File size: 9,716 Bytes
33bcb61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from functools import partial
import os
import argparse
import yaml
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config, get_obj_from_str
import torch
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from utils.logger import get_logger
from utils.mask_generator import mask_generator
from utils.helper import encoder_kl, clean_directory, to_img, encoder_vq, load_file
from ldm.guided_diffusion.h_posterior import HPosterior
from PIL import Image
import numpy as np 
from torchvision.transforms.functional import pil_to_tensor

def load_yaml(file_path: str) -> dict:
    with open(file_path) as f:
        config = yaml.load(f, Loader=yaml.FullLoader)
    return config

def save_segmentation(s, img_path, name):
  s = s.detach().cpu().numpy().transpose(0,2,3,1)[0,:,:,None,:]
  colorize = np.random.RandomState(1).randn(1,1,s.shape[-1],3)
  colorize = colorize / colorize.sum(axis=2, keepdims=True)
  s = s@colorize
  s = s[...,0,:]
  s = ((s+1.0)*127.5).clip(0,255).astype(np.uint8)
  s = Image.fromarray(s)
  s.save(os.path.join(img_path, name))

def vipaint(num, mask_web, image_queue, sampling_queue):
    parser = argparse.ArgumentParser()
    parser.add_argument('--inpaint_config', type=str, default='configs/inpainting/lands_config_mountain.yaml') #lsun_config, imagenet_config
    parser.add_argument('--working_directory', type=str, default='results/')
    parser.add_argument('--gpu', type=int, default=0)
    parser.add_argument('--id', type=int, default=0)
    parser.add_argument('--k_steps', type=int, default=2)
    parser.add_argument('--case', type=str, default="random_all")
    args = parser.parse_args()
   
    
    # Device setting
    print("================= Device setting")
    device_str = f"cuda:{args.gpu}" if torch.cuda.is_available() else 'cpu'
    device = torch.device(device_str)  
    
    # Load configurations
    print("================= Load config") 
    inpaint_config = load_yaml(args.inpaint_config)
    working_directory = args.working_directory

    # Load model
    print("================= Load model") 
    config = OmegaConf.load(inpaint_config['diffusion'])
    vae_config = OmegaConf.load(inpaint_config['autoencoder'])

    diff = instantiate_from_config(config.model)
    diff.load_state_dict(torch.load(inpaint_config['diffusion_model'],
                                     map_location='cpu')["state_dict"], strict=False)    
    diff = diff.to(device)
    diff.model.eval()
    diff.first_stage_model.eval()
    diff.eval()

    # Load pre-trained autoencoder loss config
    print("================= Load pre-trained") 
    loss_config = vae_config['model']['params']['lossconfig']
    vae_loss = get_obj_from_str(inpaint_config['name'],
                                 reload=False)(**loss_config.get("params", dict()))
    
    # Load test data
    print("================= Load test data") 
    if os.path.exists(inpaint_config['data']['file_name']):
        dataset = np.load(inpaint_config['data']['file_name'])
    loader = torch.utils.data.DataLoader(dataset= dataset, batch_size=1)

    # Working directory
    print("================= working directory") 
    out_path = working_directory 
    os.makedirs(out_path, exist_ok=True)
        

    #mask = torch.tensor(np.load("masks/mask_" + str(args.id) + ".npy")).to(device)
    posterior = inpaint_config['posterior']
    if args.k_steps == 1: 
        posterior = "gauss"
        t_steps_hierarchy = [400]
    else : 
        posterior = "hierarchical"
        if args.k_steps == 2: t_steps_hierarchy = [inpaint_config[posterior]['t_steps_hierarchy'][0], 
                                                   inpaint_config[posterior]['t_steps_hierarchy'][-1]]
        elif args.k_steps == 4: t_steps_hierarchy = inpaint_config[posterior]['t_steps_hierarchy'] # [550, 500, 450, 400]
        elif args.k_steps == 6: t_steps_hierarchy = [650, 600, 550, 500, 450, 400]

        
    # Prepare VI method
    print("=================== Prepare VI method")
    h_inpainter = HPosterior(diff, vae_loss, 
                             eta = inpaint_config[posterior]["eta"],
                             z0_size = inpaint_config["data"]["latent_size"],
                             img_size = inpaint_config["data"]["image_size"],
                             latent_channels = inpaint_config["data"]["latent_channels"],
                             first_stage=inpaint_config[posterior]["first_stage"],
                             t_steps_hierarchy=t_steps_hierarchy, #inpaint_config[posterior]['t_steps_hierarchy'],
                             posterior = inpaint_config['posterior'], image_queue = image_queue,
                             sampling_queue = sampling_queue) 
    
    h_inpainter.descretize(inpaint_config[posterior]['rho']) 

    x_size = inpaint_config['mask_opt']['image_size']
    channels = inpaint_config['data']['channels']
    
