550 |
+
h1, w1 = image.shape[:2]
|
| 551 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
| 552 |
+
h, w = image.shape[:2]
|
| 553 |
+
|
| 554 |
+
hq = image.copy()
|
| 555 |
+
|
| 556 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
| 557 |
+
if np.random.rand() < 0.5:
|
| 558 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
| 559 |
+
interpolation=random.choice([1, 2, 3]))
|
| 560 |
+
else:
|
| 561 |
+
image = util.imresize_np(image, 1 / 2, True)
|
| 562 |
+
image = np.clip(image, 0.0, 1.0)
|
| 563 |
+
sf = 2
|
| 564 |
+
|
| 565 |
+
shuffle_order = random.sample(range(7), 7)
|
| 566 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
| 567 |
+
if idx1 > idx2: # keep downsample3 last
|
| 568 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
| 569 |
+
|
| 570 |
+
for i in shuffle_order:
|
| 571 |
+
|
| 572 |
+
if i == 0:
|
| 573 |
+
image = add_blur(image, sf=sf)
|
| 574 |
+
|
| 575 |
+
# elif i == 1:
|
| 576 |
+
# image = add_blur(image, sf=sf)
|
| 577 |
+
|
| 578 |
+
if i == 0:
|
| 579 |
+
pass
|
| 580 |
+
|
| 581 |
+
elif i == 2:
|
| 582 |
+
a, b = image.shape[1], image.shape[0]
|
| 583 |
+
# downsample2
|
| 584 |
+
if random.random() < 0.8:
|
| 585 |
+
sf1 = random.uniform(1, 2 * sf)
|
| 586 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
| 587 |
+
interpolation=random.choice([1, 2, 3]))
|
| 588 |
+
else:
|
| 589 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
| 590 |
+
k_shifted = shift_pixel(k, sf)
|
| 591 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
| 592 |
+
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
| 593 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
| 594 |
+
|
| 595 |
+
image = np.clip(image, 0.0, 1.0)
|
| 596 |
+
|
| 597 |
+
elif i == 3:
|
| 598 |
+
# downsample3
|
| 599 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
| 600 |
+
image = np.clip(image, 0.0, 1.0)
|
| 601 |
+
|
| 602 |
+
elif i == 4:
|
| 603 |
+
# add Gaussian noise
|
| 604 |
+
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
|
| 605 |
+
|
| 606 |
+
elif i == 5:
|
| 607 |
+
# add JPEG noise
|
| 608 |
+
if random.random() < jpeg_prob:
|
| 609 |
+
image = add_JPEG_noise(image)
|
| 610 |
+
#
|
| 611 |
+
# elif i == 6:
|
| 612 |
+
# # add processed camera sensor noise
|
| 613 |
+
# if random.random() < isp_prob and isp_model is not None:
|
| 614 |
+
# with torch.no_grad():
|
| 615 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
| 616 |
+
|
| 617 |
+
# add final JPEG compression noise
|
| 618 |
+
image = add_JPEG_noise(image)
|
| 619 |
+
image = util.single2uint(image)
|
| 620 |
+
example = {"image": image}
|
| 621 |
+
return example
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
if __name__ == '__main__':
|
| 627 |
+
print("hey")
|
| 628 |
+
img = util.imread_uint('utils/test.png', 3)
|
| 629 |
+
img = img[:448, :448]
|
| 630 |
+
h = img.shape[0] // 4
|
| 631 |
+
print("resizing to", h)
|
| 632 |
+
sf = 4
|
| 633 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
| 634 |
+
for i in range(20):
|
| 635 |
+
print(i)
|
| 636 |
+
img_hq = img
|
| 637 |
+
img_lq = deg_fn(img)["image"]
|
| 638 |
+
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
| 639 |
+
print(img_lq)
|
| 640 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
| 641 |
+
print(img_lq.shape)
|
| 642 |
+
print("bicubic", img_lq_bicubic.shape)
|
| 643 |
+
print(img_hq.shape)
|
| 644 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
| 645 |
+
interpolation=0)
|
| 646 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
| 647 |
+
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
| 648 |
+
interpolation=0)
|
| 649 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
| 650 |
+
util.imsave(img_concat, str(i) + '.png')
|
ldm/modules/image_degradation/utils/test.png
ADDED
|
ldm/modules/image_degradation/utils_image.py
ADDED
|
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import math
|
| 3 |
+
import random
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import cv2
|
| 7 |
+
from torchvision.utils import make_grid
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
'''
|
| 16 |
+
# --------------------------------------------
|
| 17 |
+
# Kai Zhang (github: https://github.com/cszn)
|
| 18 |
+
# 03/Mar/2019
|
| 19 |
+
# --------------------------------------------
|
| 20 |
+
# https://github.com/twhui/SRGAN-pyTorch
|
| 21 |
+
# https://github.com/xinntao/BasicSR
|
| 22 |
+
# --------------------------------------------
|
| 23 |
+
'''
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def is_image_file(filename):
|
| 30 |
+
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_timestamp():
|
| 34 |
+
return datetime.now().strftime('%y%m%d-%H%M%S')
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def imshow(x, title=None, cbar=False, figsize=None):
|
| 38 |
+
plt.figure(figsize=figsize)
|
| 39 |
+
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
| 40 |
+
if title:
|
| 41 |
+
plt.title(title)
|
| 42 |
+
if cbar:
|
| 43 |
+
plt.colorbar()
|
| 44 |
+
plt.show()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def surf(Z, cmap='rainbow', figsize=None):
|
| 48 |
+
plt.figure(figsize=figsize)
|
| 49 |
+
ax3 = plt.axes(projection='3d')
|
| 50 |
+
|
| 51 |
+
w, h = Z.shape[:2]
|
| 52 |
+
xx = np.arange(0,w,1)
|
| 53 |
+
yy = np.arange(0,h,1)
|
| 54 |
+
X, Y = np.meshgrid(xx, yy)
|
| 55 |
+
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
| 56 |
+
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
| 57 |
+
plt.show()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
'''
|
| 61 |
+
# --------------------------------------------
|
| 62 |
+
# get image pathes
|
| 63 |
+
# --------------------------------------------
|
| 64 |
+
'''
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_image_paths(dataroot):
|
| 68 |
+
paths = None # return None if dataroot is None
|
| 69 |
+
if dataroot is not None:
|
| 70 |
+
paths = sorted(_get_paths_from_images(dataroot))
|
| 71 |
+
return paths
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def _get_paths_from_images(path):
|
| 75 |
+
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
| 76 |
+
images = []
|
| 77 |
+
for dirpath, _, fnames in sorted(os.walk(path)):
|
| 78 |
+
for fname in sorted(fnames):
|
| 79 |
+
if is_image_file(fname):
|
| 80 |
+
img_path = os.path.join(dirpath, fname)
|
| 81 |
+
images.append(img_path)
|
| 82 |
+
assert images, '{:s} has no valid image file'.format(path)
|
| 83 |
+
return images
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
'''
|
| 87 |
+
# --------------------------------------------
|
| 88 |
+
# split large images into small images
|
| 89 |
+
# --------------------------------------------
|
| 90 |
+
'''
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
| 94 |
+
w, h = img.shape[:2]
|
| 95 |
+
patches = []
|
| 96 |
+
if w > p_max and h > p_max:
|
| 97 |
+
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
| 98 |
+
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
| 99 |
+
w1.append(w-p_size)
|
| 100 |
+
h1.append(h-p_size)
|
| 101 |
+
# print(w1)
|
| 102 |
+
# print(h1)
|
| 103 |
+
for i in w1:
|
| 104 |
+
for j in h1:
|
| 105 |
+
patches.append(img[i:i+p_size, j:j+p_size,:])
|
| 106 |
+
else:
|
| 107 |
+
patches.append(img)
|
| 108 |
+
|
| 109 |
+
return patches
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def imssave(imgs, img_path):
|
| 113 |
+
"""
|
| 114 |
+
imgs: list, N images of size WxHxC
|
| 115 |
+
"""
|
| 116 |
+
img_name, ext = os.path.splitext(os.path.basename(img_path))
|
| 117 |
+
|
| 118 |
+
for i, img in enumerate(imgs):
|
| 119 |
+
if img.ndim == 3:
|
| 120 |
+
img = img[:, :, [2, 1, 0]]
|
| 121 |
+
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
| 122 |
+
cv2.imwrite(new_path, img)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
| 126 |
+
"""
|
| 127 |
+
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
| 128 |
+
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
| 129 |
+
will be splitted.
|
| 130 |
+
Args:
|
| 131 |
+
original_dataroot:
|
| 132 |
+
taget_dataroot:
|
| 133 |
+
p_size: size of small images
|
| 134 |
+
p_overlap: patch size in training is a good choice
|
| 135 |
+
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
|
| 136 |
+
"""
|
| 137 |
+
paths = get_image_paths(original_dataroot)
|
| 138 |
+
for img_path in paths:
|
| 139 |
+
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
| 140 |
+
img = imread_uint(img_path, n_channels=n_channels)
|
| 141 |
+
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
| 142 |
+
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
| 143 |
+
#if original_dataroot == taget_dataroot:
|
| 144 |
+
#del img_path
|
| 145 |
+
|
| 146 |
+
'''
|
| 147 |
+
# --------------------------------------------
|
| 148 |
+
# makedir
|
| 149 |
+
# --------------------------------------------
|
| 150 |
+
'''
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def mkdir(path):
|
| 154 |
+
if not os.path.exists(path):
|
| 155 |
+
os.makedirs(path)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def mkdirs(paths):
|
| 159 |
+
if isinstance(paths, str):
|
| 160 |
+
mkdir(paths)
|
| 161 |
+
else:
|
| 162 |
+
for path in paths:
|
| 163 |
+
mkdir(path)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def mkdir_and_rename(path):
|
| 167 |
+
if os.path.exists(path):
|
| 168 |
+
new_name = path + '_archived_' + get_timestamp()
|
| 169 |
+
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
| 170 |
+
os.rename(path, new_name)
|
| 171 |
+
os.makedirs(path)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
'''
|
| 175 |
+
# --------------------------------------------
|
| 176 |
+
# read image from path
|
| 177 |
+
# opencv is fast, but read BGR numpy image
|
| 178 |
+
# --------------------------------------------
|
| 179 |
+
'''
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# --------------------------------------------
|
| 183 |
+
# get uint8 image of size HxWxn_channles (RGB)
|
| 184 |
+
# --------------------------------------------
|
| 185 |
+
def imread_uint(path, n_channels=3):
|
| 186 |
+
# input: path
|
| 187 |
+
# output: HxWx3(RGB or GGG), or HxWx1 (G)
|
| 188 |
+
if n_channels == 1:
|
| 189 |
+
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
|
| 190 |
+
img = np.expand_dims(img, axis=2) # HxWx1
|
| 191 |
+
elif n_channels == 3:
|
| 192 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
|
| 193 |
+
if img.ndim == 2:
|
| 194 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
|
| 195 |
+
else:
|
| 196 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
|
| 197 |
+
return img
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# --------------------------------------------
|
| 201 |
+
# matlab's imwrite
|
| 202 |
+
# --------------------------------------------
|
| 203 |
+
def imsave(img, img_path):
|
| 204 |
+
img = np.squeeze(img)
|
| 205 |
+
if img.ndim == 3:
|
| 206 |
+
img = img[:, :, [2, 1, 0]]
|
| 207 |
+
cv2.imwrite(img_path, img)
|
| 208 |
+
|
| 209 |
+
def imwrite(img, img_path):
|
| 210 |
+
img = np.squeeze(img)
|
| 211 |
+
if img.ndim == 3:
|
| 212 |
+
img = img[:, :, [2, 1, 0]]
|
| 213 |
+
cv2.imwrite(img_path, img)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# --------------------------------------------
|
| 218 |
+
# get single image of size HxWxn_channles (BGR)
|
| 219 |
+
# --------------------------------------------
|
| 220 |
+
def read_img(path):
|
| 221 |
+
# read image by cv2
|
| 222 |
+
# return: Numpy float32, HWC, BGR, [0,1]
|
| 223 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
| 224 |
+
img = img.astype(np.float32) / 255.
|
| 225 |
+
if img.ndim == 2:
|
| 226 |
+
img = np.expand_dims(img, axis=2)
|
| 227 |
+
# some images have 4 channels
|
| 228 |
+
if img.shape[2] > 3:
|
| 229 |
+
img = img[:, :, :3]
|
| 230 |
+
return img
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
'''
|
| 234 |
+
# --------------------------------------------
|
| 235 |
+
# image format conversion
|
| 236 |
+
# --------------------------------------------
|
| 237 |
+
# numpy(single) <---> numpy(unit)
|
| 238 |
+
# numpy(single) <---> tensor
|
| 239 |
+
# numpy(unit) <---> tensor
|
| 240 |
+
# --------------------------------------------
|
| 241 |
+
'''
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# --------------------------------------------
|
| 245 |
+
# numpy(single) [0, 1] <---> numpy(unit)
|
| 246 |
+
# --------------------------------------------
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def uint2single(img):
|
| 250 |
+
|
| 251 |
+
return np.float32(img/255.)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def single2uint(img):
|
| 255 |
+
|
| 256 |
+
return np.uint8((img.clip(0, 1)*255.).round())
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def uint162single(img):
|
| 260 |
+
|
| 261 |
+
return np.float32(img/65535.)
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def single2uint16(img):
|
| 265 |
+
|
| 266 |
+
return np.uint16((img.clip(0, 1)*65535.).round())
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
# --------------------------------------------
|
| 270 |
+
# numpy(unit) (HxWxC or HxW) <---> tensor
|
| 271 |
+
# --------------------------------------------
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
# convert uint to 4-dimensional torch tensor
|
| 275 |
+
def uint2tensor4(img):
|
| 276 |
+
if img.ndim == 2:
|
| 277 |
+
img = np.expand_dims(img, axis=2)
|
| 278 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
# convert uint to 3-dimensional torch tensor
|
| 282 |
+
def uint2tensor3(img):
|
| 283 |
+
if img.ndim == 2:
|
| 284 |
+
img = np.expand_dims(img, axis=2)
|
| 285 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
# convert 2/3/4-dimensional torch tensor to uint
|
| 289 |
+
def tensor2uint(img):
|
| 290 |
+
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
| 291 |
+
if img.ndim == 3:
|
| 292 |
+
img = np.transpose(img, (1, 2, 0))
|
| 293 |
+
return np.uint8((img*255.0).round())
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
# --------------------------------------------
|
| 297 |
+
# numpy(single) (HxWxC) <---> tensor
|
| 298 |
+
# --------------------------------------------
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
# convert single (HxWxC) to 3-dimensional torch tensor
|
| 302 |
+
def single2tensor3(img):
|
| 303 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
# convert single (HxWxC) to 4-dimensional torch tensor
|
| 307 |
+
def single2tensor4(img):
|
| 308 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
# convert torch tensor to single
|
| 312 |
+
def tensor2single(img):
|
| 313 |
+
img = img.data.squeeze().float().cpu().numpy()
|
| 314 |
+
if img.ndim == 3:
|
| 315 |
+
img = np.transpose(img, (1, 2, 0))
|
| 316 |
+
|
| 317 |
+
return img
|
| 318 |
+
|
| 319 |
+
# convert torch tensor to single
|
| 320 |
+
def tensor2single3(img):
|
| 321 |
+
img = img.data.squeeze().float().cpu().numpy()
|
| 322 |
+
if img.ndim == 3:
|
| 323 |
+
img = np.transpose(img, (1, 2, 0))
|
| 324 |
+
elif img.ndim == 2:
|
| 325 |
+
img = np.expand_dims(img, axis=2)
|
| 326 |
+
return img
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def single2tensor5(img):
|
| 330 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def single32tensor5(img):
|
| 334 |
+
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def single42tensor4(img):
|
| 338 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
# from skimage.io import imread, imsave
|
| 342 |
+
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
| 343 |
+
'''
|
| 344 |
+
Converts a torch Tensor into an image Numpy array of BGR channel order
|
| 345 |
+
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
| 346 |
+
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
| 347 |
+
'''
|
| 348 |
+
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
| 349 |
+
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
| 350 |
+
n_dim = tensor.dim()
|
| 351 |
+
if n_dim == 4:
|
| 352 |
+
n_img = len(tensor)
|
| 353 |
+
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
| 354 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
| 355 |
+
elif n_dim == 3:
|
| 356 |
+
img_np = tensor.numpy()
|
| 357 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
| 358 |
+
elif n_dim == 2:
|
| 359 |
+
img_np = tensor.numpy()
|
| 360 |
+
else:
|
| 361 |
+
raise TypeError(
|
| 362 |
+
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
| 363 |
+
if out_type == np.uint8:
|
| 364 |
+
img_np = (img_np * 255.0).round()
|
| 365 |
+
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
| 366 |
+
return img_np.astype(out_type)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
'''
