Spaces:
Sleeping
Sleeping
File size: 9,716 Bytes
33bcb61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from functools import partial
import os
import argparse
import yaml
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config, get_obj_from_str
import torch
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from utils.logger import get_logger
from utils.mask_generator import mask_generator
from utils.helper import encoder_kl, clean_directory, to_img, encoder_vq, load_file
from ldm.guided_diffusion.h_posterior import HPosterior
from PIL import Image
import numpy as np
from torchvision.transforms.functional import pil_to_tensor
def load_yaml(file_path: str) -> dict:
with open(file_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
return config
def save_segmentation(s, img_path, name):
s = s.detach().cpu().numpy().transpose(0,2,3,1)[0,:,:,None,:]
colorize = np.random.RandomState(1).randn(1,1,s.shape[-1],3)
colorize = colorize / colorize.sum(axis=2, keepdims=True)
s = s@colorize
s = s[...,0,:]
s = ((s+1.0)*127.5).clip(0,255).astype(np.uint8)
s = Image.fromarray(s)
s.save(os.path.join(img_path, name))
def vipaint(num, mask_web, image_queue, sampling_queue):
parser = argparse.ArgumentParser()
parser.add_argument('--inpaint_config', type=str, default='configs/inpainting/lands_config_mountain.yaml') #lsun_config, imagenet_config
parser.add_argument('--working_directory', type=str, default='results/')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--id', type=int, default=0)
parser.add_argument('--k_steps', type=int, default=2)
parser.add_argument('--case', type=str, default="random_all")
args = parser.parse_args()
# Device setting
print("================= Device setting")
device_str = f"cuda:{args.gpu}" if torch.cuda.is_available() else 'cpu'
device = torch.device(device_str)
# Load configurations
print("================= Load config")
inpaint_config = load_yaml(args.inpaint_config)
working_directory = args.working_directory
# Load model
print("================= Load model")
config = OmegaConf.load(inpaint_config['diffusion'])
vae_config = OmegaConf.load(inpaint_config['autoencoder'])
diff = instantiate_from_config(config.model)
diff.load_state_dict(torch.load(inpaint_config['diffusion_model'],
map_location='cpu')["state_dict"], strict=False)
diff = diff.to(device)
diff.model.eval()
diff.first_stage_model.eval()
diff.eval()
# Load pre-trained autoencoder loss config
print("================= Load pre-trained")
loss_config = vae_config['model']['params']['lossconfig']
vae_loss = get_obj_from_str(inpaint_config['name'],
reload=False)(**loss_config.get("params", dict()))
# Load test data
print("================= Load test data")
if os.path.exists(inpaint_config['data']['file_name']):
dataset = np.load(inpaint_config['data']['file_name'])
loader = torch.utils.data.DataLoader(dataset= dataset, batch_size=1)
# Working directory
print("================= working directory")
out_path = working_directory
os.makedirs(out_path, exist_ok=True)
#mask = torch.tensor(np.load("masks/mask_" + str(args.id) + ".npy")).to(device)
posterior = inpaint_config['posterior']
if args.k_steps == 1:
posterior = "gauss"
t_steps_hierarchy = [400]
else :
posterior = "hierarchical"
if args.k_steps == 2: t_steps_hierarchy = [inpaint_config[posterior]['t_steps_hierarchy'][0],
inpaint_config[posterior]['t_steps_hierarchy'][-1]]
elif args.k_steps == 4: t_steps_hierarchy = inpaint_config[posterior]['t_steps_hierarchy'] # [550, 500, 450, 400]
elif args.k_steps == 6: t_steps_hierarchy = [650, 600, 550, 500, 450, 400]
# Prepare VI method
print("=================== Prepare VI method")
h_inpainter = HPosterior(diff, vae_loss,
eta = inpaint_config[posterior]["eta"],
z0_size = inpaint_config["data"]["latent_size"],
img_size = inpaint_config["data"]["image_size"],
latent_channels = inpaint_config["data"]["latent_channels"],
first_stage=inpaint_config[posterior]["first_stage"],
t_steps_hierarchy=t_steps_hierarchy, #inpaint_config[posterior]['t_steps_hierarchy'],
