JiminHeo commited on
Commit
0078e7b
·
1 Parent(s): 2cc1551
Files changed (1) hide show
  1. ldm/lr_scheduler.py +99 -0
ldm/lr_scheduler.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.lr_warm_up_steps =[1000]
45
+ self.f_start = f_start
46
+ self.f_min = f_min
47
+ self.f_max = f_max
48
+ self.cycle_lengths = cycle_lengths
49
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
50
+ self.last_f = 0.
51
+ self.verbosity_interval = verbosity_interval
52
+
53
+ def find_in_interval(self, n):
54
+ interval = 0
55
+ for cl in self.cum_cycles[1:]:
56
+ if n <= cl:
57
+ return interval
58
+ interval += 1
59
+
60
+ def schedule(self, n, **kwargs):
61
+ cycle = self.find_in_interval(n)
62
+ n = n - self.cum_cycles[cycle]
63
+ if self.verbosity_interval > 0:
64
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
65
+ f"current cycle {cycle}")
66
+ if n < self.lr_warm_up_steps[cycle]:
67
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
68
+ self.last_f = f
69
+ return f
70
+ else:
71
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
72
+ t = min(t, 1.0)
73
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
74
+ 1 + np.cos(t * np.pi))
75
+ self.last_f = f
76
+ return f
77
+
78
+ def __call__(self, n, **kwargs):
79
+ return self.schedule(n, **kwargs)
80
+
81
+
82
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
83
+
84
+ def schedule(self, n, **kwargs):
85
+ cycle = self.find_in_interval(n)
86
+ n = n - self.cum_cycles[cycle]
87
+ if self.verbosity_interval > 0:
88
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
89
+ f"current cycle {cycle}")
90
+
91
+ if n < self.lr_warm_up_steps[cycle]:
92
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
93
+ self.last_f = f
94
+ return f
95
+ else:
96
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
97
+ self.last_f = f
98
+ return f
99
+