Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,81 +1,137 @@
|
|
| 1 |
import os
|
| 2 |
-
import spaces
|
| 3 |
import torch
|
|
|
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
|
|
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
# gpu
|
| 14 |
-
model = None
|
| 15 |
|
| 16 |
@spaces.GPU
|
| 17 |
-
def
|
| 18 |
-
# print(zero.device) # <-- 'cuda:0' 🤗
|
| 19 |
-
from vllm import SamplingParams, LLM
|
| 20 |
-
from transformers.utils import move_cache
|
| 21 |
-
from huggingface_hub import snapshot_download, login
|
| 22 |
-
|
| 23 |
-
global model
|
| 24 |
-
|
| 25 |
-
if model is None:
|
| 26 |
-
LLM_MODEL_ID = "DoctorSlimm/trim-music-31"
|
| 27 |
-
# LLM_MODEL_ID = "mistral-community/Mistral-7B-v0.2"
|
| 28 |
-
# LLM_MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 29 |
-
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
|
| 30 |
-
fp = snapshot_download(LLM_MODEL_ID, token=os.getenv('HF_TOKEN'), revision='main')
|
| 31 |
-
move_cache()
|
| 32 |
-
model = LLM(fp)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
multi_prompt = False
|
| 42 |
-
separator = separator.strip()
|
| 43 |
-
if separator in prompts:
|
| 44 |
-
multi_prompt = True
|
| 45 |
-
prompts = prompts.split(separator)
|
| 46 |
-
else:
|
| 47 |
-
prompts = [prompts]
|
| 48 |
-
for idx, pt in enumerate(prompts):
|
| 49 |
-
print()
|
| 50 |
-
print(f'[{idx}]:')
|
| 51 |
-
print(pt)
|
| 52 |
-
|
| 53 |
-
model_outputs = model.generate(prompts, sampling_params)
|
| 54 |
-
generations = []
|
| 55 |
-
for output in model_outputs:
|
| 56 |
-
for outputs in output.outputs:
|
| 57 |
-
generations.append(outputs.text)
|
| 58 |
-
if multi_prompt:
|
| 59 |
-
return separator.join(generations)
|
| 60 |
-
return generations[0]
|
| 61 |
|
| 62 |
|
| 63 |
## make predictions via api ##
|
| 64 |
# https://www.gradio.app/guides/getting-started-with-the-python-client#connecting-a-general-gradio-app
|
| 65 |
|
| 66 |
demo = gr.Interface(
|
| 67 |
-
fn=
|
| 68 |
-
inputs=[
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import spaces
|
| 4 |
import gradio as gr
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers.utils import move_cache
|
| 7 |
+
from huggingface_hub import snapshot_download
|
| 8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 9 |
+
|
| 10 |
|
| 11 |
+
# Load the model and processor
|
| 12 |
|
| 13 |
+
MODEL_PATH = "THUDM/cogvlm2-llama3-chat-19B"
|
| 14 |
|
| 15 |
+
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
|
| 16 |
+
MODEL_PATH = snapshot_download(MODEL_PATH)
|
| 17 |
+
move_cache()
|
| 18 |
|
| 19 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 20 |
+
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
|
| 21 |
+
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 23 |
+
MODEL_PATH,
|
| 24 |
+
trust_remote_code=True
|
| 25 |
+
)
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
MODEL_PATH,
|
| 28 |
+
torch_dtype=TORCH_TYPE,
|
| 29 |
+
trust_remote_code=True,
|
| 30 |
+
).to(DEVICE).eval()
|
| 31 |
|
|
|
|
|
|
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
+
def generate_caption(image, prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
# Process the image and the prompt
|
| 37 |
+
text_only_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
|
| 38 |
+
# inputs = processor(texts=[prompt], images=[image], return_tensors="pt").to('cuda') # move inputs to cuda
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
## make predictions via api ##
|
| 46 |
