Spaces:
Sleeping
Sleeping
ldm
Browse files- ldm/lr_scheduler.py +99 -0
ldm/lr_scheduler.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class LambdaWarmUpCosineScheduler:
|
| 5 |
+
"""
|
| 6 |
+
note: use with a base_lr of 1.0
|
| 7 |
+
"""
|
| 8 |
+
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
| 9 |
+
self.lr_warm_up_steps = warm_up_steps
|
| 10 |
+
self.lr_start = lr_start
|
| 11 |
+
self.lr_min = lr_min
|
| 12 |
+
self.lr_max = lr_max
|
| 13 |
+
self.lr_max_decay_steps = max_decay_steps
|
| 14 |
+
self.last_lr = 0.
|
| 15 |
+
self.verbosity_interval = verbosity_interval
|
| 16 |
+
|
| 17 |
+
def schedule(self, n, **kwargs):
|
| 18 |
+
if self.verbosity_interval > 0:
|
| 19 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
| 20 |
+
if n < self.lr_warm_up_steps:
|
| 21 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
| 22 |
+
self.last_lr = lr
|
| 23 |
+
return lr
|
| 24 |
+
else:
|
| 25 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
| 26 |
+
t = min(t, 1.0)
|
| 27 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
| 28 |
+
1 + np.cos(t * np.pi))
|
| 29 |
+
self.last_lr = lr
|
| 30 |
+
return lr
|
| 31 |
+
|
| 32 |
+
def __call__(self, n, **kwargs):
|
| 33 |
+
return self.schedule(n,**kwargs)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class LambdaWarmUpCosineScheduler2:
|
| 37 |
+
"""
|
| 38 |
+
supports repeated iterations, configurable via lists
|
| 39 |
+
note: use with a base_lr of 1.0.
|
| 40 |
+
"""
|
| 41 |
+
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
| 42 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
| 43 |
+
self.lr_warm_up_steps = warm_up_steps
|
| 44 |
+
self.lr_warm_up_steps =[1000]
|
| 45 |
+
self.f_start = f_start
|
| 46 |
+
self.f_min = f_min
|
| 47 |
+
self.f_max = f_max
|
| 48 |
+
self.cycle_lengths = cycle_lengths
|
| 49 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
| 50 |
+
self.last_f = 0.
|
| 51 |
+
self.verbosity_interval = verbosity_interval
|
| 52 |
+
|
| 53 |
+
def find_in_interval(self, n):
|
| 54 |
+
interval = 0
|
| 55 |
+
for cl in self.cum_cycles[1:]:
|
| 56 |
+
if n <= cl:
|
| 57 |
+
return interval
|
| 58 |
+
interval += 1
|
| 59 |
+
|
| 60 |
+
def schedule(self, n, **kwargs):
|
| 61 |
+
cycle = self.find_in_interval(n)
|
| 62 |
+
n = n - self.cum_cycles[cycle]
|
| 63 |
+
if self.verbosity_interval > 0:
|
| 64 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
| 65 |
+
f"current cycle {cycle}")
|
| 66 |
+
if n < self.lr_warm_up_steps[cycle]:
|
| 67 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
| 68 |
+
self.last_f = f
|
| 69 |
+
return f
|
| 70 |
+
else:
|
| 71 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
| 72 |
+
t = min(t, 1.0)
|
| 73 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
| 74 |
+
1 + np.cos(t * np.pi))
|
| 75 |
+
self.last_f = f
|
| 76 |
+
return f
|
| 77 |
+
|
| 78 |
+
def __call__(self, n, **kwargs):
|
| 79 |
+
return self.schedule(n, **kwargs)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
| 83 |
+
|
| 84 |
+
def schedule(self, n, **kwargs):
|
| 85 |
+
cycle = self.find_in_interval(n)
|
| 86 |
+
n = n - self.cum_cycles[cycle]
|
| 87 |
+
if self.verbosity_interval > 0:
|
| 88 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
| 89 |
+
f"current cycle {cycle}")
|
| 90 |
+
|
| 91 |
+
if n < self.lr_warm_up_steps[cycle]:
|
| 92 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
| 93 |
+
self.last_f = f
|
| 94 |
+
return f
|
| 95 |
+
else:
|
| 96 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
| 97 |
+
self.last_f = f
|
| 98 |
+
return f
|
| 99 |
+
|