Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -266,48 +266,58 @@ class PodcastGenerator:
|
|
266 |
base_url="https://api.sambanova.ai/v1",
|
267 |
)
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
# 嘗試解析JSON,如果失敗則嘗試從原始文本中提取對話
|
313 |
try:
|
@@ -520,12 +530,6 @@ async def process_input(input_text: str, input_file, language: str, speaker1: st
|
|
520 |
gr.Error(f"Selected voices may not be compatible with the chosen language: {language}")
|
521 |
return None
|
522 |
|
523 |
-
# Check input text length
|
524 |
-
max_input_length = 1000 # Adjust this value as needed
|
525 |
-
if len(input_text) > max_input_length:
|
526 |
-
gr.Error(f"Input text is too long. Please limit your input to {max_input_length} characters.")
|
527 |
-
return None
|
528 |
-
|
529 |
# 如果提供了輸入檔案,則從檔案中提取文字
|
530 |
if input_file:
|
531 |
input_text = await TextExtractor.extract_text(input_file.name)
|
|
|
266 |
base_url="https://api.sambanova.ai/v1",
|
267 |
)
|
268 |
|
269 |
+
async def generate_chunk(chunk: str) -> str:
|
270 |
+
try:
|
271 |
+
# Calculate the available tokens for generation
|
272 |
+
prompt_tokens = len(chunk.split()) # This is a rough estimate
|
273 |
+
system_tokens = len(system_prompt.split()) # This is a rough estimate
|
274 |
+
max_tokens = 4096 - prompt_tokens - system_tokens - 100 # 100 is a safety margin
|
275 |
+
|
276 |
+
if max_tokens <= 0:
|
277 |
+
return {"error": "Input chunk is too long. Please provide a shorter prompt."}
|
278 |
+
|
279 |
+
logger.info(f"Sending request to SambaNova API with prompt chunk: {chunk[:100]}...")
|
280 |
+
response = client.chat.completions.create(
|
281 |
+
model='Meta-Llama-3.1-405B-Instruct',
|
282 |
+
messages=[
|
283 |
+
{"role": "system", "content": system_prompt},
|
284 |
+
{"role": "user", "content": chunk}
|
285 |
+
],
|
286 |
+
temperature=1,
|
287 |
+
max_tokens=max_tokens
|
288 |
+
)
|
289 |
+
logger.info(f"Received response from API: {response}")
|
290 |
+
|
291 |
+
if hasattr(response, 'error'):
|
292 |
+
logger.error(f"API returned an error: {response.error}")
|
293 |
+
return {"error": f"API error: {response.error.get('message', 'Unknown error')}"}
|
294 |
+
|
295 |
+
if response.choices and len(response.choices) > 0:
|
296 |
+
generated_text = response.choices[0].message.content
|
297 |
+
logger.info(f"Generated text: {generated_text[:100]}...")
|
298 |
+
return generated_text
|
299 |
+
else:
|
300 |
+
logger.warning("No content generated from the API")
|
301 |
+
return {"error": "No content generated from the API"}
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
logger.error(f"Error generating script chunk: {str(e)}")
|
305 |
+
return {"error": f"Failed to generate podcast script chunk: {str(e)}"}
|
306 |
+
|
307 |
+
# Split the prompt into chunks
|
308 |
+
chunk_size = 1000 # Adjust this value as needed
|
309 |
+
chunks = [prompt[i:i+chunk_size] for i in range(0, len(prompt), chunk_size)]
|
310 |
+
|
311 |
+
# Generate script for each chunk
|
312 |
+
generated_chunks = []
|
313 |
+
for chunk in chunks:
|
314 |
+
result = await generate_chunk(chunk)
|
315 |
+
if isinstance(result, dict) and "error" in result:
|
316 |
+
return result
|
317 |
+
generated_chunks.append(result)
|
318 |
+
|
319 |
+
# Combine generated chunks
|
320 |
+
generated_text = " ".join(generated_chunks)
|
321 |
|
322 |
# 嘗試解析JSON,如果失敗則嘗試從原始文本中提取對話
|
323 |
try:
|
|
|
530 |
gr.Error(f"Selected voices may not be compatible with the chosen language: {language}")
|
531 |
return None
|
532 |
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
# 如果提供了輸入檔案,則從檔案中提取文字
|
534 |
if input_file:
|
535 |
input_text = await TextExtractor.extract_text(input_file.name)
|