posterior = inpaint_config['posterior'], image_queue = image_queue,
sampling_queue = sampling_queue)
h_inpainter.descretize(inpaint_config[posterior]['rho'])
x_size = inpaint_config['mask_opt']['image_size']
channels = inpaint_config['data']['channels']
# Do Inference
print("=================== Do Inference")
imgs = [num]
for i, random_num in enumerate(imgs):
img_path = os.path.join(out_path, str(random_num) ) # +str(args.k_steps) + "_h" #"Loss-ablation"
for img_dir in ['progress', 'params', 'mus']:
sub_dir = os.path.join(img_path, img_dir)
os.makedirs(sub_dir, exist_ok=True)
bs = inpaint_config[posterior]["batch_size"]
batch_size = bs
channels = 182
# For conditional models
segmentation = loader.dataset["segmentation"][random_num]
if inpaint_config["conditional_model"] :
segment_c = torch.tensor(segmentation.transpose(2,0,1)[None]).to(dtype=torch.float32, device=diff.device)
segment_c = segment_c.repeat(batch_size, 1, 1, 1)
uc = diff.get_learned_conditioning(
{diff.cond_stage_key: segment_c.to(diff.device)}['segmentation']
).detach()
#Get Image/Labels
print("==================== get image/labels")
#Get Image/Labels
if len(loader.dataset) ==2:
ref_img = loader.dataset["images"][random_num] #512, 512, 3
ref_img = torch.tensor(ref_img[None]).to(dtype=torch.float32, device=diff.device)
print(f"ref_img {ref_img.shape}") #1, 512, 512, 3
ref_img = ref_img/127.5 - 1
label = torch.tensor(segmentation.transpose(2,0,1)[None]).to(dtype=torch.float32, device=diff.device)
save_segmentation(label, img_path, 'input.png')
label = label.repeat(batch_size, 1, 1, 1) # Now shape is [batch_size, 182, 128, 128]
xc = torch.tensor(label)
c = diff.get_learned_conditioning({diff.cond_stage_key: xc}['segmentation']).detach()
else:
ref_img = loader.dataset[random_num].reshape(1,x_size,x_size,channels)
c = None
uc = None
ref_img = torch.tensor(ref_img).to(device)
# #Get mask
mask_tensor = torch.tensor(mask_web).to(device)
mask_tensor = mask_tensor.float() / 255.0 # Convert to float and normalize to [0, 1]
ref_img = torch.permute(ref_img, (0,3,1,2))
y = torch.Tensor.repeat(mask_tensor*ref_img, [bs,1,1,1]).float()
if inpaint_config[posterior]["first_stage"] == "kl":
y_encoded = encoder_kl(diff, y)[0]
else:
y_encoded = encoder_vq(diff, y)
# print(f"shape {ref_img.shape} {mask.shape}")
plt.imsave(os.path.join(img_path, 'true.png'), to_img(ref_img).astype(np.uint8)[0])
plt.imsave(os.path.join(img_path, 'observed.png'), to_img(y).astype(np.uint8)[0])
lambda_ = h_inpainter.init(y_encoded, inpaint_config["init"]["var_scale"],
inpaint_config[posterior]["mean_scale"], inpaint_config["init"]["prior_scale"],
inpaint_config[posterior]["mean_scale_top"])
# Fit posterior once
print("============ fit posterior once")
torch.cuda.empty_cache()
h_inpainter.fit(lambda_ = lambda_, cond=c, shape = (bs, *y_encoded.shape[1:]),
quantize_denoised=False, mask_pixel = mask_tensor, y =y,
log_every_t=25, iterations = inpaint_config[posterior]['iterations'],
unconditional_guidance_scale= inpaint_config[posterior]["unconditional_guidance_scale"] ,
unconditional_conditioning=uc, kl_weight_1=inpaint_config[posterior]["beta_1"],
kl_weight_2 = inpaint_config[posterior]["beta_2"],
debug=True, wdb = False,
dir_name = img_path,
batch_size = bs,
lr_init_gamma = inpaint_config[posterior]["lr_init_gamma"],
recon_weight = inpaint_config[posterior]["recon"],
)
# Load parameters and sample
print("============= load parameters and sample")
params_path = os.path.join(img_path, 'params', f'{inpaint_config[posterior]["iterations"]}.pt') #, j+1
[mu, logvar, gamma] = torch.load(params_path)
h_inpainter.sample(inpaint_config["sampling"]["scale"], inpaint_config[posterior]["eta"],
mu.cuda(), logvar.cuda(), gamma.cuda(), mask_tensor, y,
n_samples=inpaint_config["sampling"]["n_samples"],
batch_size = bs, dir_name= img_path, cond=c,
unconditional_conditioning=uc,
unconditional_guidance_scale=inpaint_config["sampling"]["unconditional_guidance_scale"],
samples_iteration=inpaint_config[posterior]["iterations"]) |