|
| 370 |
+
# --------------------------------------------
|
| 371 |
+
# Augmentation, flipe and/or rotate
|
| 372 |
+
# --------------------------------------------
|
| 373 |
+
# The following two are enough.
|
| 374 |
+
# (1) augmet_img: numpy image of WxHxC or WxH
|
| 375 |
+
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
| 376 |
+
# --------------------------------------------
|
| 377 |
+
'''
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def augment_img(img, mode=0):
|
| 381 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
| 382 |
+
'''
|
| 383 |
+
if mode == 0:
|
| 384 |
+
return img
|
| 385 |
+
elif mode == 1:
|
| 386 |
+
return np.flipud(np.rot90(img))
|
| 387 |
+
elif mode == 2:
|
| 388 |
+
return np.flipud(img)
|
| 389 |
+
elif mode == 3:
|
| 390 |
+
return np.rot90(img, k=3)
|
| 391 |
+
elif mode == 4:
|
| 392 |
+
return np.flipud(np.rot90(img, k=2))
|
| 393 |
+
elif mode == 5:
|
| 394 |
+
return np.rot90(img)
|
| 395 |
+
elif mode == 6:
|
| 396 |
+
return np.rot90(img, k=2)
|
| 397 |
+
elif mode == 7:
|
| 398 |
+
return np.flipud(np.rot90(img, k=3))
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def augment_img_tensor4(img, mode=0):
|
| 402 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
| 403 |
+
'''
|
| 404 |
+
if mode == 0:
|
| 405 |
+
return img
|
| 406 |
+
elif mode == 1:
|
| 407 |
+
return img.rot90(1, [2, 3]).flip([2])
|
| 408 |
+
elif mode == 2:
|
| 409 |
+
return img.flip([2])
|
| 410 |
+
elif mode == 3:
|
| 411 |
+
return img.rot90(3, [2, 3])
|
| 412 |
+
elif mode == 4:
|
| 413 |
+
return img.rot90(2, [2, 3]).flip([2])
|
| 414 |
+
elif mode == 5:
|
| 415 |
+
return img.rot90(1, [2, 3])
|
| 416 |
+
elif mode == 6:
|
| 417 |
+
return img.rot90(2, [2, 3])
|
| 418 |
+
elif mode == 7:
|
| 419 |
+
return img.rot90(3, [2, 3]).flip([2])
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
def augment_img_tensor(img, mode=0):
|
| 423 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
| 424 |
+
'''
|
| 425 |
+
img_size = img.size()
|
| 426 |
+
img_np = img.data.cpu().numpy()
|
| 427 |
+
if len(img_size) == 3:
|
| 428 |
+
img_np = np.transpose(img_np, (1, 2, 0))
|
| 429 |
+
elif len(img_size) == 4:
|
| 430 |
+
img_np = np.transpose(img_np, (2, 3, 1, 0))
|
| 431 |
+
img_np = augment_img(img_np, mode=mode)
|
| 432 |
+
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
|
| 433 |
+
if len(img_size) == 3:
|
| 434 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
| 435 |
+
elif len(img_size) == 4:
|
| 436 |
+
img_tensor = img_tensor.permute(3, 2, 0, 1)
|
| 437 |
+
|
| 438 |
+
return img_tensor.type_as(img)
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
def augment_img_np3(img, mode=0):
|
| 442 |
+
if mode == 0:
|
| 443 |
+
return img
|
| 444 |
+
elif mode == 1:
|
| 445 |
+
return img.transpose(1, 0, 2)
|
| 446 |
+
elif mode == 2:
|
| 447 |
+
return img[::-1, :, :]
|
| 448 |
+
elif mode == 3:
|
| 449 |
+
img = img[::-1, :, :]
|
| 450 |
+
img = img.transpose(1, 0, 2)
|
| 451 |
+
return img
|
| 452 |
+
elif mode == 4:
|
| 453 |
+
return img[:, ::-1, :]
|
| 454 |
+
elif mode == 5:
|
| 455 |
+
img = img[:, ::-1, :]
|
| 456 |
+
img = img.transpose(1, 0, 2)
|
| 457 |
+
return img
|
| 458 |
+
elif mode == 6:
|
| 459 |
+
img = img[:, ::-1, :]
|
| 460 |
+
img = img[::-1, :, :]
|
| 461 |
+
return img
|
| 462 |
+
elif mode == 7:
|
| 463 |
+
img = img[:, ::-1, :]
|
| 464 |
+
img = img[::-1, :, :]
|
| 465 |
+
img = img.transpose(1, 0, 2)
|
| 466 |
+
return img
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def augment_imgs(img_list, hflip=True, rot=True):
|
| 470 |
+
# horizontal flip OR rotate
|
| 471 |
+
hflip = hflip and random.random() < 0.5
|
| 472 |
+
vflip = rot and random.random() < 0.5
|
| 473 |
+
rot90 = rot and random.random() < 0.5
|
| 474 |
+
|
| 475 |
+
def _augment(img):
|
| 476 |
+
if hflip:
|
| 477 |
+
img = img[:, ::-1, :]
|
| 478 |
+
if vflip:
|
| 479 |
+
img = img[::-1, :, :]
|
| 480 |
+
if rot90:
|
| 481 |
+
img = img.transpose(1, 0, 2)
|
| 482 |
+
return img
|
| 483 |
+
|
| 484 |
+
return [_augment(img) for img in img_list]
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
'''
|
| 488 |
+
# --------------------------------------------
|
| 489 |
+
# modcrop and shave
|
| 490 |
+
# --------------------------------------------
|
| 491 |
+
'''
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def modcrop(img_in, scale):
|
| 495 |
+
# img_in: Numpy, HWC or HW
|
| 496 |
+
img = np.copy(img_in)
|
| 497 |
+
if img.ndim == 2:
|
| 498 |
+
H, W = img.shape
|
| 499 |
+
H_r, W_r = H % scale, W % scale
|
| 500 |
+
img = img[:H - H_r, :W - W_r]
|
| 501 |
+
elif img.ndim == 3:
|
| 502 |
+
H, W, C = img.shape
|
| 503 |
+
H_r, W_r = H % scale, W % scale
|
| 504 |
+
img = img[:H - H_r, :W - W_r, :]
|
| 505 |
+
else:
|
| 506 |
+
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
| 507 |
+
return img
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def shave(img_in, border=0):
|
| 511 |
+
# img_in: Numpy, HWC or HW
|
| 512 |
+
img = np.copy(img_in)
|
| 513 |
+
h, w = img.shape[:2]
|
| 514 |
+
img = img[border:h-border, border:w-border]
|
| 515 |
+
return img
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
'''
|
| 519 |
+
# --------------------------------------------
|
| 520 |
+
# image processing process on numpy image
|
| 521 |
+
# channel_convert(in_c, tar_type, img_list):
|
| 522 |
+
# rgb2ycbcr(img, only_y=True):
|
| 523 |
+
# bgr2ycbcr(img, only_y=True):
|
| 524 |
+
# ycbcr2rgb(img):
|
| 525 |
+
# --------------------------------------------
|
| 526 |
+
'''
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
def rgb2ycbcr(img, only_y=True):
|
| 530 |
+
'''same as matlab rgb2ycbcr
|
| 531 |
+
only_y: only return Y channel
|
| 532 |
+
Input:
|
| 533 |
+
uint8, [0, 255]
|
| 534 |
+
float, [0, 1]
|
| 535 |
+
'''
|
| 536 |
+
in_img_type = img.dtype
|
| 537 |
+
img.astype(np.float32)
|
| 538 |
+
if in_img_type != np.uint8:
|
| 539 |
+
img *= 255.
|
| 540 |
+
# convert
|
| 541 |
+
if only_y:
|
| 542 |
+
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
| 543 |
+
else:
|
| 544 |
+
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
| 545 |
+
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
| 546 |
+
if in_img_type == np.uint8:
|
| 547 |
+
rlt = rlt.round()
|
| 548 |
+
else:
|
| 549 |
+
rlt /= 255.
|
| 550 |
+
return rlt.astype(in_img_type)
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
def ycbcr2rgb(img):
|
| 554 |
+
'''same as matlab ycbcr2rgb
|
| 555 |
+
Input:
|
| 556 |
+
uint8, [0, 255]
|
| 557 |
+
float, [0, 1]
|
| 558 |
+
'''
|
| 559 |
+
in_img_type = img.dtype
|
| 560 |
+
img.astype(np.float32)
|
| 561 |
+
if in_img_type != np.uint8:
|
| 562 |
+
img *= 255.
|
| 563 |
+
# convert
|
| 564 |
+
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
| 565 |
+
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
| 566 |
+
if in_img_type == np.uint8:
|
| 567 |
+
rlt = rlt.round()
|
| 568 |
+
else:
|
| 569 |
+
rlt /= 255.
|
| 570 |
+
return rlt.astype(in_img_type)
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
def bgr2ycbcr(img, only_y=True):
|
| 574 |
+
'''bgr version of rgb2ycbcr
|
| 575 |
+
only_y: only return Y channel
|
| 576 |
+
Input:
|
| 577 |
+
uint8, [0, 255]
|
| 578 |
+
float, [0, 1]
|
| 579 |
+
'''
|
| 580 |
+
in_img_type = img.dtype
|
| 581 |
+
img.astype(np.float32)
|
| 582 |
+
if in_img_type != np.uint8:
|
| 583 |
+
img *= 255.
|
| 584 |
+
# convert
|
| 585 |
+
if only_y:
|
| 586 |
+
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
| 587 |
+
else:
|
| 588 |
+
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
| 589 |
+
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
| 590 |
+
if in_img_type == np.uint8:
|
| 591 |
+
rlt = rlt.round()
|
| 592 |
+
else:
|
| 593 |
+
rlt /= 255.
|
| 594 |
+
return rlt.astype(in_img_type)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def channel_convert(in_c, tar_type, img_list):
|
| 598 |
+
# conversion among BGR, gray and y
|
| 599 |
+
if in_c == 3 and tar_type == 'gray': # BGR to gray
|
| 600 |
+
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
|
| 601 |
+
return [np.expand_dims(img, axis=2) for img in gray_list]
|
| 602 |
+
elif in_c == 3 and tar_type == 'y': # BGR to y
|
| 603 |
+
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
|
| 604 |
+
return [np.expand_dims(img, axis=2) for img in y_list]
|
| 605 |
+
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
|
| 606 |
+
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
|
| 607 |
+
else:
|
| 608 |
+
return img_list
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
'''
|
| 612 |
+
# --------------------------------------------
|
| 613 |
+
# metric, PSNR and SSIM
|
| 614 |
+
# --------------------------------------------
|
| 615 |
+
'''
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
# --------------------------------------------
|
| 619 |
+
# PSNR
|
| 620 |
+
# --------------------------------------------
|
| 621 |
+
def calculate_psnr(img1, img2, border=0):
|
| 622 |
+
# img1 and img2 have range [0, 255]
|
| 623 |
+
#img1 = img1.squeeze()
|
| 624 |
+
#img2 = img2.squeeze()
|
| 625 |
+
if not img1.shape == img2.shape:
|
| 626 |
+
raise ValueError('Input images must have the same dimensions.')
|
| 627 |
+
h, w = img1.shape[:2]
|
| 628 |
+
img1 = img1[border:h-border, border:w-border]
|
| 629 |
+
img2 = img2[border:h-border, border:w-border]
|
| 630 |
+
|
| 631 |
+
img1 = img1.astype(np.float64)
|
| 632 |
+
img2 = img2.astype(np.float64)
|
| 633 |
+
mse = np.mean((img1 - img2)**2)
|
| 634 |
+
if mse == 0:
|
| 635 |
+
return float('inf')
|
| 636 |
+
return 20 * math.log10(255.0 / math.sqrt(mse))
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
# --------------------------------------------
|
| 640 |
+
# SSIM
|
| 641 |
+
# --------------------------------------------
|
| 642 |
+
def calculate_ssim(img1, img2, border=0):
|
| 643 |
+
'''calculate SSIM
|
| 644 |
+
the same outputs as MATLAB's
|
| 645 |
+
img1, img2: [0, 255]
|
| 646 |
+
'''
|
| 647 |
+
#img1 = img1.squeeze()
|
| 648 |
+
#img2 = img2.squeeze()
|
| 649 |
+
if not img1.shape == img2.shape:
|
| 650 |
+
raise ValueError('Input images must have the same dimensions.')
|
| 651 |
+
h, w = img1.shape[:2]
|
| 652 |
+
img1 = img1[border:h-border, border:w-border]
|
| 653 |
+
img2 = img2[border:h-border, border:w-border]
|
| 654 |
+
|
| 655 |
+
if img1.ndim == 2:
|
| 656 |
+
return ssim(img1, img2)
|
| 657 |
+
elif img1.ndim == 3:
|
| 658 |
+
if img1.shape[2] == 3:
|
| 659 |
+
ssims = []
|
| 660 |
+
for i in range(3):
|
| 661 |
+
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
| 662 |
+
return np.array(ssims).mean()
|
| 663 |
+
elif img1.shape[2] == 1:
|
| 664 |
+
return ssim(np.squeeze(img1), np.squeeze(img2))
|
| 665 |
+
else:
|
| 666 |
+
raise ValueError('Wrong input image dimensions.')
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
def ssim(img1, img2):
|
| 670 |
+
C1 = (0.01 * 255)**2
|
| 671 |
+
C2 = (0.03 * 255)**2
|
| 672 |
+
|
| 673 |
+
img1 = img1.astype(np.float64)
|
| 674 |
+
img2 = img2.astype(np.float64)
|
| 675 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
| 676 |
+
window = np.outer(kernel, kernel.transpose())
|
| 677 |
+
|
| 678 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
| 679 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
| 680 |
+
mu1_sq = mu1**2
|
| 681 |
+
mu2_sq = mu2**2
|
| 682 |
+
mu1_mu2 = mu1 * mu2
|
| 683 |
+
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
| 684 |
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
| 685 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
| 686 |
+
|
| 687 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
| 688 |
+
(sigma1_sq + sigma2_sq + C2))
|
| 689 |
+
return ssim_map.mean()
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
'''
|
| 693 |
+
# --------------------------------------------
|
| 694 |
+
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
| 695 |
+
# --------------------------------------------
|
| 696 |
+
'''
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
# matlab 'imresize' function, now only support 'bicubic'
|
| 700 |
+
def cubic(x):
|
| 701 |
+
absx = torch.abs(x)
|
| 702 |
+
absx2 = absx**2
|
| 703 |
+
absx3 = absx**3
|
| 704 |
+
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
| 705 |
+
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
| 709 |
+
if (scale < 1) and (antialiasing):
|
| 710 |
+
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
| 711 |
+
kernel_width = kernel_width / scale
|
| 712 |
+
|
| 713 |
+
# Output-space coordinates
|
| 714 |
+
x = torch.linspace(1, out_length, out_length)
|
| 715 |
+
|
| 716 |
+
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
| 717 |
+
# in output space maps to 0.5 in input space, and 0.5+scale in output
|
| 718 |
+
# space maps to 1.5 in input space.
|
| 719 |
+
u = x / scale + 0.5 * (1 - 1 / scale)
|
| 720 |
+
|
| 721 |
+
# What is the left-most pixel that can be involved in the computation?
|
| 722 |
+
left = torch.floor(u - kernel_width / 2)