# https://www.gradio.app/guides/getting-started-with-the-python-client#connecting-a-general-gradio-app
|
| 47 |
|
| 48 |
demo = gr.Interface(
|
| 49 |
+
fn=generate_caption,
|
| 50 |
+
inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Prompt", value="Describe the image in great detail")],
|
| 51 |
+
outputs=gr.Textbox(label="Generated Caption"),
|
| 52 |
+
description=description
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Launch the interface
|
| 56 |
+
demo.launch(share=True)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
####### ML CODE #######
|
| 61 |
+
import torch
|
| 62 |
+
from PIL import Image
|
| 63 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 64 |
+
|
| 65 |
+
MODEL_PATH = "THUDM/cogvlm2-llama3-chat-19B"
|
| 66 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 67 |
+
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
|
| 68 |
+
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 70 |
+
MODEL_PATH,
|
| 71 |
+
trust_remote_code=True
|
| 72 |
)
|
| 73 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 74 |
+
MODEL_PATH,
|
| 75 |
+
torch_dtype=TORCH_TYPE,
|
| 76 |
+
trust_remote_code=True,
|
| 77 |
+
).to(DEVICE).eval()
|
| 78 |
+
|
| 79 |
+
text_only_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
|
| 80 |
+
|
| 81 |
+
while True:
|
| 82 |
+
image_path = input("image path >>>>> ")
|
| 83 |
+
if image_path == '':
|
| 84 |
+
print('You did not enter image path, the following will be a plain text conversation.')
|
| 85 |
+
image = None
|
| 86 |
+
text_only_first_query = True
|
| 87 |
+
else:
|
| 88 |
+
image = Image.open(image_path).convert('RGB')
|
| 89 |
+
|
| 90 |
+
history = []
|
| 91 |
+
|
| 92 |
+
while True:
|
| 93 |
+
query = input("Human:")
|
| 94 |
+
if query == "clear":
|
| 95 |
+
break
|
| 96 |
+
|
| 97 |
+
if image is None:
|
| 98 |
+
if text_only_first_query:
|
| 99 |
+
query = text_only_template.format(query)
|
| 100 |
+
text_only_first_query = False
|
| 101 |
+
else:
|
| 102 |
+
old_prompt = ''
|
| 103 |
+
for _, (old_query, response) in enumerate(history):
|
| 104 |
+
old_prompt += old_query + " " + response + "\n"
|
| 105 |
+
query = old_prompt + "USER: {} ASSISTANT:".format(query)
|
| 106 |
+
if image is None:
|
| 107 |
+
input_by_model = model.build_conversation_input_ids(
|
| 108 |
+
tokenizer,
|
| 109 |
+
query=query,
|
| 110 |
+
history=history,
|
| 111 |
+
template_version='chat'
|
| 112 |
+
)
|
| 113 |
+
else:
|
| 114 |
+
input_by_model = model.build_conversation_input_ids(
|
| 115 |
+
tokenizer,
|
| 116 |
+
query=query,
|
| 117 |
+
history=history,
|
| 118 |
+
images=[image],
|
| 119 |
+
template_version='chat'
|
| 120 |
+
)
|
| 121 |
+
inputs = {
|
| 122 |
+
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
|
| 123 |
+
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
|
| 124 |
+
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
|
| 125 |
+
'images': [[input_by_model['images'][0].to(DEVICE).to(TORCH_TYPE)]] if image is not None else None,
|
| 126 |
+
}
|
| 127 |
+
gen_kwargs = {
|
| 128 |
+
"max_new_tokens": 2048,
|
| 129 |
+
"pad_token_id": 128002,
|
| 130 |
+
}
|
| 131 |
+
with torch.no_grad():
|
| 132 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
| 133 |
+
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
| 134 |
+
response = tokenizer.decode(outputs[0])
|
| 135 |
+
response = response.split("<|end_of_text|>")[0]
|
| 136 |
+
print("\nCogVLM2:", response)
|
| 137 |
+
history.append((query, response))
|