    # Do Inference
    print("=================== Do Inference")
    imgs = [num]
    for i, random_num in enumerate(imgs):
        img_path = os.path.join(out_path, str(random_num) )  # +str(args.k_steps) + "_h" #"Loss-ablation"
        for img_dir in ['progress', 'params', 'mus']:
            sub_dir = os.path.join(img_path, img_dir)
            os.makedirs(sub_dir, exist_ok=True)

        bs = inpaint_config[posterior]["batch_size"]

        batch_size = bs
        channels = 182 
        # For conditional models
        segmentation = loader.dataset["segmentation"][random_num]
        if inpaint_config["conditional_model"] : 
            segment_c = torch.tensor(segmentation.transpose(2,0,1)[None]).to(dtype=torch.float32, device=diff.device)
            segment_c = segment_c.repeat(batch_size, 1, 1, 1)  
            uc = diff.get_learned_conditioning(
                        {diff.cond_stage_key: segment_c.to(diff.device)}['segmentation']
                        ).detach()

        #Get Image/Labels
        print("==================== get image/labels")
        #Get Image/Labels
        if len(loader.dataset) ==2: 
            ref_img = loader.dataset["images"][random_num] #512, 512, 3
            ref_img = torch.tensor(ref_img[None]).to(dtype=torch.float32, device=diff.device)
            print(f"ref_img {ref_img.shape}") #1, 512, 512, 3
            ref_img = ref_img/127.5 - 1

            label = torch.tensor(segmentation.transpose(2,0,1)[None]).to(dtype=torch.float32, device=diff.device)
            save_segmentation(label, img_path, 'input.png')
            label = label.repeat(batch_size, 1, 1, 1)  # Now shape is [batch_size, 182, 128, 128]
            xc = torch.tensor(label)
            c = diff.get_learned_conditioning({diff.cond_stage_key: xc}['segmentation']).detach()
        else:
            ref_img = loader.dataset[random_num].reshape(1,x_size,x_size,channels)
            c = None
            uc = None
        
        ref_img = torch.tensor(ref_img).to(device)

        # #Get mask
        mask_tensor = torch.tensor(mask_web).to(device)
        mask_tensor = mask_tensor.float() / 255.0  # Convert to float and normalize to [0, 1]
        ref_img = torch.permute(ref_img, (0,3,1,2)) 
        y = torch.Tensor.repeat(mask_tensor*ref_img, [bs,1,1,1]).float()
        
        if inpaint_config[posterior]["first_stage"] == "kl":
            y_encoded = encoder_kl(diff, y)[0]
        else:
            y_encoded = encoder_vq(diff, y)

        # print(f"shape {ref_img.shape} {mask.shape}")
        plt.imsave(os.path.join(img_path, 'true.png'), to_img(ref_img).astype(np.uint8)[0])
        plt.imsave(os.path.join(img_path, 'observed.png'), to_img(y).astype(np.uint8)[0])
        
        lambda_ = h_inpainter.init(y_encoded, inpaint_config["init"]["var_scale"], 
                                inpaint_config[posterior]["mean_scale"], inpaint_config["init"]["prior_scale"],
                                inpaint_config[posterior]["mean_scale_top"])
        # Fit posterior once
        print("============ fit posterior once")
        torch.cuda.empty_cache()  
        h_inpainter.fit(lambda_ = lambda_, cond=c, shape = (bs, *y_encoded.shape[1:]),
                quantize_denoised=False, mask_pixel = mask_tensor, y =y,
                log_every_t=25, iterations = inpaint_config[posterior]['iterations'],
                unconditional_guidance_scale= inpaint_config[posterior]["unconditional_guidance_scale"] ,
                unconditional_conditioning=uc, kl_weight_1=inpaint_config[posterior]["beta_1"],
                 kl_weight_2 = inpaint_config[posterior]["beta_2"],
                debug=True, wdb = False,
                dir_name = img_path,
                batch_size = bs, 
                lr_init_gamma = inpaint_config[posterior]["lr_init_gamma"],
                recon_weight = inpaint_config[posterior]["recon"], 
                )  
        
        # Load parameters and sample
        print("============= load parameters and sample") 
        params_path = os.path.join(img_path, 'params', f'{inpaint_config[posterior]["iterations"]}.pt') #, j+1
        [mu, logvar, gamma] = torch.load(params_path)
        
        h_inpainter.sample(inpaint_config["sampling"]["scale"], inpaint_config[posterior]["eta"],
                            mu.cuda(), logvar.cuda(), gamma.cuda(), mask_tensor,  y,
                            n_samples=inpaint_config["sampling"]["n_samples"], 
                            batch_size = bs, dir_name= img_path, cond=c, 
                            unconditional_conditioning=uc, 
                            unconditional_guidance_scale=inpaint_config["sampling"]["unconditional_guidance_scale"], 
                            samples_iteration=inpaint_config[posterior]["iterations"])