|
| 723 |
+
|
| 724 |
+
# What is the maximum number of pixels that can be involved in the
|
| 725 |
+
# computation? Note: it's OK to use an extra pixel here; if the
|
| 726 |
+
# corresponding weights are all zero, it will be eliminated at the end
|
| 727 |
+
# of this function.
|
| 728 |
+
P = math.ceil(kernel_width) + 2
|
| 729 |
+
|
| 730 |
+
# The indices of the input pixels involved in computing the k-th output
|
| 731 |
+
# pixel are in row k of the indices matrix.
|
| 732 |
+
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
| 733 |
+
1, P).expand(out_length, P)
|
| 734 |
+
|
| 735 |
+
# The weights used to compute the k-th output pixel are in row k of the
|
| 736 |
+
# weights matrix.
|
| 737 |
+
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
| 738 |
+
# apply cubic kernel
|
| 739 |
+
if (scale < 1) and (antialiasing):
|
| 740 |
+
weights = scale * cubic(distance_to_center * scale)
|
| 741 |
+
else:
|
| 742 |
+
weights = cubic(distance_to_center)
|
| 743 |
+
# Normalize the weights matrix so that each row sums to 1.
|
| 744 |
+
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
| 745 |
+
weights = weights / weights_sum.expand(out_length, P)
|
| 746 |
+
|
| 747 |
+
# If a column in weights is all zero, get rid of it. only consider the first and last column.
|
| 748 |
+
weights_zero_tmp = torch.sum((weights == 0), 0)
|
| 749 |
+
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
| 750 |
+
indices = indices.narrow(1, 1, P - 2)
|
| 751 |
+
weights = weights.narrow(1, 1, P - 2)
|
| 752 |
+
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
| 753 |
+
indices = indices.narrow(1, 0, P - 2)
|
| 754 |
+
weights = weights.narrow(1, 0, P - 2)
|
| 755 |
+
weights = weights.contiguous()
|
| 756 |
+
indices = indices.contiguous()
|
| 757 |
+
sym_len_s = -indices.min() + 1
|
| 758 |
+
sym_len_e = indices.max() - in_length
|
| 759 |
+
indices = indices + sym_len_s - 1
|
| 760 |
+
return weights, indices, int(sym_len_s), int(sym_len_e)
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
# --------------------------------------------
|
| 764 |
+
# imresize for tensor image [0, 1]
|
| 765 |
+
# --------------------------------------------
|
| 766 |
+
def imresize(img, scale, antialiasing=True):
|
| 767 |
+
# Now the scale should be the same for H and W
|
| 768 |
+
# input: img: pytorch tensor, CHW or HW [0,1]
|
| 769 |
+
# output: CHW or HW [0,1] w/o round
|
| 770 |
+
need_squeeze = True if img.dim() == 2 else False
|
| 771 |
+
if need_squeeze:
|
| 772 |
+
img.unsqueeze_(0)
|
| 773 |
+
in_C, in_H, in_W = img.size()
|
| 774 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
| 775 |
+
kernel_width = 4
|
| 776 |
+
kernel = 'cubic'
|
| 777 |
+
|
| 778 |
+
# Return the desired dimension order for performing the resize. The
|
| 779 |
+
# strategy is to perform the resize first along the dimension with the
|
| 780 |
+
# smallest scale factor.
|
| 781 |
+
# Now we do not support this.
|
| 782 |
+
|
| 783 |
+
# get weights and indices
|
| 784 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
| 785 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
| 786 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
| 787 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
| 788 |
+
# process H dimension
|
| 789 |
+
# symmetric copying
|
| 790 |
+
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
| 791 |
+
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
|
| 792 |
+
|
| 793 |
+
sym_patch = img[:, :sym_len_Hs, :]
|
| 794 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
| 795 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
| 796 |
+
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
|
| 797 |
+
|
| 798 |
+
sym_patch = img[:, -sym_len_He:, :]
|
| 799 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
| 800 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
| 801 |
+
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
| 802 |
+
|
| 803 |
+
out_1 = torch.FloatTensor(in_C, out_H, in_W)
|
| 804 |
+
kernel_width = weights_H.size(1)
|
| 805 |
+
for i in range(out_H):
|
| 806 |
+
idx = int(indices_H[i][0])
|
| 807 |
+
for j in range(out_C):
|
| 808 |
+
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
| 809 |
+
|
| 810 |
+
# process W dimension
|
| 811 |
+
# symmetric copying
|
| 812 |
+
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
|
| 813 |
+
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
|
| 814 |
+
|
| 815 |
+
sym_patch = out_1[:, :, :sym_len_Ws]
|
| 816 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
| 817 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
| 818 |
+
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
|
| 819 |
+
|
| 820 |
+
sym_patch = out_1[:, :, -sym_len_We:]
|
| 821 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
| 822 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
| 823 |
+
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
| 824 |
+
|
| 825 |
+
out_2 = torch.FloatTensor(in_C, out_H, out_W)
|
| 826 |
+
kernel_width = weights_W.size(1)
|
| 827 |
+
for i in range(out_W):
|
| 828 |
+
idx = int(indices_W[i][0])
|
| 829 |
+
for j in range(out_C):
|
| 830 |
+
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
| 831 |
+
if need_squeeze:
|
| 832 |
+
out_2.squeeze_()
|
| 833 |
+
return out_2
|
| 834 |
+
|
| 835 |
+
|
| 836 |
+
# --------------------------------------------
|
| 837 |
+
# imresize for numpy image [0, 1]
|
| 838 |
+
# --------------------------------------------
|
| 839 |
+
def imresize_np(img, scale, antialiasing=True):
|
| 840 |
+
# Now the scale should be the same for H and W
|
| 841 |
+
# input: img: Numpy, HWC or HW [0,1]
|
| 842 |
+
# output: HWC or HW [0,1] w/o round
|
| 843 |
+
img = torch.from_numpy(img)
|
| 844 |
+
need_squeeze = True if img.dim() == 2 else False
|
| 845 |
+
if need_squeeze:
|
| 846 |
+
img.unsqueeze_(2)
|
| 847 |
+
|
| 848 |
+
in_H, in_W, in_C = img.size()
|
| 849 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
| 850 |
+
kernel_width = 4
|
| 851 |
+
kernel = 'cubic'
|
| 852 |
+
|
| 853 |
+
# Return the desired dimension order for performing the resize. The
|
| 854 |
+
# strategy is to perform the resize first along the dimension with the
|
| 855 |
+
# smallest scale factor.
|
| 856 |
+
# Now we do not support this.
|
| 857 |
+
|
| 858 |
+
# get weights and indices
|
| 859 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
| 860 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
| 861 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
| 862 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
| 863 |
+
# process H dimension
|
| 864 |
+
# symmetric copying
|
| 865 |
+
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
| 866 |
+
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
| 867 |
+
|
| 868 |
+
sym_patch = img[:sym_len_Hs, :, :]
|
| 869 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
| 870 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
| 871 |
+
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
| 872 |
+
|
| 873 |
+
sym_patch = img[-sym_len_He:, :, :]
|
| 874 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
| 875 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
| 876 |
+
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
| 877 |
+
|
| 878 |
+
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
| 879 |
+
kernel_width = weights_H.size(1)
|
| 880 |
+
for i in range(out_H):
|
| 881 |
+
idx = int(indices_H[i][0])
|
| 882 |
+
for j in range(out_C):
|
| 883 |
+
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
| 884 |
+
|
| 885 |
+
# process W dimension
|
| 886 |
+
# symmetric copying
|
| 887 |
+
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
| 888 |
+
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
| 889 |
+
|
| 890 |
+
sym_patch = out_1[:, :sym_len_Ws, :]
|
| 891 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
| 892 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
| 893 |
+
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
| 894 |
+
|
| 895 |
+
sym_patch = out_1[:, -sym_len_We:, :]
|
| 896 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
| 897 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
| 898 |
+
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
| 899 |
+
|
| 900 |
+
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
| 901 |
+
kernel_width = weights_W.size(1)
|
| 902 |
+
for i in range(out_W):
|
| 903 |
+
idx = int(indices_W[i][0])
|
| 904 |
+
for j in range(out_C):
|
| 905 |
+
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
| 906 |
+
if need_squeeze:
|
| 907 |
+
out_2.squeeze_()
|
| 908 |
+
|
| 909 |
+
return out_2.numpy()
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
if __name__ == '__main__':
|
| 913 |
+
print('---')
|
| 914 |
+
# img = imread_uint('test.bmp', 3)
|
| 915 |
+
# img = uint2single(img)
|
| 916 |
+
# img_bicubic = imresize_np(img, 1/4)
|
ldm/modules/losses/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
|
ldm/modules/losses/contperceptual.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class LPIPSWithDiscriminator(nn.Module):
|
| 8 |
+
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
|
| 9 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
| 10 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
| 11 |
+
disc_loss="hinge"):
|
| 12 |
+
|
| 13 |
+
super().__init__()
|
| 14 |
+
assert disc_loss in ["hinge", "vanilla"]
|
| 15 |
+
self.kl_weight = kl_weight
|
| 16 |
+
self.pixel_weight = pixelloss_weight
|
| 17 |
+
self.perceptual_loss = LPIPS().eval()
|
| 18 |
+
self.perceptual_weight = perceptual_weight
|
| 19 |
+
# output log variance
|
| 20 |
+
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
| 21 |
+
|
| 22 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
| 23 |
+
n_layers=disc_num_layers,
|
| 24 |
+
use_actnorm=use_actnorm
|
| 25 |
+
).apply(weights_init)
|
| 26 |
+
self.discriminator_iter_start = disc_start
|
| 27 |
+
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
| 28 |
+
self.disc_factor = disc_factor
|
| 29 |
+
self.discriminator_weight = disc_weight
|
| 30 |
+
self.disc_conditional = disc_conditional
|
| 31 |
+
|
| 32 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
| 33 |
+
if last_layer is not None:
|
| 34 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
| 35 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
| 36 |
+
else:
|
| 37 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
| 38 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
| 39 |
+
|
| 40 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
| 41 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
| 42 |
+
d_weight = d_weight * self.discriminator_weight
|
| 43 |
+
return d_weight
|
| 44 |
+
|
| 45 |
+
def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
|
| 46 |
+
global_step, last_layer=None, cond=None, split="train",
|
| 47 |
+
weights=None):
|
| 48 |
+
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
| 49 |
+
if self.perceptual_weight > 0:
|
| 50 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
| 51 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
| 52 |
+
|
| 53 |
+
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
| 54 |
+
weighted_nll_loss = nll_loss
|
| 55 |
+
if weights is not None:
|
| 56 |
+
weighted_nll_loss = weights*nll_loss
|
| 57 |
+
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
| 58 |
+
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
| 59 |
+
kl_loss = posteriors.kl()
|
| 60 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
| 61 |
+
|
| 62 |
+
# now the GAN part
|
| 63 |
+
if optimizer_idx == 0:
|
| 64 |
+
# generator update
|
| 65 |
+
if cond is None:
|
| 66 |
+
assert not self.disc_conditional
|
| 67 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
| 68 |
+
else:
|
| 69 |
+
assert self.disc_conditional
|
| 70 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
| 71 |
+
g_loss = -torch.mean(logits_fake)
|
| 72 |
+
|
| 73 |
+
if self.disc_factor > 0.0:
|
| 74 |
+
try:
|
| 75 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
| 76 |
+
except RuntimeError:
|
| 77 |
+
assert not self.training
|
| 78 |
+
d_weight = torch.tensor(0.0)
|
| 79 |
+
else:
|
| 80 |
+
d_weight = torch.tensor(0.0)
|
| 81 |
+
|
| 82 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
| 83 |
+
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
|
| 84 |
+
|
| 85 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
|
| 86 |
+
"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
|
| 87 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
| 88 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
| 89 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
| 90 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
| 91 |
+
}
|
| 92 |
+
return loss, log
|
| 93 |
+
|
| 94 |
+
if optimizer_idx == 1:
|
| 95 |
+
# second pass for discriminator update
|
| 96 |
+
if cond is None:
|
| 97 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
| 98 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
| 99 |
+
else:
|
| 100 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
| 101 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
| 102 |
+
|
| 103 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
| 104 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
| 105 |
+
|
| 106 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
| 107 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
| 108 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
| 109 |
+
}
|
| 110 |
+
return d_loss, log
|
| 111 |
+
|
ldm/modules/losses/vqperceptual.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from einops import repeat
|
| 5 |
+
|
| 6 |
+
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
| 7 |
+
from taming.modules.losses.lpips import LPIPS
|
| 8 |
+
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
|
| 12 |
+
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
|
| 13 |
+
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
|
| 14 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
|
| 15 |
+
loss_real = (weights * loss_real).sum() / weights.sum()
|
| 16 |
+
loss_fake = (weights * loss_fake).sum() / weights.sum()
|
| 17 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
| 18 |
+
return d_loss
|
| 19 |
+
|
| 20 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
| 21 |
+
if global_step < threshold:
|
| 22 |
+
weight = value
|
| 23 |
+
return weight
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def measure_perplexity(predicted_indices, n_embed):
|
| 27 |
+
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
| 28 |
+
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
| 29 |
+
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
| 30 |
+
avg_probs = encodings.mean(0)
|
| 31 |
+
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
| 32 |
+
cluster_use = torch.sum(avg_probs > 0)
|
| 33 |
+
return perplexity, cluster_use
|
| 34 |
+
|
| 35 |
+
def l1(x, y):
|
| 36 |
+
return torch.abs(x-y)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def l2(x, y):
|
| 40 |
+
return torch.pow((x-y), 2)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class VQLPIPSWithDiscriminator(nn.Module):
|
| 44 |
+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
| 45 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
| 46 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
| 47 |
+
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
|
| 48 |
+
pixel_loss="l1"):
|
| 49 |
+
super().__init__()
|
| 50 |
+
assert disc_loss in ["hinge", "vanilla"]
|
| 51 |
+
assert perceptual_loss in ["lpips", "clips", "dists"]
|
| 52 |
+
assert pixel_loss in ["l1", "l2"]
|
| 53 |
+
self.codebook_weight = codebook_weight
|
| 54 |
+
self.pixel_weight = pixelloss_weight
|
| 55 |
+
if perceptual_loss == "lpips":
|
| 56 |
+
print(f"{self.__class__.__name__}: Running with LPIPS.")
