File size: 7,265 Bytes
c429825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

import numpy as np
from PIL import Image, ImageDraw
import math
import random
import torch
#import tensorflow as tf
np.random.seed(10)
def random_sq_bbox(img, mask_shape, image_size=256, margin=(16, 16)):
    """Generate a random sqaure mask for inpainting
    """
    B, H, W, C = img.shape
    h, w = mask_shape
    margin_height, margin_width = margin
    maxt = image_size - margin_height - h
    maxl = image_size - margin_width - w

    # bb
    t =  np.random.randint(margin_height, maxt)
    l = np.random.randint(margin_width, maxl)

    # make mask
    mask = torch.ones([B, C, H, W], device=img.device)
    mask[..., t:t+h, l:l+w] = 0
    mask = 1 - mask
    #Fixed mid box
    #mask[..., t:t+h, l:l+w] = 0
    return mask, t, t+h, l, l+w

def RandomBrush(
    max_tries,
    s,
    min_num_vertex = 4,
    max_num_vertex = 18,
    mean_angle = 2*math.pi / 5,
    angle_range = 2*math.pi / 15,
    min_width = 12,
    max_width = 48):
    H, W = s, s
    average_radius = math.sqrt(H*H+W*W) / 8
    mask = Image.new('L', (W, H), 0)
    for _ in range(np.random.randint(max_tries)):
        num_vertex = np.random.randint(min_num_vertex, max_num_vertex)
        angle_min = mean_angle - np.random.uniform(0, angle_range)
        angle_max = mean_angle + np.random.uniform(0, angle_range)
        angles = []
        vertex = []
        for i in range(num_vertex):
            if i % 2 == 0:
                angles.append(2*math.pi - np.random.uniform(angle_min, angle_max))
            else:
                angles.append(np.random.uniform(angle_min, angle_max))

        h, w = mask.size
        vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
        for i in range(num_vertex):
            r = np.clip(
                np.random.normal(loc=average_radius, scale=average_radius//2),
                0, 2*average_radius)
            new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
            new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
            vertex.append((int(new_x), int(new_y)))

        draw = ImageDraw.Draw(mask)
        width = int(np.random.uniform(min_width, max_width))
        draw.line(vertex, fill=1, width=width)
        for v in vertex:
            draw.ellipse((v[0] - width//2,
                          v[1] - width//2,
                          v[0] + width//2,
                          v[1] + width//2),
                         fill=1)
        if np.random.random() > 0.5:
            mask.transpose(Image.FLIP_LEFT_RIGHT)
        if np.random.random() > 0.5:
            mask.transpose(Image.FLIP_TOP_BOTTOM)
    mask = np.asarray(mask, np.uint8)
    if np.random.random() > 0.5:
        mask = np.flip(mask, 0)
    if np.random.random() > 0.5:
        mask = np.flip(mask, 1)
    return mask

def RandomMask(s, hole_range=[0,1]):
    coef = min(hole_range[0] + hole_range[1], 1.0)
    while True:
        mask = np.ones((s, s), np.uint8)
        def Fill(max_size):
            w, h = np.random.randint(max_size), np.random.randint(max_size)
            ww, hh = w // 2, h // 2
            x, y = np.random.randint(-ww, s - w + ww), np.random.randint(-hh, s - h + hh)
            mask[max(y, 0): min(y + h, s), max(x, 0): min(x + w, s)] = 0
        def MultiFill(max_tries, max_size):
            for _ in range(np.random.randint(max_tries)):
                Fill(max_size)
        MultiFill(int(10 * coef), s // 2)
        MultiFill(int(5 * coef), s)
        ##comment the following line for lower masking ratios
        #mask = np.logical_and(mask, 1 - RandomBrush(int(20 * coef), s))
        hole_ratio = 1 - np.mean(mask)
        if hole_range is not None and (hole_ratio <= hole_range[0] or hole_ratio >= hole_range[1]):
            continue
        return mask[np.newaxis, ...].astype(np.float32)

def BatchRandomMask(batch_size, s, hole_range=[0, 1]):
    return np.stack([RandomMask(s, hole_range=hole_range) for _ in range(batch_size)], axis = 0)

def random_rotation(shape):
    cutoff = 100 #was 30
    (n , channels, p, q) = shape
    mask = np.zeros((n,p,q))

    for i in range(n):
        angle = np.random.choice(360, 1)
        mask_one = np.ones((p+cutoff,q+cutoff))
        mask_one[int((p+cutoff)/2):,:] = 0

        im = Image.fromarray(mask_one)
        im = im.rotate(angle)

        left = (p+cutoff - p)/2
        top = (q+cutoff - q)/2
        right = (p+cutoff + p)/2
        bottom = (q+cutoff + q)/2

        # Crop the center of the image
        im = im.crop((left, top, right, bottom))

        mask[i] = np.array(im)

    #mask = np.repeat(mask.reshape([n,1,p,q]), channels, axis=1)
    mask = mask.reshape([n,1,p,q])
    return mask

class mask_generator:
    def __init__(self, mask_type, mask_len_range=None, mask_prob_range=None,
                 image_size=256, margin=(16, 16)):
        """
        (mask_len_range): given in (min, max) tuple.
        Specifies the range of box size in each dimension
        (mask_prob_range): for the case of random masking,
        specify the probability of individual pixels being masked
        """
        assert mask_type in ['box', 'random', 'half', 'extreme']
        self.mask_type = mask_type
        self.mask_len_range = mask_len_range
        self.mask_prob_range = mask_prob_range
        self.image_size = image_size
        self.margin = margin

    def _retrieve_box(self, img):
        l, h = self.mask_len_range
        l, h = int(l), int(h)
        mask_h = np.random.randint(l, h)
        mask_w = np.random.randint(l, h)
        mask, t, tl, w, wh = random_sq_bbox(img,
                              mask_shape=(mask_h, mask_w),
                              image_size=self.image_size,
                              margin=self.margin)
        return mask, t, tl, w, wh
    
    def generate_center_mask(self, shape):
        assert len(shape) == 2
        assert shape[1] % 2 == 0
        center = shape[0] // 2
        center_size = shape[0] // 4
        half_resol = center_size // 2  # for now
        ret = torch.zeros(shape, dtype=torch.float32)
        ret[
            center - half_resol: center + half_resol,
            center - half_resol: center + half_resol,
        ] = 1
        ret = ret.unsqueeze(0).unsqueeze(0)
        return ret

    def __call__(self, img):
        if self.mask_type == 'random':
            mask = BatchRandomMask(1, self.image_size, hole_range=self.mask_prob_range) #self._retrieve_random(img)
            return mask
        elif self.mask_type == "half":
            mask = random_rotation((1, 3, self.image_size, self.image_size))
        elif self.mask_type == 'box':
            #mask, t, th, w, wl = self._retrieve_box(img)
            mask = self.generate_center_mask((self.image_size,self.image_size)) # self._retrieve_box(img)
            return mask #.permute(0,3,1,2)
        elif self.mask_type == 'extreme':
            mask, t, th, w, wl = self._retrieve_box(img)
            mask = 1. - mask
            return mask


'''
def tf_mask_generator(s, tf_hole_range):
    def random_mask_generator(hole_range):
        while True:
            yield RandomMask(s, hole_range=hole_range)
    return tf.data.Dataset.from_generator(random_mask_generator, tf.float32, tf.TensorShape([1, s, s]), (tf_hole_range,))
'''