|
| 57 |
+
self.perceptual_loss = LPIPS().eval()
|
| 58 |
+
else:
|
| 59 |
+
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
|
| 60 |
+
self.perceptual_weight = perceptual_weight
|
| 61 |
+
|
| 62 |
+
if pixel_loss == "l1":
|
| 63 |
+
self.pixel_loss = l1
|
| 64 |
+
else:
|
| 65 |
+
self.pixel_loss = l2
|
| 66 |
+
|
| 67 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
| 68 |
+
n_layers=disc_num_layers,
|
| 69 |
+
use_actnorm=use_actnorm,
|
| 70 |
+
ndf=disc_ndf
|
| 71 |
+
).apply(weights_init)
|
| 72 |
+
self.discriminator_iter_start = disc_start
|
| 73 |
+
if disc_loss == "hinge":
|
| 74 |
+
self.disc_loss = hinge_d_loss
|
| 75 |
+
elif disc_loss == "vanilla":
|
| 76 |
+
self.disc_loss = vanilla_d_loss
|
| 77 |
+
else:
|
| 78 |
+
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
| 79 |
+
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
| 80 |
+
self.disc_factor = disc_factor
|
| 81 |
+
self.discriminator_weight = disc_weight
|
| 82 |
+
self.disc_conditional = disc_conditional
|
| 83 |
+
self.n_classes = n_classes
|
| 84 |
+
|
| 85 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
| 86 |
+
if last_layer is not None:
|
| 87 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
| 88 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
| 89 |
+
else:
|
| 90 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
| 91 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
| 92 |
+
|
| 93 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
| 94 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
| 95 |
+
d_weight = d_weight * self.discriminator_weight
|
| 96 |
+
return d_weight
|
| 97 |
+
|
| 98 |
+
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
| 99 |
+
global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
|
| 100 |
+
if not exists(codebook_loss):
|
| 101 |
+
codebook_loss = torch.tensor([0.]).to(inputs.device)
|
| 102 |
+
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
| 103 |
+
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
|
| 104 |
+
if self.perceptual_weight > 0:
|
| 105 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
| 106 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
| 107 |
+
else:
|
| 108 |
+
p_loss = torch.tensor([0.0])
|
| 109 |
+
|
| 110 |
+
nll_loss = rec_loss
|
| 111 |
+
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
| 112 |
+
nll_loss = torch.mean(nll_loss)
|
| 113 |
+
|
| 114 |
+
# now the GAN part
|
| 115 |
+
if optimizer_idx == 0:
|
| 116 |
+
# generator update
|
| 117 |
+
if cond is None:
|
| 118 |
+
assert not self.disc_conditional
|
| 119 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
| 120 |
+
else:
|
| 121 |
+
assert self.disc_conditional
|
| 122 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
| 123 |
+
g_loss = -torch.mean(logits_fake)
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
| 127 |
+
except RuntimeError:
|
| 128 |
+
assert not self.training
|
| 129 |
+
d_weight = torch.tensor(0.0)
|
| 130 |
+
|
| 131 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
| 132 |
+
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
| 133 |
+
|
| 134 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
| 135 |
+
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
| 136 |
+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
| 137 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
| 138 |
+
"{}/p_loss".format(split): p_loss.detach().mean(),
|
| 139 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
| 140 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
| 141 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
| 142 |
+
}
|
| 143 |
+
if predicted_indices is not None:
|
| 144 |
+
assert self.n_classes is not None
|
| 145 |
+
with torch.no_grad():
|
| 146 |
+
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
|
| 147 |
+
log[f"{split}/perplexity"] = perplexity
|
| 148 |
+
log[f"{split}/cluster_usage"] = cluster_usage
|
| 149 |
+
return loss, log
|
| 150 |
+
|
| 151 |
+
if optimizer_idx == 1:
|
| 152 |
+
# second pass for discriminator update
|
| 153 |
+
if cond is None:
|
| 154 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
| 155 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
| 156 |
+
else:
|
| 157 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
| 158 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
| 159 |
+
|
| 160 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
| 161 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
| 162 |
+
|
| 163 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
| 164 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
| 165 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
| 166 |
+
}
|
| 167 |
+
return d_loss, log
|
ldm/modules/x_transformer.py
ADDED
|
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn, einsum
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from functools import partial
|
| 6 |
+
from inspect import isfunction
|
| 7 |
+
from collections import namedtuple
|
| 8 |
+
from einops import rearrange, repeat, reduce
|
| 9 |
+
|
| 10 |
+
# constants
|
| 11 |
+
|
| 12 |
+
DEFAULT_DIM_HEAD = 64
|
| 13 |
+
|
| 14 |
+
Intermediates = namedtuple('Intermediates', [
|
| 15 |
+
'pre_softmax_attn',
|
| 16 |
+
'post_softmax_attn'
|
| 17 |
+
])
|
| 18 |
+
|
| 19 |
+
LayerIntermediates = namedtuple('Intermediates', [
|
| 20 |
+
'hiddens',
|
| 21 |
+
'attn_intermediates'
|
| 22 |
+
])
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
| 26 |
+
def __init__(self, dim, max_seq_len):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
| 29 |
+
self.init_()
|
| 30 |
+
|
| 31 |
+
def init_(self):
|
| 32 |
+
nn.init.normal_(self.emb.weight, std=0.02)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
n = torch.arange(x.shape[1], device=x.device)
|
| 36 |
+
return self.emb(n)[None, :, :]
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class FixedPositionalEmbedding(nn.Module):
|
| 40 |
+
def __init__(self, dim):
|
| 41 |
+
super().__init__()
|
| 42 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
| 43 |
+
self.register_buffer('inv_freq', inv_freq)
|
| 44 |
+
|
| 45 |
+
def forward(self, x, seq_dim=1, offset=0):
|
| 46 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
| 47 |
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
| 48 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
| 49 |
+
return emb[None, :, :]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# helpers
|
| 53 |
+
|
| 54 |
+
def exists(val):
|
| 55 |
+
return val is not None
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def default(val, d):
|
| 59 |
+
if exists(val):
|
| 60 |
+
return val
|
| 61 |
+
return d() if isfunction(d) else d
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def always(val):
|
| 65 |
+
def inner(*args, **kwargs):
|
| 66 |
+
return val
|
| 67 |
+
return inner
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def not_equals(val):
|
| 71 |
+
def inner(x):
|
| 72 |
+
return x != val
|
| 73 |
+
return inner
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def equals(val):
|
| 77 |
+
def inner(x):
|
| 78 |
+
return x == val
|
| 79 |
+
return inner
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def max_neg_value(tensor):
|
| 83 |
+
return -torch.finfo(tensor.dtype).max
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
# keyword argument helpers
|
| 87 |
+
|
| 88 |
+
def pick_and_pop(keys, d):
|
| 89 |
+
values = list(map(lambda key: d.pop(key), keys))
|
| 90 |
+
return dict(zip(keys, values))
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def group_dict_by_key(cond, d):
|
| 94 |
+
return_val = [dict(), dict()]
|
| 95 |
+
for key in d.keys():
|
| 96 |
+
match = bool(cond(key))
|
| 97 |
+
ind = int(not match)
|
| 98 |
+
return_val[ind][key] = d[key]
|
| 99 |
+
return (*return_val,)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def string_begins_with(prefix, str):
|
| 103 |
+
return str.startswith(prefix)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def group_by_key_prefix(prefix, d):
|
| 107 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def groupby_prefix_and_trim(prefix, d):
|
| 111 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
| 112 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
| 113 |
+
return kwargs_without_prefix, kwargs
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# classes
|
| 117 |
+
class Scale(nn.Module):
|
| 118 |
+
def __init__(self, value, fn):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.value = value
|
| 121 |
+
self.fn = fn
|
| 122 |
+
|
| 123 |
+
def forward(self, x, **kwargs):
|
| 124 |
+
x, *rest = self.fn(x, **kwargs)
|
| 125 |
+
return (x * self.value, *rest)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class Rezero(nn.Module):
|
| 129 |
+
def __init__(self, fn):
|
| 130 |
+
super().__init__()
|
| 131 |
+
self.fn = fn
|
| 132 |
+
self.g = nn.Parameter(torch.zeros(1))
|
| 133 |
+
|
| 134 |
+
def forward(self, x, **kwargs):
|
| 135 |
+
x, *rest = self.fn(x, **kwargs)
|
| 136 |
+
return (x * self.g, *rest)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class ScaleNorm(nn.Module):
|
| 140 |
+
def __init__(self, dim, eps=1e-5):
|
| 141 |
+
super().__init__()
|
| 142 |
+
self.scale = dim ** -0.5
|
| 143 |
+
self.eps = eps
|
| 144 |
+
self.g = nn.Parameter(torch.ones(1))
|
| 145 |
+
|
| 146 |
+
def forward(self, x):
|
| 147 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
| 148 |
+
return x / norm.clamp(min=self.eps) * self.g
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
class RMSNorm(nn.Module):
|
| 152 |
+
def __init__(self, dim, eps=1e-8):
|
| 153 |
+
super().__init__()
|
| 154 |
+
self.scale = dim ** -0.5
|
| 155 |
+
self.eps = eps
|
| 156 |
+
self.g = nn.Parameter(torch.ones(dim))
|
| 157 |
+
|
| 158 |
+
def forward(self, x):
|
| 159 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
| 160 |
+
return x / norm.clamp(min=self.eps) * self.g
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
class Residual(nn.Module):
|
| 164 |
+
def forward(self, x, residual):
|
| 165 |
+
return x + residual
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class GRUGating(nn.Module):
|
| 169 |
+
def __init__(self, dim):
|
| 170 |
+
super().__init__()
|
| 171 |
+
self.gru = nn.GRUCell(dim, dim)
|
| 172 |
+
|
| 173 |
+
def forward(self, x, residual):
|
| 174 |
+
gated_output = self.gru(
|
| 175 |
+
rearrange(x, 'b n d -> (b n) d'),
|
| 176 |
+
rearrange(residual, 'b n d -> (b n) d')
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
return gated_output.reshape_as(x)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# feedforward
|
| 183 |
+
|
| 184 |
+
class GEGLU(nn.Module):
|
| 185 |
+
def __init__(self, dim_in, dim_out):
|
| 186 |
+
super().__init__()
|
| 187 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 188 |
+
|
| 189 |
+
def forward(self, x):
|
| 190 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 191 |
+
return x * F.gelu(gate)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class FeedForward(nn.Module):
|
| 195 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 196 |
+
super().__init__()
|
| 197 |
+
inner_dim = int(dim * mult)
|
| 198 |
+
dim_out = default(dim_out, dim)
|
| 199 |
+
project_in = nn.Sequential(
|
| 200 |
+
nn.Linear(dim, inner_dim),
|
| 201 |
+
nn.GELU()
|
| 202 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 203 |
+
|
| 204 |
+
self.net = nn.Sequential(
|
| 205 |
+
project_in,
|
| 206 |
+
nn.Dropout(dropout),
|
| 207 |
+
nn.Linear(inner_dim, dim_out)
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
def forward(self, x):
|
| 211 |
+
return self.net(x)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
# attention.
|
| 215 |
+
class Attention(nn.Module):
|
| 216 |
+
def __init__(
|
| 217 |
+
self,
|
| 218 |
+
dim,
|
| 219 |
+
dim_head=DEFAULT_DIM_HEAD,
|
| 220 |
+
heads=8,
|
| 221 |
+
causal=False,
|
| 222 |
+
mask=None,
|
| 223 |
+
talking_heads=False,
|
| 224 |
+
sparse_topk=None,
|
| 225 |
+
use_entmax15=False,
|
| 226 |
+
num_mem_kv=0,
|
| 227 |
+
dropout=0.,
|
| 228 |
+
on_attn=False
|
| 229 |
+
):
|
| 230 |
+
super().__init__()
|
| 231 |
+
if use_entmax15:
|
| 232 |
+
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
| 233 |
+
self.scale = dim_head ** -0.5
|
| 234 |
+
self.heads = heads
|
| 235 |
+
self.causal = causal
|
| 236 |
+
self.mask = mask
|
| 237 |
+
|
| 238 |
+
inner_dim = dim_head * heads
|
| 239 |
+
|
| 240 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 241 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
| 242 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
| 243 |
+
self.dropout = nn.Dropout(dropout)
|
| 244 |
+
|
| 245 |
+
# talking heads
|
| 246 |
+
self.talking_heads = talking_heads
|
| 247 |
+
if talking_heads:
|
| 248 |
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
| 249 |
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
| 250 |
+
|
| 251 |
+
# explicit topk sparse attention
|
| 252 |
+
self.sparse_topk = sparse_topk
|
| 253 |
+
|
| 254 |
+
# entmax
|
| 255 |
+
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
| 256 |
+
self.attn_fn = F.softmax
|
| 257 |
+
|
| 258 |
+
# add memory key / values
|
| 259 |
+
self.num_mem_kv = num_mem_kv
|
| 260 |
+
if num_mem_kv > 0:
|
| 261 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
| 262 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
| 263 |
+
|
| 264 |
+
# attention on attention
|
| 265 |
+
self.attn_on_attn = on_attn
|
| 266 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
| 267 |
+
|
| 268 |
+
def forward(
|
| 269 |
+
self,
|
| 270 |
+
x,
|
| 271 |
+
context=None,
|
| 272 |
+
mask=None,
|
| 273 |
+
context_mask=None,
|
| 274 |
+
rel_pos=None,
|
| 275 |
+
sinusoidal_emb=None,
|
| 276 |
+
prev_attn=None,
|
| 277 |
+
mem=None
|
| 278 |
+
):
|
| 279 |
+
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
| 280 |
+
kv_input = default(context, x)
|
| 281 |
+
|
| 282 |
+
q_input = x
|
| 283 |
+
k_input = kv_input
|
| 284 |
+
v_input = kv_input
|
| 285 |
+
|
| 286 |
+
if exists(mem):
|
| 287 |
+
k_input = torch.cat((mem, k_input), dim=-2)
|
| 288 |
+
v_input = torch.cat((mem, v_input), dim=-2)
|
| 289 |
+
|
| 290 |
+
if exists(sinusoidal_emb):
|
| 291 |
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
| 292 |
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
| 293 |
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
| 294 |
+
k_input = k_input + sinusoidal_emb(k_input)
|
| 295 |
+
|
| 296 |
+
q = self.to_q(q_input)
|
| 297 |
+
k = self.to_k(k_input)
|
| 298 |
+
v = self.to_v(v_input)
|
| 299 |
+
|
| 300 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
| 301 |
+
|
| 302 |
+
input_mask = None
|
| 303 |
+
if any(map(exists, (mask, context_mask))):
|
| 304 |
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
| 305 |
+
k_mask = q_mask if not exists(context) else context_mask
|
| 306 |
+
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
| 307 |
+
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
| 308 |
+
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
| 309 |
+
input_mask = q_mask * k_mask
|
| 310 |
+
|
| 311 |
+
if self.num_mem_kv > 0:
|
| 312 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
| 313 |
+
k = torch.cat((mem_k, k), dim=-2)
|
| 314 |
+
v = torch.cat((mem_v, v), dim=-2)
|
| 315 |
+
if exists(input_mask):
|
| 316 |
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
| 317 |
+
|
| 318 |
+
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
| 319 |
+
mask_value = max_neg_value(dots)
|
| 320 |
+
|
| 321 |
+
if exists(prev_attn):
|
| 322 |
+
dots = dots + prev_attn
|
| 323 |
+
|
| 324 |
+
pre_softmax_attn = dots
|
| 325 |
+
|
| 326 |
+
if talking_heads:
|
| 327 |
+
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
| 328 |
+
|
| 329 |
+
if exists(rel_pos):
|
| 330 |
+
dots = rel_pos(dots)
|
| 331 |
+
|
| 332 |
+
if exists(input_mask):
|
| 333 |
+
dots.masked_fill_(~input_mask, mask_value)
|
| 334 |
+
del input_mask
|
| 335 |
+
|
| 336 |
+
if self.causal:
|
| 337 |
+
i, j = dots.shape[-2:]
|
| 338 |
+
r = torch.arange(i, device=device)
|
| 339 |
+
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
| 340 |
+
mask = F.pad(mask, (j - i, 0), value=False)
|
| 341 |
+
dots.masked_fill_(mask, mask_value)
|
| 342 |
+
del mask
|
| 343 |
+
|
| 344 |
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
| 345 |
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
| 346 |
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
| 347 |
+
mask = dots < vk
|
| 348 |
+
dots.masked_fill_(mask, mask_value)
|
| 349 |
+
del mask
|
| 350 |
+
|
| 351 |
+
attn = self.attn_fn(dots, dim=-1)
|
| 352 |
+
post_softmax_attn = attn
|
| 353 |
+
|
| 354 |
+
attn = self.dropout(attn)
|
| 355 |
+
|
| 356 |
+
if talking_heads:
|
| 357 |
+
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
| 358 |
+
|
| 359 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
| 360 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 361 |
+
|
| 362 |
+
intermediates = Intermediates(
|
| 363 |
+
pre_softmax_attn=pre_softmax_attn,
|
| 364 |
+
post_softmax_attn=post_softmax_attn
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
return self.to_out(out), intermediates
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class AttentionLayers(nn.Module):
|
| 371 |
+
def __init__(
|
| 372 |
+
self,
|
| 373 |
+
dim,
|
| 374 |
+
depth,
|
| 375 |
+
heads=8,
|
| 376 |
+
causal=False,
|
| 377 |
+
cross_attend=False,
|
| 378 |
+
only_cross=False,
|
| 379 |
+
use_scalenorm=False,
|
| 380 |
+
use_rmsnorm=False,
|
| 381 |
+
use_rezero=False,
|
| 382 |
+
rel_pos_num_buckets=32,
|
| 383 |
+
rel_pos_max_distance=128,
|
| 384 |
+
position_infused_attn=False,
|
| 385 |
+
custom_layers=None,
|
| 386 |
+
sandwich_coef=None,
|
| 387 |
+
par_ratio=None,
|
| 388 |
+
residual_attn=False,
|
| 389 |
+
cross_residual_attn=False,
|
| 390 |
+
macaron=False,
|
| 391 |
+
pre_norm=True,
|
| 392 |
+
gate_residual=False,
|
| 393 |
+
**kwargs
|
| 394 |
+
):
|
| 395 |
+
super().__init__()
|
| 396 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
| 397 |
+
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
| 398 |
+
|
| 399 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
| 400 |
+
|
| 401 |
+
self.dim = dim
|
| 402 |
+
self.depth = depth
|
| 403 |
+
self.layers = nn.ModuleList([])
|
| 404 |
+
|
| 405 |
+
self.has_pos_emb = position_infused_attn
|
| 406 |
+
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
| 407 |
+
self.rotary_pos_emb = always(None)
|
| 408 |
+
|
| 409 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
| 410 |
+
self.rel_pos = None
|
| 411 |
+
|
| 412 |
+
self.pre_norm = pre_norm
|
| 413 |
+
|
| 414 |
+
self.residual_attn = residual_attn
|
| 415 |
+
self.cross_residual_attn = cross_residual_attn
|
| 416 |
+
|
| 417 |
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
| 418 |
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
| 419 |
+
norm_fn = partial(norm_class, dim)
|
| 420 |
+
|
| 421 |
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
| 422 |
+
branch_fn = Rezero if use_rezero else None
|
| 423 |
+
|
| 424 |
+
if cross_attend and not only_cross:
|
| 425 |
+
default_block = ('a', 'c', 'f')
|
| 426 |
+
elif cross_attend and only_cross:
|
| 427 |
+
default_block = ('c', 'f')
|
| 428 |
+
else:
|
| 429 |
+
default_block = ('a', 'f')
|
| 430 |
+
|
| 431 |
+
if macaron:
|
| 432 |
+
default_block = ('f',) + default_block
|
| 433 |
+
|
| 434 |
+
if exists(custom_layers):
|
| 435 |
+
layer_types = custom_layers
|
| 436 |
+
elif exists(par_ratio):
|
| 437 |
+
par_depth = depth * len(default_block)
|
| 438 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
| 439 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
| 440 |
+
par_attn = par_depth // par_ratio
|
| 441 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
| 442 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
| 443 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
| 444 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
| 445 |
+
par_head = par_block * par_attn
|
| 446 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
| 447 |
+
elif exists(sandwich_coef):
|
| 448 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
| 449 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
| 450 |
+
else:
|
| 451 |
+
layer_types = default_block * depth
|
| 452 |
+
|
| 453 |
+
self.layer_types = layer_types
|
| 454 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
| 455 |
+
|
| 456 |
+
for layer_type in self.layer_types:
|
| 457 |
+
if layer_type == 'a':
|
| 458 |
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
| 459 |
+
elif layer_type == 'c':
|
| 460 |
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
| 461 |
+
elif layer_type == 'f':
|
| 462 |
+
layer = FeedForward(dim, **ff_kwargs)
|
| 463 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
| 464 |
+
else:
|
| 465 |
+
raise Exception(f'invalid layer type {layer_type}')
|
| 466 |
+
|
| 467 |
+
if isinstance(layer, Attention) and exists(branch_fn):
|
| 468 |
+
layer = branch_fn(layer)
|
| 469 |
+
|
| 470 |
+
if gate_residual:
|
| 471 |
+
residual_fn = GRUGating(dim)
|
| 472 |
+
else:
|
| 473 |
+
residual_fn = Residual()
|
| 474 |
+
|
| 475 |
+
self.layers.append(nn.ModuleList([
|
| 476 |
+
norm_fn(),
|
| 477 |
+
layer,
|
| 478 |
+
residual_fn
|
| 479 |
+
]))
|
| 480 |
+
|
| 481 |
+
def forward(
|
| 482 |
+
self,
|
| 483 |
+
x,
|
| 484 |
+
context=None,
|
| 485 |
+
mask=None,
|
| 486 |
+
context_mask=None,
|
| 487 |
+
mems=None,
|
| 488 |
+
return_hiddens=False
|
| 489 |
+
):
|
| 490 |
+
hiddens = []
|
| 491 |
+
intermediates = []
|
| 492 |
+
prev_attn = None
|
| 493 |
+
prev_cross_attn = None
|
| 494 |
+
|
| 495 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
| 496 |
+
|
| 497 |
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
| 498 |
+
is_last = ind == (len(self.layers) - 1)
|
| 499 |
+
|
| 500 |
+
if layer_type == 'a':
|
| 501 |
+
hiddens.append(x)
|
| 502 |
+
layer_mem = mems.pop(0)
|
| 503 |
+
|
| 504 |
+
residual = x
|
| 505 |
+
|
| 506 |
+
if self.pre_norm:
|
| 507 |
+
x = norm(x)
|
| 508 |
+
|
| 509 |
+
if layer_type == 'a':
|
| 510 |
+
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
| 511 |
+
prev_attn=prev_attn, mem=layer_mem)
|
| 512 |
+
elif layer_type == 'c':
|
| 513 |
+
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
| 514 |
+
elif layer_type == 'f':
|
| 515 |
+
out = block(x)
|
| 516 |
+
|
| 517 |
+
x = residual_fn(out, residual)
|
| 518 |
+
|
| 519 |
+
if layer_type in ('a', 'c'):
|
| 520 |
+
intermediates.append(inter)
|
| 521 |
+
|
| 522 |
+
if layer_type == 'a' and self.residual_attn:
|
| 523 |
+
prev_attn = inter.pre_softmax_attn
|
| 524 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
| 525 |
+
prev_cross_attn = inter.pre_softmax_attn
|
| 526 |
+
|
| 527 |
+
if not self.pre_norm and not is_last:
|
| 528 |
+
x = norm(x)
|
| 529 |
+
|
| 530 |
+
if return_hiddens:
|
| 531 |
+
intermediates = LayerIntermediates(
|
| 532 |
+
hiddens=hiddens,
|
| 533 |
+
attn_intermediates=intermediates
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
return x, intermediates
|
| 537 |
+
|
| 538 |
+
return x
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
class Encoder(AttentionLayers):
|
| 542 |
+
def __init__(self, **kwargs):
|
| 543 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
| 544 |
+
super().__init__(causal=False, **kwargs)
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
class TransformerWrapper(nn.Module):
|
| 549 |
+
def __init__(
|
| 550 |
+
self,
|
| 551 |
+
*,
|
| 552 |
+
num_tokens,
|
| 553 |
+
max_seq_len,
|
| 554 |
+
attn_layers,
|
| 555 |
+
emb_dim=None,
|
| 556 |
+
max_mem_len=0.,
|
| 557 |
+
emb_dropout=0.,
|
| 558 |
+
num_memory_tokens=None,
|
| 559 |
+
tie_embedding=False,
|
| 560 |
+
use_pos_emb=True
|
| 561 |
+
):
|
| 562 |
+
super().__init__()
|
| 563 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
| 564 |
+
|
| 565 |
+
dim = attn_layers.dim
|
| 566 |
+
emb_dim = default(emb_dim, dim)
|
| 567 |
+
|
| 568 |
+
self.max_seq_len = max_seq_len
|
| 569 |
+
self.max_mem_len = max_mem_len
|
| 570 |
+
self.num_tokens = num_tokens
|
| 571 |
+
|
| 572 |
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
| 573 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
| 574 |
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
| 575 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
| 576 |
+
|
| 577 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
| 578 |
+
self.attn_layers = attn_layers
|
| 579 |
+
self.norm = nn.LayerNorm(dim)
|
| 580 |
+
|
| 581 |
+
self.init_()
|
| 582 |
+
|
| 583 |
+
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
| 584 |
+
|
| 585 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
| 586 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
| 587 |
+
self.num_memory_tokens = num_memory_tokens
|
| 588 |
+
if num_memory_tokens > 0:
|
| 589 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
| 590 |
+
|
| 591 |
+
# let funnel encoder know number of memory tokens, if specified
|
| 592 |
+
if hasattr(attn_layers, 'num_memory_tokens'):
|
| 593 |
+
attn_layers.num_memory_tokens = num_memory_tokens
|
| 594 |
+
|
| 595 |
+
def init_(self):
|
| 596 |
+
nn.init.normal_(self.token_emb.weight, std=0.02)
|
| 597 |
+
|
| 598 |
+
def forward(
|
| 599 |
+
self,
|
| 600 |
+
x,
|
| 601 |
+
return_embeddings=False,
|
| 602 |
+
mask=None,
|
| 603 |
+
return_mems=False,
|
| 604 |
+
return_attn=False,
|
| 605 |
+
mems=None,
|
| 606 |
+
**kwargs
|
| 607 |
+
):
|
| 608 |
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
| 609 |
+
x = self.token_emb(x)
|
| 610 |
+
x += self.pos_emb(x)
|
| 611 |
+
x = self.emb_dropout(x)
|
| 612 |
+
|
| 613 |
+
x = self.project_emb(x)
|
| 614 |
+
|
| 615 |
+
if num_mem > 0:
|
| 616 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
| 617 |
+
x = torch.cat((mem, x), dim=1)
|
| 618 |
+
|
| 619 |
+
# auto-handle masking after appending memory tokens
|
| 620 |
+
if exists(mask):
|
| 621 |
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
| 622 |
+
|
| 623 |
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
| 624 |
+
x = self.norm(x)
|
| 625 |
+
|
| 626 |
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
| 627 |
+
|
| 628 |
+
out = self.to_logits(x) if not return_embeddings else x
|
| 629 |
+
|
| 630 |
+
if return_mems:
|
| 631 |
+
hiddens = intermediates.hiddens
|
| 632 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
| 633 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
| 634 |
+
return out, new_mems
|
| 635 |
+
|
| 636 |
+
if return_attn:
|
| 637 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
| 638 |
+
return out, attn_maps
|
| 639 |
+
|
| 640 |
+
return out
|
| 641 |
+
|
ldm/util.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from collections import abc
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from functools import partial
|
| 8 |
+
|
| 9 |
+
import multiprocessing as mp
|
| 10 |
+
from threading import Thread
|
| 11 |
+
from queue import Queue
|
| 12 |
+
|
| 13 |
+
from inspect import isfunction
|
| 14 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def log_txt_as_img(wh, xc, size=10):
|
| 18 |
+
# wh a tuple of (width, height)
|
| 19 |
+
# xc a list of captions to plot
|
| 20 |
+
b = len(xc)
|
| 21 |
+
txts = list()
|
| 22 |
+
for bi in range(b):
|
| 23 |
+
txt = Image.new("RGB", wh, color="white")
|
| 24 |
+
draw = ImageDraw.Draw(txt)
|
| 25 |
+
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
| 26 |
+
nc = int(40 * (wh[0] / 256))
|
| 27 |
+
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
| 31 |
+
except UnicodeEncodeError:
|
| 32 |
+
print("Cant encode string for logging. Skipping.")
|
| 33 |
+
|
| 34 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
| 35 |
+
txts.append(txt)
|
| 36 |
+
txts = np.stack(txts)
|
| 37 |
+
txts = torch.tensor(txts)
|
| 38 |
+
return txts
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def ismap(x):
|
| 42 |
+
if not isinstance(x, torch.Tensor):
|
| 43 |
+
return False
|
| 44 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def isimage(x):
|
| 48 |
+
if not isinstance(x, torch.Tensor):
|
| 49 |
+
return False
|
| 50 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def exists(x):
|
| 54 |
+
return x is not None
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def default(val, d):
|
| 58 |
+
if exists(val):
|
| 59 |
+
return val
|
| 60 |
+
return d() if isfunction(d) else d
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def mean_flat(tensor):
|
| 64 |
+
"""
|
| 65 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
| 66 |
+
Take the mean over all non-batch dimensions.
|
| 67 |
+
"""
|
| 68 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def count_params(model, verbose=False):
|
| 72 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 73 |
+
if verbose:
|
| 74 |
+
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
| 75 |
+
return total_params
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def instantiate_from_config(config):
|
| 79 |
+
if not "target" in config:
|
| 80 |
+
if config == '__is_first_stage__':
|
| 81 |
+
return None
|
| 82 |
+
elif config == "__is_unconditional__":
|
| 83 |
+
return None
|
| 84 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 85 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def get_obj_from_str(string, reload=False):
|
| 89 |
+
module, cls = string.rsplit(".", 1)
|
| 90 |
+
if reload:
|
| 91 |
+
module_imp = importlib.import_module(module)
|
| 92 |
+
importlib.reload(module_imp)
|
| 93 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
|
| 97 |
+
# create dummy dataset instance
|
| 98 |
+
# run prefetching
|
| 99 |
+
if idx_to_fn:
|
| 100 |
+
res = func(data, worker_id=idx)
|
| 101 |
+
else:
|
| 102 |
+
res = func(data)
|
| 103 |
+
Q.put([idx, res])
|
| 104 |
+
Q.put("Done")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def parallel_data_prefetch(
|
| 108 |
+
func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False
|
| 109 |
+
):
|
| 110 |
+
# if target_data_type not in ["ndarray", "list"]:
|
| 111 |
+
# raise ValueError(
|
| 112 |
+
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
|
| 113 |
+
# )
|
| 114 |
+
if isinstance(data, np.ndarray) and target_data_type == "list":
|
| 115 |
+
raise ValueError("list expected but function got ndarray.")
|
| 116 |
+
elif isinstance(data, abc.Iterable):
|
| 117 |
+
if isinstance(data, dict):
|
| 118 |
+
print(
|
| 119 |
+
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
| 120 |
+
)
|
| 121 |
+
data = list(data.values())
|
| 122 |
+
if target_data_type == "ndarray":
|
| 123 |
+
data = np.asarray(data)
|
| 124 |
+
else:
|
| 125 |
+
data = list(data)
|
| 126 |
+
else:
|
| 127 |
+
raise TypeError(
|
| 128 |
+
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
if cpu_intensive:
|
| 132 |
+
Q = mp.Queue(1000)
|
| 133 |
+
proc = mp.Process
|
| 134 |
+
else:
|
| 135 |
+
Q = Queue(1000)
|
| 136 |
+
proc = Thread
|
| 137 |
+
# spawn processes
|
| 138 |
+
if target_data_type == "ndarray":
|
| 139 |
+
arguments = [
|
| 140 |
+
[func, Q, part, i, use_worker_id]
|
| 141 |
+
for i, part in enumerate(np.array_split(data, n_proc))
|
| 142 |
+
]
|
| 143 |
+
else:
|
| 144 |
+
step = (
|
| 145 |
+
int(len(data) / n_proc + 1)
|
| 146 |
+
if len(data) % n_proc != 0
|
| 147 |
+
else int(len(data) / n_proc)
|
| 148 |
+
)
|
| 149 |
+
arguments = [
|
| 150 |
+
[func, Q, part, i, use_worker_id]
|
| 151 |
+
for i, part in enumerate(
|
| 152 |
+
[data[i: i + step] for i in range(0, len(data), step)]
|
| 153 |
+
)
|
| 154 |
+
]
|
| 155 |
+
processes = []
|
| 156 |
+
for i in range(n_proc):
|
| 157 |
+
p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
|
| 158 |
+
processes += [p]
|
| 159 |
+
|
| 160 |
+
# start processes
|
| 161 |
+
print(f"Start prefetching...")
|
| 162 |
+
import time
|
| 163 |
+
|
| 164 |
+
start = time.time()
|
| 165 |
+
gather_res = [[] for _ in range(n_proc)]
|
| 166 |
+
try:
|
| 167 |
+
for p in processes:
|
| 168 |
+
p.start()
|
| 169 |
+
|
| 170 |
+
k = 0
|
| 171 |
+
while k < n_proc:
|
| 172 |
+
# get result
|
| 173 |
+
res = Q.get()
|
| 174 |
+
if res == "Done":
|
| 175 |
+
k += 1
|
| 176 |
+
else:
|
| 177 |
+
gather_res[res[0]] = res[1]
|
| 178 |
+
|
| 179 |
+
except Exception as e:
|
| 180 |
+
print("Exception: ", e)
|
| 181 |
+
for p in processes:
|
| 182 |
+
p.terminate()
|
| 183 |
+
|
| 184 |
+
raise e
|
| 185 |
+
finally:
|
| 186 |
+
for p in processes:
|
| 187 |
+
p.join()
|
| 188 |
+
print(f"Prefetching complete. [{time.time() - start} sec.]")
|
| 189 |
+
|
| 190 |
+
if target_data_type == 'ndarray':
|
| 191 |
+
if not isinstance(gather_res[0], np.ndarray):
|
| 192 |
+
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
|
| 193 |
+
|
| 194 |
+
# order outputs
|
| 195 |
+
return np.concatenate(gather_res, axis=0)
|
| 196 |
+
elif target_data_type == 'list':
|
| 197 |
+
out = []
|
| 198 |
+
for r in gather_res:
|
| 199 |
+
out.extend(r)
|
| 200 |
+
return out
|
| 201 |
+
else:
|
| 202 |
+
return gather_res
|
requirements.txt
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
streamlit-drawable-canvas
|
| 3 |
+
pillow
|
| 4 |
+
numpy
|
| 5 |
+
# Core Packages
|
| 6 |
+
numpy==1.24.4
|
| 7 |
+
pillow==9.5.0
|
| 8 |
+
torch==2.4.1
|
| 9 |
+
torchvision==0.8.1
|
| 10 |
+
opencv-python==4.10.0.84
|
| 11 |
+
opencv-python-headless==4.10.0.84
|
| 12 |
+
tqdm==4.66.5
|
| 13 |
+
scipy==1.10.1
|
| 14 |
+
pandas==2.0.3
|
| 15 |
+
matplotlib==3.7.5
|
| 16 |
+
streamlit==1.39.0
|
| 17 |
+
streamlit-drawable-canvas==0.9.3
|
| 18 |
+
|
| 19 |
+
# PyPI Packages
|
| 20 |
+
absl-py==2.1.0
|
| 21 |
+
aiohttp==3.10.10
|
| 22 |
+
aiohappyeyeballs==2.4.3
|
| 23 |
+
aiosignal==1.3.1
|
| 24 |
+
albumentations==1.4.18
|
| 25 |
+
altair==5.4.1
|
| 26 |
+
async-timeout==4.0.3
|
| 27 |
+
attrs==24.2.0
|
| 28 |
+
blinker==1.8.2
|
| 29 |
+
cachetools==5.5.0
|
| 30 |
+
charset-normalizer==3.4.0
|
| 31 |
+
click==8.1.7
|
| 32 |
+
contourpy==1.1.1
|
| 33 |
+
diffusers==0.31.0
|
| 34 |
+
docker-pycreds==0.4.0
|
| 35 |
+
einops==0.8.0
|
| 36 |
+
filelock==3.16.1
|
| 37 |
+
fonttools==4.54.1
|
| 38 |
+
fsspec==2024.10.0
|
| 39 |
+
gitdb==4.0.11
|
| 40 |
+
gitpython==3.1.43
|
| 41 |
+
google-auth==2.35.0
|
| 42 |
+
google-auth-oauthlib==1.0.0
|
| 43 |
+
grpcio==1.67.0
|
| 44 |
+
huggingface-hub==0.26.1
|
| 45 |
+
idna==3.10
|
| 46 |
+
imageio==2.35.1
|
| 47 |
+
importlib-metadata==8.5.0
|
| 48 |
+
importlib-resources==6.4.5
|
| 49 |
+
invisible-watermark==0.2.0
|
| 50 |
+
jinja2==3.1.4
|
| 51 |
+
jsonschema==4.23.0
|
| 52 |
+
jsonschema-specifications==2023.12.1
|
| 53 |
+
kiwisolver==1.4.7
|
| 54 |
+
kornia==0.6.4
|
| 55 |
+
markdown==3.7
|
| 56 |
+
markdown-it-py==3.0.0
|
| 57 |
+
matplotlib==3.7.5
|
| 58 |
+
mdurl==0.1.2
|
| 59 |
+
mpmath==1.3.0
|
| 60 |
+
multidict==6.1.0
|
| 61 |
+
networkx==3.1
|
| 62 |
+
nvidia-cublas-cu12==12.1.3.1
|
| 63 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
| 64 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
| 65 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
| 66 |
+
nvidia-cudnn-cu12==9.1.0.70
|
| 67 |
+
nvidia-cufft-cu12==11.0.2.54
|
| 68 |
+
nvidia-curand-cu12==10.3.2.106
|
| 69 |
+
nvidia-cusolver-cu12==11.4.5.107
|
| 70 |
+
nvidia-cusparse-cu12==12.1.0.106
|
| 71 |
+
nvidia-nccl-cu12==2.20.5
|
| 72 |
+
nvidia-nvjitlink-cu12==12.6.77
|
| 73 |
+
nvidia-nvtx-cu12==12.1.105
|
| 74 |
+
oauthlib==3.2.2
|
| 75 |
+
omegaconf==2.3.0
|
| 76 |
+
packaging==24.1
|
| 77 |
+
pkgutil-resolve-name==1.3.10
|
| 78 |
+
protobuf==3.20.1
|
| 79 |
+
psutil==6.1.0
|
| 80 |
+
pyarrow==17.0.0
|
| 81 |
+
pydeck==0.9.1
|
| 82 |
+
pydeprecate==0.3.2
|
| 83 |
+
pygments==2.18.0
|
| 84 |
+
pyparsing==3.1.4
|
| 85 |
+
python-dateutil==2.9.0.post0
|
| 86 |
+
pytorch-lightning==1.6.5
|
| 87 |
+
pyyaml==6.0.2
|
| 88 |
+
referencing==0.35.1
|
| 89 |
+
regex==2024.9.11
|
| 90 |
+
requests==2.32.3
|
| 91 |
+
requests-oauthlib==2.0.0
|
| 92 |
+
rich==13.9.3
|
| 93 |
+
rsa==4.9
|
| 94 |
+
safetensors==0.4.5
|
| 95 |
+
scikit-image==0.21.0
|
| 96 |
+
sentry-sdk==2.17.0
|
| 97 |
+
setproctitle==1.3.3
|
| 98 |
+
smmap==5.0.1
|
| 99 |
+
sympy==1.13.3
|
| 100 |
+
taming-transformers-rom1504==0.0.6
|
| 101 |
+
tenacity==9.0.0
|
| 102 |
+
tensorboard==2.14.0
|
| 103 |
+
tensorboard-data-server==0.7.2
|
| 104 |
+
tifffile==2023.7.10
|
| 105 |
+
tokenizers==0.12.1
|
| 106 |
+
toml==0.10.2
|
| 107 |
+
torchmetrics==0.6.0
|
| 108 |
+
transformers==4.19.2
|
| 109 |
+
triton==3.0.0
|
| 110 |
+
urllib3==2.2.3
|
| 111 |
+
wandb==0.18.5
|
| 112 |
+
watchdog==4.0.2
|
| 113 |
+
werkzeug==3.0.6
|
| 114 |
+
yarl==1.15.2
|
| 115 |
+
zipp==3.20.2
|
taming/modules/autoencoder/lpips/vgg.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a78928a0af1e5f0fcb1f3b9e8f8c3a2a5a3de244d830ad5c1feddc79b8432868
|
| 3 |
+
size 7289
|
utils/helper.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import os
|
| 4 |
+
import pickle
|
| 5 |
+
from ldm.util import default
|
| 6 |
+
import glob
|
| 7 |
+
import PIL
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
|
| 10 |
+
def load_file(filename):
|
| 11 |
+
with open(filename , 'rb') as file:
|
| 12 |
+
x = pickle.load(file)
|
| 13 |
+
return x
|
| 14 |
+
|
| 15 |
+
def save_file(filename, x, mode="wb"):
|
| 16 |
+
with open(filename, mode) as file:
|
| 17 |
+
pickle.dump(x, file)
|
| 18 |
+
|
| 19 |
+
def normalize_np(img):
|
| 20 |
+
""" Normalize img in arbitrary range to [0, 1] """
|
| 21 |
+
img -= np.min(img)
|
| 22 |
+
img /= np.max(img)
|
| 23 |
+
return img
|
| 24 |
+
|
| 25 |
+
def clear_color(x):
|
| 26 |
+
if torch.is_complex(x):
|
| 27 |
+
x = torch.abs(x)
|
| 28 |
+
x = x.detach().cpu().squeeze().numpy()
|
| 29 |
+
return normalize_np(np.transpose(x, (1, 2, 0)))
|
| 30 |
+
|
| 31 |
+
def to_img(sample):
|
| 32 |
+
return (sample.detach().cpu().numpy().transpose(0,2,3,1) * 127.5 + 128).clip(0, 255)
|
| 33 |
+
|
| 34 |
+
def save_plot(dir_name, tensors, labels, file_name="loss.png"):
|
| 35 |
+
t = np.linspace(0, len(tensors[0]), len(tensors[0]))
|
| 36 |
+
colours = ["r", "b", "g"]
|
| 37 |
+
plt.figure()
|
| 38 |
+
for j in range(len(tensors)):
|
| 39 |
+
plt.plot(t, tensors[j],color = colours[j], label = labels[j])
|
| 40 |
+
plt.legend()
|
| 41 |
+
plt.savefig(os.path.join(dir_name, file_name))
|
| 42 |
+
#plt.show()
|
| 43 |
+
|
| 44 |
+
def save_samples(dir_name, sample, k=None, num_to_save = 5, file_name = None):
|
| 45 |
+
if type(sample) is not np.ndarray: sample_np = to_img(sample).astype(np.uint8)
|
| 46 |
+
else: sample_np = sample.astype(np.uint8)
|
| 47 |
+
|
| 48 |
+
for j in range(num_to_save):
|
| 49 |
+
if file_name is None:
|
| 50 |
+
if k is not None: file_name_img = f'sample_{k+1}'f'{j}.png'
|
| 51 |
+
else: file_name_img = f'{j}.png'
|
| 52 |
+
else: file_name_img = file_name
|
| 53 |
+
image_path = os.path.join(dir_name,file_name_img)
|
| 54 |
+
image_np = sample_np[j]
|
| 55 |
+
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
|
| 56 |
+
file_name_img = None
|
| 57 |
+
|
| 58 |
+
def save_inpaintings(dir_name, sample, y, mask_pixel, k=None, num_to_save = 5, file_name = None):
|
| 59 |
+
recon_in = y*(mask_pixel) + ( 1-mask_pixel)*sample
|
| 60 |
+
recon_in = to_img(recon_in)
|
| 61 |
+
for j in range(num_to_save):
|
| 62 |
+
if file_name is None:
|
| 63 |
+
if k is not None: file_name_img = f'sample_{k+1}'f'{j}.png'
|
| 64 |
+
else: file_name_img = f'{j}.png'
|
| 65 |
+
else: file_name_img = file_name
|
| 66 |
+
image_path = os.path.join(dir_name, file_name_img)
|
| 67 |
+
image_np = recon_in.astype(np.uint8)[j]
|
| 68 |
+
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
|
| 69 |
+
file_name_img = None
|
| 70 |
+
|
| 71 |
+
def save_params(dir_name, mu_pos, logvar_pos, gamma,k):
|
| 72 |
+
params_to_fit = params_untrain([mu_pos.detach().cpu(), logvar_pos.detach().cpu(), gamma.detach().cpu()])
|
| 73 |
+
params_path = os.path.join(dir_name, f'{k+1}.pt')
|
| 74 |
+
torch.save(params_to_fit, params_path)
|
| 75 |
+
|
| 76 |
+
def custom_to_np(img):
|
| 77 |
+
sample = img.detach().cpu()
|
| 78 |
+
#sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)
|
| 79 |
+
#sample = sample.permute(0, 2, 3, 1)
|
| 80 |
+
sample = sample.contiguous()
|
| 81 |
+
return sample
|
| 82 |
+
|
| 83 |
+
def encoder_kl(diff, img):
|
| 84 |
+
_, params = diff.encode_first_stage(img, return_all = True)
|
| 85 |
+
params = diff.scale_factor * params
|
| 86 |
+
mean, logvar = torch.chunk(params, 2, dim=1)
|
| 87 |
+
noise = default(None, lambda: torch.randn_like(mean))
|
| 88 |
+
mean = mean + diff.scale_factor*noise
|
| 89 |
+
return mean, logvar
|
| 90 |
+
|
| 91 |
+
def encoder_vq(diff, img):
|
| 92 |
+
quant = diff.encode_first_stage(img) #, diff, (_,_,ind)
|
| 93 |
+
quant = diff.scale_factor * quant
|
| 94 |
+
#mean, logvar = torch.chunk(params, 2, dim=1)
|
| 95 |
+
noise = default(None, lambda: torch.randn_like(quant))
|
| 96 |
+
mean = quant + diff.scale_factor*noise #
|
| 97 |
+
return mean
|
| 98 |
+
|
| 99 |
+
def clean_directory(dir_name):
|
| 100 |
+
files = glob.glob(dir_name)
|
| 101 |
+
for f in files:
|
| 102 |
+
os.remove(f)
|
| 103 |
+
|
| 104 |
+
def params_train( params ):
|
| 105 |
+
for item in params:
|
| 106 |
+
item.requires_grad = True
|
| 107 |
+
return params
|
| 108 |
+
|
| 109 |
+
def params_untrain(params):
|
| 110 |
+
for item in params:
|
| 111 |
+
item.requires_grad = False
|
| 112 |
+
return params
|
| 113 |
+
|
| 114 |
+
def time_descretization(sigma_min=0.002, sigma_max = 80, rho = 7, num_t_steps = 18):
|
| 115 |
+
step_indices = torch.arange(num_t_steps, dtype=torch.float64).cuda()
|
| 116 |
+
t_steps = (sigma_max ** (1 / rho) + step_indices / (num_t_steps - 1) * (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))) ** rho
|
| 117 |
+
inv_idx = torch.arange(num_t_steps -1, -1, -1).long()
|
| 118 |
+
t_steps_fwd = t_steps[inv_idx]
|
| 119 |
+
#t_steps = torch.cat([net.round_sigma(t_steps), torch.zeros_like(t_steps[:1])]) # t_N = 0
|
| 120 |
+
return t_steps_fwd
|
| 121 |
+
|
| 122 |
+
def get_optimizers(means, variances, gamma_param, lr_init_gamma=0.01) :
|
| 123 |
+
[lr, step_size, gamma] = [0.1, 10, 0.99] #was 0.999 for right-half: [0.01, 10, 0.99]
|
| 124 |
+
optimizer = torch.optim.Adam([means], lr=lr, betas=(0.9, 0.99))
|
| 125 |
+
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)
|
| 126 |
+
|
| 127 |
+
optimizer_2 = torch.optim.Adam([variances], lr=0.001, betas=(0.9, 0.99)) #0.001 for lsun
|
| 128 |
+
optimizer_3 = torch.optim.Adam([gamma_param], lr=lr_init_gamma, betas=(0.9, 0.99)) #0.01
|
| 129 |
+
|
| 130 |
+
scheduler_2 = torch.optim.lr_scheduler.StepLR(optimizer_2, step_size=step_size, gamma=gamma) ##added this
|
| 131 |
+
scheduler_3 = torch.optim.lr_scheduler.StepLR(optimizer_3, step_size=step_size, gamma=gamma)
|
| 132 |
+
|
| 133 |
+
return [optimizer, optimizer_2, optimizer_3 ], [scheduler, scheduler_2, scheduler_3]
|
| 134 |
+
|
| 135 |
+
def check_directory(filename_list):
|
| 136 |
+
for filename in filename_list:
|
| 137 |
+
if not os.path.exists(filename):
|
| 138 |
+
os.mkdir(filename)
|
| 139 |
+
|
| 140 |
+
def s_file(filename, x, mode="wb"):
|
| 141 |
+
with open(filename, mode) as file:
|
| 142 |
+
pickle.dump(x, file)
|
| 143 |
+
|
| 144 |
+
def r_file(filename, mode="rb"):
|
| 145 |
+
with open(filename, mode) as file:
|
| 146 |
+
x = pickle.load(file)
|
| 147 |
+
return x
|
| 148 |
+
|
| 149 |
+
def sample_from_gaussian(mu, alpha, sigma):
|
| 150 |
+
noise = torch.randn_like(mu)
|
| 151 |
+
return alpha*mu + sigma * noise
|
| 152 |
+
|
| 153 |
+
'''
|
| 154 |
+
def make_batch(image, mask=None, device=None):
|
| 155 |
+
image = torch.permute(image, (0,3,1,2))
|
| 156 |
+
batch_size = image.shape[0]
|
| 157 |
+
if mask is None :
|
| 158 |
+
mask = torch.zeros_like(image)
|
| 159 |
+
mask[0, :, :256, :128] = 1
|
| 160 |
+
else :
|
| 161 |
+
mask = torch.tensor(mask)
|
| 162 |
+
masked_image = (mask)*image #+ mask*noise*0.2
|
| 163 |
+
mask = mask[:,0,:,:].reshape(batch_size,1,image.shape[2], image.shape[3])
|
| 164 |
+
batch = {"image": image, "mask": mask, "masked_image": masked_image}
|
| 165 |
+
for k in batch:
|
| 166 |
+
batch[k] = batch[k].to(device)
|
| 167 |
+
return batch
|
| 168 |
+
|
| 169 |
+
def get_sigma_t_steps(net, n_steps=3, kwargs=None):
|
| 170 |
+
sigma_min = kwargs["sigma_min"]
|
| 171 |
+
sigma_max = kwargs["sigma_max"]
|
| 172 |
+
sigma_min = max(sigma_min, net.sigma_min)
|
| 173 |
+
sigma_max = min(sigma_max, net.sigma_max)
|
| 174 |
+
|
| 175 |
+
##Get the time-steps based on iddpm discretization
|
| 176 |
+
num_steps = n_steps #11 # kwargs["num_steps"]
|
| 177 |
+
C_2 = kwargs["C_2"]
|
| 178 |
+
C_1 = kwargs["C_1"]
|
| 179 |
+
M = kwargs["M"]
|
| 180 |
+
step_indices = torch.arange(num_steps, dtype=torch.float64).cuda()
|
| 181 |
+
u = torch.zeros(M + 1, dtype=torch.float64).cuda()
|
| 182 |
+
alpha_bar = lambda j: (0.5 * np.pi * j / M / (C_2 + 1)).sin() ** 2
|
| 183 |
+
for j in torch.arange(M, 0, -1, device=step_indices.device): # M, ..., 1
|
| 184 |
+
u[j - 1] = ((u[j] ** 2 + 1) / (alpha_bar(j - 1) / alpha_bar(j)).clip(min=C_1) - 1).sqrt()
|
| 185 |
+
u_filtered = u[torch.logical_and(u >= sigma_min, u <= sigma_max)]
|
| 186 |
+
sigma_steps = u_filtered[((len(u_filtered) - 1) / (num_steps - 1) * step_indices).round().to(torch.int64)]
|
| 187 |
+
#print(sigma_steps)
|
| 188 |
+
|
| 189 |
+
##get noise schedule
|
| 190 |
+
sigma = lambda t: t
|
| 191 |
+
sigma_deriv = lambda t: 1
|
| 192 |
+
sigma_inv = lambda sigma: sigma
|
| 193 |
+
|
| 194 |
+
##scaling schedule
|
| 195 |
+
s = lambda t: 1
|
| 196 |
+
s_deriv = lambda t: 0
|
| 197 |
+
|
| 198 |
+
##compute some final time steps based on the corresponding noise levels.
|
| 199 |
+
t_steps = sigma_inv(net.round_sigma(sigma_steps))
|
| 200 |
+
|
| 201 |
+
return t_steps, sigma_inv, sigma, s, sigma_deriv
|
| 202 |
+
|
| 203 |
+
def data_replicate(data, K):
|
| 204 |
+
if len(data.shape)==2: data_batch = torch.Tensor.repeat(data,[K,1])
|
| 205 |
+
else: data_batch = torch.Tensor.repeat(data,[K,1,1,1])
|
| 206 |
+
return data_batch
|
| 207 |
+
|
| 208 |
+
'''
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def sample_T(self, x0, eta=0.4, t_steps_hierarchy=None):
|
| 212 |
+
'''
|
| 213 |
+
sigma_discretization_edm = time_descretization(sigma_min=0.002, sigma_max = 999, rho = 7, num_t_steps = 10)/1000
|
| 214 |
+
T_max = 1000
|
| 215 |
+
beta_start = 1 # 0.0015*T_max
|
| 216 |
+
beta_end = 15 # 0.0155*T_max
|
| 217 |
+
def var(t):
|
| 218 |
+
return 1.0 - (1.0) * torch.exp(- beta_start * t - 0.5 * (beta_end - beta_start) * t * t)
|
| 219 |
+
'''
|
| 220 |
+
t_steps_hierarchy = torch.tensor(t_steps_hierarchy).cuda()
|
| 221 |
+
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t_steps_hierarchy[0]].reshape(1, 1 ,1 ,1))**2 # self.var(t_steps_hierarchy[0])
|
| 222 |
+
x_t = torch.sqrt(1 - var_t) * x0 + torch.sqrt(var_t) * torch.randn_like(x0)
|
| 223 |
+
|
| 224 |
+
os.makedirs("out_temp2/", exist_ok=True)
|
| 225 |
+
for i, t in enumerate(t_steps_hierarchy):
|
| 226 |
+
t_hat = torch.ones(10).cuda() * (t)
|
| 227 |
+
e_out = self.model.model(x_t, t_hat)
|
| 228 |
+
var_t = (self.model.sqrt_one_minus_alphas_cumprod[t].reshape(1, 1 ,1 ,1))**2
|
| 229 |
+
#score_out = - e_out / torch.sqrt()
|
| 230 |
+
a_t = 1 - var_t
|
| 231 |
+
#beta_t = 1 - a_t/a_prev
|
| 232 |
+
#std_pos = ((1 - a_prev)/(1 - a_t)).sqrt()*torch.sqrt(beta_t)
|
| 233 |
+
pred_x0 = (x_t - torch.sqrt(1 - a_t) * e_out) / a_t.sqrt()
|
| 234 |
+
|
| 235 |
+
if i != len(t_steps_hierarchy) - 1:
|
| 236 |
+
var_t1 = (self.model.sqrt_one_minus_alphas_cumprod[t_steps_hierarchy[i+1]].reshape(1, 1 ,1 ,1))**2
|
| 237 |
+
a_prev = 1 - var_t1 # var(t_steps_hierarchy[i+1]/1000) # torch.full((10, 1, 1, 1), alphas[t_steps_hierarchy[i+1]]).cuda()
|
| 238 |
+
sigma_t = eta * torch.sqrt((1 - a_prev) / (1 - a_t) * (1 - a_t / a_prev))
|
| 239 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_out
|
| 240 |
+
x_t = a_prev.sqrt() * pred_x0 + dir_xt + torch.randn_like(x_t) * sigma_t + sigma_t*torch.randn_like(x_t)
|
| 241 |
+
|
| 242 |
+
#x_t= (x_t - torch.sqrt( 1 - a_t/a_prev) * e_out ) / (a_t/a_prev).sqrt() + std_pos*torch.randn_like(x_t)
|
| 243 |
+
|
| 244 |
+
'''
|
| 245 |
+
def pred_mean(pred_x0, z_t):
|
| 246 |
+
posterior_mean_coef1 = beta_t * torch.sqrt(a_prev) / (1. - a_t)
|
| 247 |
+
posterior_mean_coef2 = (1. - a_prev) * torch.sqrt(a_t/a_prev) / (1. - a_t)
|
| 248 |
+
return posterior_mean_coef1*pred_x0 + posterior_mean_coef2*z_t
|
| 249 |
+
|
| 250 |
+
x_t = torch.sqrt(a_prev) * pred_x0 # pred_mean(pred_x0, x_t) #+ 0.4*torch.sqrt(beta_t) *torch.randn_like(x_t)
|
| 251 |
+
'''
|
| 252 |
+
recon = self.model.decode_first_stage(pred_x0)
|
| 253 |
+
image_path = os.path.join("out_temp2/", f'{i}.png')
|
| 254 |
+
image_np = (recon.detach() * 127.5 + 128).clip(0, 255).to(torch.uint8).permute(0, 2, 3, 1).cpu().numpy()[0]
|
| 255 |
+
PIL.Image.fromarray(image_np, 'RGB').save(image_path)
|
| 256 |
+
|
| 257 |
+
return
|
| 258 |
+
|
| 259 |
+
|
utils/logger.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
def get_logger():
|
| 4 |
+
logger = logging.getLogger(name='DPS')
|
| 5 |
+
logger.setLevel(logging.INFO)
|
| 6 |
+
|
| 7 |
+
formatter = logging.Formatter("%(asctime)s [%(name)s] >> %(message)s")
|
| 8 |
+
stream_handler = logging.StreamHandler()
|
| 9 |
+
stream_handler.setFormatter(formatter)
|
| 10 |
+
logger.addHandler(stream_handler)
|
| 11 |
+
|
| 12 |
+
return logger
|
utils/mask_generator.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image, ImageDraw
|
| 4 |
+
import math
|
| 5 |
+
import random
|
| 6 |
+
import torch
|
| 7 |
+
#import tensorflow as tf
|
| 8 |
+
np.random.seed(10)
|
| 9 |
+
def random_sq_bbox(img, mask_shape, image_size=256, margin=(16, 16)):
|
| 10 |
+
"""Generate a random sqaure mask for inpainting
|
| 11 |
+
"""
|
| 12 |
+
B, H, W, C = img.shape
|
| 13 |
+
h, w = mask_shape
|
| 14 |
+
margin_height, margin_width = margin
|
| 15 |
+
maxt = image_size - margin_height - h
|
| 16 |
+
maxl = image_size - margin_width - w
|
| 17 |
+
|
| 18 |
+
# bb
|
| 19 |
+
t = np.random.randint(margin_height, maxt)
|
| 20 |
+
l = np.random.randint(margin_width, maxl)
|
| 21 |
+
|
| 22 |
+
# make mask
|
| 23 |
+
mask = torch.ones([B, C, H, W], device=img.device)
|
| 24 |
+
mask[..., t:t+h, l:l+w] = 0
|
| 25 |
+
mask = 1 - mask
|
| 26 |
+
#Fixed mid box
|
| 27 |
+
#mask[..., t:t+h, l:l+w] = 0
|
| 28 |
+
return mask, t, t+h, l, l+w
|
| 29 |
+
|
| 30 |
+
def RandomBrush(
|
| 31 |
+
max_tries,
|
| 32 |
+
s,
|
| 33 |
+
min_num_vertex = 4,
|
| 34 |
+
max_num_vertex = 18,
|
| 35 |
+
mean_angle = 2*math.pi / 5,
|
| 36 |
+
angle_range = 2*math.pi / 15,
|
| 37 |
+
min_width = 12,
|
| 38 |
+
max_width = 48):
|
| 39 |
+
H, W = s, s
|
| 40 |
+
average_radius = math.sqrt(H*H+W*W) / 8
|
| 41 |
+
mask = Image.new('L', (W, H), 0)
|
| 42 |
+
for _ in range(np.random.randint(max_tries)):
|
| 43 |
+
num_vertex = np.random.randint(min_num_vertex, max_num_vertex)
|
| 44 |
+
angle_min = mean_angle - np.random.uniform(0, angle_range)
|
| 45 |
+
angle_max = mean_angle + np.random.uniform(0, angle_range)
|
| 46 |
+
angles = []
|
| 47 |
+
vertex = []
|
| 48 |
+
for i in range(num_vertex):
|
| 49 |
+
if i % 2 == 0:
|
| 50 |
+
angles.append(2*math.pi - np.random.uniform(angle_min, angle_max))
|
| 51 |
+
else:
|
| 52 |
+
angles.append(np.random.uniform(angle_min, angle_max))
|
| 53 |
+
|
| 54 |
+
h, w = mask.size
|
| 55 |
+
vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
|
| 56 |
+
for i in range(num_vertex):
|
| 57 |
+
r = np.clip(
|
| 58 |
+
np.random.normal(loc=average_radius, scale=average_radius//2),
|
| 59 |
+
0, 2*average_radius)
|
| 60 |
+
new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
|
| 61 |
+
new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
|
| 62 |
+
vertex.append((int(new_x), int(new_y)))
|
| 63 |
+
|
| 64 |
+
draw = ImageDraw.Draw(mask)
|
| 65 |
+
width = int(np.random.uniform(min_width, max_width))
|
| 66 |
+
draw.line(vertex, fill=1, width=width)
|
| 67 |
+
for v in vertex:
|
| 68 |
+
draw.ellipse((v[0] - width//2,
|
| 69 |
+
v[1] - width//2,
|
| 70 |
+
v[0] + width//2,
|
| 71 |
+
v[1] + width//2),
|
| 72 |
+
fill=1)
|
| 73 |
+
if np.random.random() > 0.5:
|
| 74 |
+
mask.transpose(Image.FLIP_LEFT_RIGHT)
|
| 75 |
+
if np.random.random() > 0.5:
|
| 76 |
+
mask.transpose(Image.FLIP_TOP_BOTTOM)
|
| 77 |
+
mask = np.asarray(mask, np.uint8)
|
| 78 |
+
if np.random.random() > 0.5:
|
| 79 |
+
mask = np.flip(mask, 0)
|
| 80 |
+
if np.random.random() > 0.5:
|
| 81 |
+
mask = np.flip(mask, 1)
|
| 82 |
+
return mask
|
| 83 |
+
|
| 84 |
+
def RandomMask(s, hole_range=[0,1]):
|
| 85 |
+
coef = min(hole_range[0] + hole_range[1], 1.0)
|
| 86 |
+
while True:
|
| 87 |
+
mask = np.ones((s, s), np.uint8)
|
| 88 |
+
def Fill(max_size):
|
| 89 |
+
w, h = np.random.randint(max_size), np.random.randint(max_size)
|
| 90 |
+
ww, hh = w // 2, h // 2
|
| 91 |
+
x, y = np.random.randint(-ww, s - w + ww), np.random.randint(-hh, s - h + hh)
|
| 92 |
+
mask[max(y, 0): min(y + h, s), max(x, 0): min(x + w, s)] = 0
|
| 93 |
+
def MultiFill(max_tries, max_size):
|
| 94 |
+
for _ in range(np.random.randint(max_tries)):
|
| 95 |
+
Fill(max_size)
|
| 96 |
+
MultiFill(int(10 * coef), s // 2)
|
| 97 |
+
MultiFill(int(5 * coef), s)
|
| 98 |
+
##comment the following line for lower masking ratios
|
| 99 |
+
#mask = np.logical_and(mask, 1 - RandomBrush(int(20 * coef), s))
|
| 100 |
+
hole_ratio = 1 - np.mean(mask)
|
| 101 |
+
if hole_range is not None and (hole_ratio <= hole_range[0] or hole_ratio >= hole_range[1]):
|
| 102 |
+
continue
|
| 103 |
+
return mask[np.newaxis, ...].astype(np.float32)
|
| 104 |
+
|
| 105 |
+
def BatchRandomMask(batch_size, s, hole_range=[0, 1]):
|
| 106 |
+
return np.stack([RandomMask(s, hole_range=hole_range) for _ in range(batch_size)], axis = 0)
|
| 107 |
+
|
| 108 |
+
def random_rotation(shape):
|
| 109 |
+
cutoff = 100 #was 30
|
| 110 |
+
(n , channels, p, q) = shape
|
| 111 |
+
mask = np.zeros((n,p,q))
|
| 112 |
+
|
| 113 |
+
for i in range(n):
|
| 114 |
+
angle = np.random.choice(360, 1)
|
| 115 |
+
mask_one = np.ones((p+cutoff,q+cutoff))
|
| 116 |
+
mask_one[int((p+cutoff)/2):,:] = 0
|
| 117 |
+
|
| 118 |
+
im = Image.fromarray(mask_one)
|
| 119 |
+
im = im.rotate(angle)
|
| 120 |
+
|
| 121 |
+
left = (p+cutoff - p)/2
|
| 122 |
+
top = (q+cutoff - q)/2
|
| 123 |
+
right = (p+cutoff + p)/2
|
| 124 |
+
bottom = (q+cutoff + q)/2
|
| 125 |
+
|
| 126 |
+
# Crop the center of the image
|
| 127 |
+
im = im.crop((left, top, right, bottom))
|
| 128 |
+
|
| 129 |
+
mask[i] = np.array(im)
|
| 130 |
+
|
| 131 |
+
#mask = np.repeat(mask.reshape([n,1,p,q]), channels, axis=1)
|
| 132 |
+
mask = mask.reshape([n,1,p,q])
|
| 133 |
+
return mask
|
| 134 |
+
|
| 135 |
+
class mask_generator:
|
| 136 |
+
def __init__(self, mask_type, mask_len_range=None, mask_prob_range=None,
|
| 137 |
+
image_size=256, margin=(16, 16)):
|
| 138 |
+
"""
|
| 139 |
+
(mask_len_range): given in (min, max) tuple.
|
| 140 |
+
Specifies the range of box size in each dimension
|
| 141 |
+
(mask_prob_range): for the case of random masking,
|
| 142 |
+
specify the probability of individual pixels being masked
|
| 143 |
+
"""
|
| 144 |
+
assert mask_type in ['box', 'random', 'half', 'extreme']
|
| 145 |
+
self.mask_type = mask_type
|
| 146 |
+
self.mask_len_range = mask_len_range
|
| 147 |
+
self.mask_prob_range = mask_prob_range
|
| 148 |
+
self.image_size = image_size
|
| 149 |
+
self.margin = margin
|
| 150 |
+
|
| 151 |
+
def _retrieve_box(self, img):
|
| 152 |
+
l, h = self.mask_len_range
|
| 153 |
+
l, h = int(l), int(h)
|
| 154 |
+
mask_h = np.random.randint(l, h)
|
| 155 |
+
mask_w = np.random.randint(l, h)
|
| 156 |
+
mask, t, tl, w, wh = random_sq_bbox(img,
|
| 157 |
+
mask_shape=(mask_h, mask_w),
|
| 158 |
+
image_size=self.image_size,
|
| 159 |
+
margin=self.margin)
|
| 160 |
+
return mask, t, tl, w, wh
|
| 161 |
+
|
| 162 |
+
def generate_center_mask(self, shape):
|
| 163 |
+
assert len(shape) == 2
|
| 164 |
+
assert shape[1] % 2 == 0
|
| 165 |
+
center = shape[0] // 2
|
| 166 |
+
center_size = shape[0] // 4
|
| 167 |
+
half_resol = center_size // 2 # for now
|
| 168 |
+
ret = torch.zeros(shape, dtype=torch.float32)
|
| 169 |
+
ret[
|
| 170 |
+
center - half_resol: center + half_resol,
|
| 171 |
+
center - half_resol: center + half_resol,
|
| 172 |
+
] = 1
|
| 173 |
+
ret = ret.unsqueeze(0).unsqueeze(0)
|
| 174 |
+
return ret
|
| 175 |
+
|
| 176 |
+
def __call__(self, img):
|
| 177 |
+
if self.mask_type == 'random':
|
| 178 |
+
mask = BatchRandomMask(1, self.image_size, hole_range=self.mask_prob_range) #self._retrieve_random(img)
|
| 179 |
+
return mask
|
| 180 |
+
elif self.mask_type == "half":
|
| 181 |
+
mask = random_rotation((1, 3, self.image_size, self.image_size))
|
| 182 |
+
elif self.mask_type == 'box':
|
| 183 |
+
#mask, t, th, w, wl = self._retrieve_box(img)
|
| 184 |
+
mask = self.generate_center_mask((self.image_size,self.image_size)) # self._retrieve_box(img)
|
| 185 |
+
return mask #.permute(0,3,1,2)
|
| 186 |
+
elif self.mask_type == 'extreme':
|
| 187 |
+
mask, t, th, w, wl = self._retrieve_box(img)
|
| 188 |
+
mask = 1. - mask
|
| 189 |
+
return mask
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
'''
|
| 193 |
+
def tf_mask_generator(s, tf_hole_range):
|
| 194 |
+
def random_mask_generator(hole_range):
|
| 195 |
+
while True:
|
| 196 |
+
yield RandomMask(s, hole_range=hole_range)
|
| 197 |
+
return tf.data.Dataset.from_generator(random_mask_generator, tf.float32, tf.TensorShape([1, s, s]), (tf_hole_range,))
|
| 198 |
+
'''
|
vipainting.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
import os
|
| 3 |
+
import argparse
|
| 4 |
+
import yaml
|
| 5 |
+
from omegaconf import OmegaConf
|
| 6 |
+
from ldm.util import instantiate_from_config, get_obj_from_str
|
| 7 |
+
import torch
|
| 8 |
+
import torchvision.transforms as transforms
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
from utils.logger import get_logger
|
| 11 |
+
from utils.mask_generator import mask_generator
|
| 12 |
+
from utils.helper import encoder_kl, clean_directory, to_img, encoder_vq, load_file
|
| 13 |
+
from ldm.guided_diffusion.h_posterior import HPosterior
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import numpy as np
|
| 16 |
+
from torchvision.transforms.functional import pil_to_tensor
|
| 17 |
+
|
| 18 |
+
def load_yaml(file_path: str) -> dict:
|
| 19 |
+
with open(file_path) as f:
|
| 20 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
| 21 |
+
return config
|
| 22 |
+
|
| 23 |
+
def save_segmentation(s, img_path, name):
|
| 24 |
+
s = s.detach().cpu().numpy().transpose(0,2,3,1)[0,:,:,None,:]
|
| 25 |
+
colorize = np.random.RandomState(1).randn(1,1,s.shape[-1],3)
|
| 26 |
+
colorize = colorize / colorize.sum(axis=2, keepdims=True)
|
| 27 |
+
s = s@colorize
|
| 28 |
+
s = s[...,0,:]
|
| 29 |
+
s = ((s+1.0)*127.5).clip(0,255).astype(np.uint8)
|
| 30 |
+
s = Image.fromarray(s)
|
| 31 |
+
s.save(os.path.join(img_path, name))
|
| 32 |
+
|
| 33 |
+
def vipaint(num, mask_web, image_queue, sampling_queue):
|
| 34 |
+
parser = argparse.ArgumentParser()
|
| 35 |
+
parser.add_argument('--inpaint_config', type=str, default='configs/inpainting/lands_config_mountain.yaml') #lsun_config, imagenet_config
|
| 36 |
+
parser.add_argument('--working_directory', type=str, default='results/')
|
| 37 |
+
parser.add_argument('--gpu', type=int, default=0)
|
| 38 |
+
parser.add_argument('--id', type=int, default=0)
|
| 39 |
+
parser.add_argument('--k_steps', type=int, default=2)
|
| 40 |
+
parser.add_argument('--case', type=str, default="random_all")
|
| 41 |
+
args = parser.parse_args()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# Device setting
|
| 45 |
+
print("================= Device setting")
|
| 46 |
+
device_str = f"cuda:{args.gpu}" if torch.cuda.is_available() else 'cpu'
|
| 47 |
+
device = torch.device(device_str)
|
| 48 |
+
|
| 49 |
+
# Load configurations
|
| 50 |
+
print("================= Load config")
|
| 51 |
+
inpaint_config = load_yaml(args.inpaint_config)
|
| 52 |
+
working_directory = args.working_directory
|
| 53 |
+
|
| 54 |
+
# Load model
|
| 55 |
+
print("================= Load model")
|
| 56 |
+
config = OmegaConf.load(inpaint_config['diffusion'])
|
| 57 |
+
vae_config = OmegaConf.load(inpaint_config['autoencoder'])
|
| 58 |
+
|
| 59 |
+
diff = instantiate_from_config(config.model)
|
| 60 |
+
diff.load_state_dict(torch.load(inpaint_config['diffusion_model'],
|
| 61 |
+
map_location='cpu')["state_dict"], strict=False)
|
| 62 |
+
diff = diff.to(device)
|
| 63 |
+
diff.model.eval()
|
| 64 |
+
diff.first_stage_model.eval()
|
| 65 |
+
diff.eval()
|
| 66 |
+
|
| 67 |
+
# Load pre-trained autoencoder loss config
|
| 68 |
+
print("================= Load pre-trained")
|
| 69 |
+
loss_config = vae_config['model']['params']['lossconfig']
|
| 70 |
+
vae_loss = get_obj_from_str(inpaint_config['name'],
|
| 71 |
+
reload=False)(**loss_config.get("params", dict()))
|
| 72 |
+
|
| 73 |
+
# Load test data
|
| 74 |
+
print("================= Load test data")
|
| 75 |
+
if os.path.exists(inpaint_config['data']['file_name']):
|
| 76 |
+
dataset = np.load(inpaint_config['data']['file_name'])
|
| 77 |
+
loader = torch.utils.data.DataLoader(dataset= dataset, batch_size=1)
|
| 78 |
+
|
| 79 |
+
# Working directory
|
| 80 |
+
print("================= working directory")
|
| 81 |
+
out_path = working_directory
|
| 82 |
+
os.makedirs(out_path, exist_ok=True)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
#mask = torch.tensor(np.load("masks/mask_" + str(args.id) + ".npy")).to(device)
|
| 86 |
+
posterior = inpaint_config['posterior']
|
| 87 |
+
if args.k_steps == 1:
|
| 88 |
+
posterior = "gauss"
|
| 89 |
+
t_steps_hierarchy = [400]
|
| 90 |
+
else :
|
| 91 |
+
posterior = "hierarchical"
|
| 92 |
+
if args.k_steps == 2: t_steps_hierarchy = [inpaint_config[posterior]['t_steps_hierarchy'][0],
|
| 93 |
+
inpaint_config[posterior]['t_steps_hierarchy'][-1]]
|
| 94 |
+
elif args.k_steps == 4: t_steps_hierarchy = inpaint_config[posterior]['t_steps_hierarchy'] # [550, 500, 450, 400]
|
| 95 |
+
elif args.k_steps == 6: t_steps_hierarchy = [650, 600, 550, 500, 450, 400]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
# Prepare VI method
|
| 99 |
+
print("=================== Prepare VI method")
|
| 100 |
+
h_inpainter = HPosterior(diff, vae_loss,
|
| 101 |
+
eta = inpaint_config[posterior]["eta"],
|
| 102 |
+
z0_size = inpaint_config["data"]["latent_size"],
|
| 103 |
+
img_size = inpaint_config["data"]["image_size"],
|
| 104 |
+
latent_channels = inpaint_config["data"]["latent_channels"],
|
| 105 |
+
first_stage=inpaint_config[posterior]["first_stage"],
|
| 106 |
+
t_steps_hierarchy=t_steps_hierarchy, #inpaint_config[posterior]['t_steps_hierarchy'],
|
| 107 |
+
posterior = inpaint_config['posterior'], image_queue = image_queue,
|
| 108 |
+
sampling_queue = sampling_queue)
|
| 109 |
+
|
| 110 |
+
h_inpainter.descretize(inpaint_config[posterior]['rho'])
|
| 111 |
+
|
| 112 |
+
x_size = inpaint_config['mask_opt']['image_size']
|
| 113 |
+
channels = inpaint_config['data']['channels']
|
| 114 |
+
|
| 115 |
+
# Do Inference
|
| 116 |
+
print("=================== Do Inference")
|
| 117 |
+
imgs = [num]
|
| 118 |
+
for i, random_num in enumerate(imgs):
|
| 119 |
+
img_path = os.path.join(out_path, str(random_num) ) # +str(args.k_steps) + "_h" #"Loss-ablation"
|
| 120 |
+
for img_dir in ['progress', 'params', 'mus']:
|
| 121 |
+
sub_dir = os.path.join(img_path, img_dir)
|
| 122 |
+
os.makedirs(sub_dir, exist_ok=True)
|
| 123 |
+
|
| 124 |
+
bs = inpaint_config[posterior]["batch_size"]
|
| 125 |
+
|
| 126 |
+
batch_size = bs
|
| 127 |
+
channels = 182
|
| 128 |
+
# For conditional models
|
| 129 |
+
segmentation = loader.dataset["segmentation"][random_num]
|
| 130 |
+
if inpaint_config["conditional_model"] :
|
| 131 |
+
segment_c = torch.tensor(segmentation.transpose(2,0,1)[None]).to(dtype=torch.float32, device=diff.device)
|
| 132 |
+
segment_c = segment_c.repeat(batch_size, 1, 1, 1)
|
| 133 |
+
uc = diff.get_learned_conditioning(
|
| 134 |
+
{diff.cond_stage_key: segment_c.to(diff.device)}['segmentation']
|
| 135 |
+
).detach()
|
| 136 |
+
|
| 137 |
+
#Get Image/Labels
|
| 138 |
+
print("==================== get image/labels")
|
| 139 |
+
#Get Image/Labels
|
| 140 |
+
if len(loader.dataset) ==2:
|
| 141 |
+
ref_img = loader.dataset["images"][random_num] #512, 512, 3
|
| 142 |
+
ref_img = torch.tensor(ref_img[None]).to(dtype=torch.float32, device=diff.device)
|
| 143 |
+
print(f"ref_img {ref_img.shape}") #1, 512, 512, 3
|
| 144 |
+
ref_img = ref_img/127.5 - 1
|
| 145 |
+
|
| 146 |
+
label = torch.tensor(segmentation.transpose(2,0,1)[None]).to(dtype=torch.float32, device=diff.device)
|
| 147 |
+
save_segmentation(label, img_path, 'input.png')
|
| 148 |
+
label = label.repeat(batch_size, 1, 1, 1) # Now shape is [batch_size, 182, 128, 128]
|
| 149 |
+
xc = torch.tensor(label)
|
| 150 |
+
c = diff.get_learned_conditioning({diff.cond_stage_key: xc}['segmentation']).detach()
|
| 151 |
+
else:
|
| 152 |
+
ref_img = loader.dataset[random_num].reshape(1,x_size,x_size,channels)
|
| 153 |
+
c = None
|
| 154 |
+
uc = None
|
| 155 |
+
|
| 156 |
+
ref_img = torch.tensor(ref_img).to(device)
|
| 157 |
+
|
| 158 |
+
# #Get mask
|
| 159 |
+
mask_tensor = torch.tensor(mask_web).to(device)
|
| 160 |
+
mask_tensor = mask_tensor.float() / 255.0 # Convert to float and normalize to [0, 1]
|
| 161 |
+
ref_img = torch.permute(ref_img, (0,3,1,2))
|
| 162 |
+
y = torch.Tensor.repeat(mask_tensor*ref_img, [bs,1,1,1]).float()
|
| 163 |
+
|
| 164 |
+
if inpaint_config[posterior]["first_stage"] == "kl":
|
| 165 |
+
y_encoded = encoder_kl(diff, y)[0]
|
| 166 |
+
else:
|
| 167 |
+
y_encoded = encoder_vq(diff, y)
|
| 168 |
+
|
| 169 |
+
# print(f"shape {ref_img.shape} {mask.shape}")
|
| 170 |
+
plt.imsave(os.path.join(img_path, 'true.png'), to_img(ref_img).astype(np.uint8)[0])
|
| 171 |
+
plt.imsave(os.path.join(img_path, 'observed.png'), to_img(y).astype(np.uint8)[0])
|
| 172 |
+
|
| 173 |
+
lambda_ = h_inpainter.init(y_encoded, inpaint_config["init"]["var_scale"],
|
| 174 |
+
inpaint_config[posterior]["mean_scale"], inpaint_config["init"]["prior_scale"],
|
| 175 |
+
inpaint_config[posterior]["mean_scale_top"])
|
| 176 |
+
# Fit posterior once
|
| 177 |
+
print("============ fit posterior once")
|
| 178 |
+
torch.cuda.empty_cache()
|
| 179 |
+
h_inpainter.fit(lambda_ = lambda_, cond=c, shape = (bs, *y_encoded.shape[1:]),
|
| 180 |
+
quantize_denoised=False, mask_pixel = mask_tensor, y =y,
|
| 181 |
+
log_every_t=25, iterations = inpaint_config[posterior]['iterations'],
|
| 182 |
+
unconditional_guidance_scale= inpaint_config[posterior]["unconditional_guidance_scale"] ,
|
| 183 |
+
unconditional_conditioning=uc, kl_weight_1=inpaint_config[posterior]["beta_1"],
|
| 184 |
+
kl_weight_2 = inpaint_config[posterior]["beta_2"],
|
| 185 |
+
debug=True, wdb = False,
|
| 186 |
+
dir_name = img_path,
|
| 187 |
+
batch_size = bs,
|
| 188 |
+
lr_init_gamma = inpaint_config[posterior]["lr_init_gamma"],
|
| 189 |
+
recon_weight = inpaint_config[posterior]["recon"],
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# Load parameters and sample
|
| 193 |
+
print("============= load parameters and sample")
|
| 194 |
+
params_path = os.path.join(img_path, 'params', f'{inpaint_config[posterior]["iterations"]}.pt') #, j+1
|
| 195 |
+
[mu, logvar, gamma] = torch.load(params_path)
|
| 196 |
+
|
| 197 |
+
h_inpainter.sample(inpaint_config["sampling"]["scale"], inpaint_config[posterior]["eta"],
|
| 198 |
+
mu.cuda(), logvar.cuda(), gamma.cuda(), mask_tensor, y,
|
| 199 |
+
n_samples=inpaint_config["sampling"]["n_samples"],
|
| 200 |
+
batch_size = bs, dir_name= img_path, cond=c,
|
| 201 |
+
unconditional_conditioning=uc,
|
| 202 |
+
unconditional_guidance_scale=inpaint_config["sampling"]["unconditional_guidance_scale"],
|
| 203 |
+
samples_iteration=inpaint_config[posterior]["iterations"])
|