# -*- coding: utf-8 -*- # 財政部財政資訊中心 江信宗 import os from dotenv import load_dotenv load_dotenv() import gradio as gr from openai import OpenAI from langchain_community.utils import user_agent from langchain_groq import ChatGroq from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain_community.document_loaders import WebBaseLoader, TextLoader from langchain.prompts import PromptTemplate from langchain.schema import Document import resend import requests import re import time def load_documents(sources): documents = [] for source in sources: try: if isinstance(source, str): if source.startswith('http'): loader = WebBaseLoader(source) else: loader = TextLoader(source) documents.extend(loader.load()) elif isinstance(source, dict): documents.append(Document(page_content=source['content'], metadata=source.get('metadata', {}))) except Exception as e: print(f"Error loading source {source}: {str(e)}") return documents sources = [ "TaxQADataSet_Slim1.txt", "TaxQADataSet_Slim2.txt", "TaxQADataSet_Slim3.txt", "TaxQADataSet_Slim4.txt", "TaxQADataSet_Slim5.txt", "TaxQADataSet_Slim6.txt", "TaxQADataSet_ntpc1.txt", "TaxQADataSet_ntpc2.txt", "TaxQADataSet_kctax.txt", "TaxQADataSet_chutax.txt", "LandTaxAct1100623.txt", "TheEnforcementRulesoftheLandTaxAct1100923.txt", "HouseTaxAct1130103.txt", "VehicleLicenseTaxAct1101230.txt", "TaxCollectionAct1101217.txt", "AmusementTaxAct960523.txt", "StampTaxAct910515.txt", "DeedTaxAct990505.txt" ] documents = load_documents(sources) print(f"\n成功載入 {len(documents)} 個檔案") text_splitter = RecursiveCharacterTextSplitter( chunk_size=512, chunk_overlap=50, length_function=len, is_separator_regex=False, separators=["\n\n\n","\n\n", "\n", "。"] ) split_docs = text_splitter.split_documents(documents) print(f"分割後的文件數量:{len(split_docs)}") embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large") print(f"\n成功初始化 Microsoft 嵌入模型") print(f"\n開始建立向量資料庫") vectorstore = Chroma.from_documents(split_docs, embeddings, persist_directory="./Knowledge-base") print(f"成功建立 Chroma 向量資料庫,共有 {len(split_docs)} 個文檔") retriever = vectorstore.as_retriever( search_type="mmr", search_kwargs={ "k": min(4, len(split_docs)), "fetch_k": min(20, len(split_docs)), "lambda_mult": 0.8 } ) print(f"檢索演算法:Maximum Marginal Relevance Retrieval") print(f"檢索文檔數量:k={min(4, len(split_docs))}, fetch_k={min(20, len(split_docs))}") template = """Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in Taiwanese Traditional Chinese. 在回答之前,請仔細分析檢索到的上下文,確保你的回答準確完整反映了上下文中的訊息,而不是依賴先前的知識,在回應的答案中絕對不要提到是根據上下文回答。 如果檢索到的多個上下文之間存在聯繫,請整合這些訊息以提供更全面的回答,但要避免過度推斷。 如果檢索到的上下文不包含足夠回答問題的訊息,請誠實的說明,不要試圖編造答案。 上下文: {context} 問題: {question} 答案:""" PROMPT = PromptTemplate( template=template, input_variables=["context", "question"] ) def create_chain(llm): return RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs={"prompt": PROMPT} ) print(f"成功建立 RAG Chain") def initialize_llm(api_key): return ChatGroq( groq_api_key=api_key, model_name='llama-3.3-70b-versatile' ) def generate_insight_questions(query, api_key): llm = initialize_llm(api_key) prompt = f"""Let's work this out in a step by step way to be sure we have the right answer. Must reply to me in "Traditional Chinese". 根據以下回答,生成3個相關的洞察問題: 原始問題: {query} 請提供3個簡短但有深度的問題,這些問題應該符合: 1. 與原始問題緊密相關 2. 準確重新描述原始問題 3. 引導更深入的解決原始問題 請直接列出這3個問題,每個問題一行,不要添加編號或其他文字。 """ try: response = llm.invoke(prompt) if hasattr(response, 'content'): questions = response.content.split('\n') else: questions = str(response).split('\n') while len(questions) < 3: questions.append("提供更多地方稅資訊") return questions[:3] except Exception as e: print(f"Error generating insight questions:{str(e)}") return ["提供更多地方稅資訊", "提供其他地方稅問題", "還想了解什麼地方稅目"] def answer_question(query, api_key): try: gr.Info("檢索地方稅知識庫中......") llm = initialize_llm(api_key) chain = create_chain(llm) result = chain.invoke({"query": query}) answer = result["result"] insight_questions = generate_insight_questions(query, api_key) while len(insight_questions) < 3: insight_questions.append("提供更多地方稅資訊") return answer, insight_questions[:3] except Exception as e: return f"抱歉,處理您的問題時發生錯誤:{str(e)}", [] def split_questions(query): questions = re.split(r'[?!。 ]', query) return [q.strip() for q in questions if q.strip()] def answer_multiple_questions(query, api_key): questions = split_questions(query) all_answers = [] all_insight_questions = [] for question in questions: answer, insight_questions = answer_question(question, api_key) if len(questions) > 1: all_answers.append(f"【問題】{question}\n答案:{answer}") else: all_answers.append(answer) all_insight_questions.extend(insight_questions) if len(questions) > 1: combined_answer = "\n\n\n".join(all_answers) else: combined_answer = "\n".join(all_answers) selected_insight_questions = all_insight_questions[:3] return combined_answer, selected_insight_questions def get_tax_law(tax_type): tax_law_dict = { "房屋稅": "房屋稅條例", "地價稅": "土地稅法", "土地增值稅": "土地稅法", "增值稅": "土地稅法", "契稅": "契稅條例", "娛樂稅": "娛樂稅法", "印花稅": "印花稅法", "使用牌照稅": "使用牌照稅法", "牌照稅": "使用牌照稅法", "稅捐稽徵法": "稅捐稽徵法", "綜合所得稅": "所得稅法", "所得稅": "所得稅法", "遺產稅": "遺產及贈與稅法", "贈與稅": "遺產及贈與稅法", "營業稅": "營業稅法" } return tax_law_dict.get(tax_type, "無稅法") def fetch_law_summary(query, tax_law, keywords): url = "https://ttc.mof.gov.tw/Api/GetData" headers = { "Content-Type": "application/x-www-form-urlencoded; charset=UTF-8", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36", "accept": "application/json, text/javascript, */*; q=0.01", "accept-encoding": "gzip, deflate, br, zstd", "accept-language": "zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7", "referer": "https://ttc.mof.gov.tw/" } gr.Info("檢索法令彙編函釋中......") version_payload = { "FunctionID": "FB10001", "ObjParams[TaxAct]": tax_law, "ObjParams[TaxVer]": "請選擇", "ObjParams[Chapter]": "請選擇", "ObjParams[Article]": "請選擇", "ObjParams[Content]": "", "ObjParams[Operator01]": "0", "ObjParams[Content01]": "", "ObjParams[Operator02]": "0", "ObjParams[Content02]": "" } try: version_response = requests.post(url, data=version_payload, headers=headers) version_response.raise_for_status() version_data = version_response.json() if version_data["Code"] == "1" and "Table1" in version_data["Data"]: latest_version = "請選擇" for item in version_data["Data"]["Table1"]: if item["TaxAct"] == tax_law: latest_version = item["TaxVer"] break if latest_version == "請選擇": print(f"未找到 {tax_law} 的對應版本,使用預設選項。") else: gr.Warning("無法獲取稅法版本資訊,使用預設選項。") latest_version = "請選擇" except Exception as e: print(f"獲取稅法版本時發生錯誤:{str(e)}") latest_version = "請選擇" all_results = [] for keyword in keywords: payload = { "FunctionID": "FB10001", "ObjParams[TaxAct]": tax_law, "ObjParams[TaxVer]": latest_version, "ObjParams[Chapter]": "請選擇", "ObjParams[Article]": "請選擇", "ObjParams[Content]": keyword, "ObjParams[Operator01]": "0", "ObjParams[Content01]": "", "ObjParams[Operator02]": "0", "ObjParams[Content02]": "" } try: response = requests.post(url, data=payload, headers=headers) response.raise_for_status() data = response.json() if data["Code"] == "1" and "Table" in data["Data"]: all_results.extend(data["Data"]["Table"]) except Exception as e: print(f"檢索關鍵字 '{keyword}' 的法令彙編函釋時發生錯誤:{str(e)}") if all_results: summary = f"

相關法令彙編函釋檢索結果({tax_law} {latest_version}):

" unique_results = {} for result in all_results: tax_sn = result.get('TaxSN', '') if tax_sn not in unique_results: unique_results[tax_sn] = result for index, result in enumerate(list(unique_results.values())[:20]): # 限制為前20個唯一結果 client = OpenAI( api_key=os.environ.get("YOUR_API_TOKEN"), base_url="https://api.sambanova.ai/v1", ) system_prompt = f""" 請判斷以下函釋內容與user提問的內容。 請給出一個0到100之間的相關性百分比,不要任何說明或理由。 回答格式為: 相關性:XX% 函釋內容:```{result['Content']}``` """ prompt = f"""```{query}```""" max_retries = 2 retry_delay = 4 for attempt in range(max_retries): try: response = client.chat.completions.create( model="Meta-Llama-3.1-405B-Instruct", messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ], temperature=0.7 ) relevance_percentage = response.choices[0].message.content.strip() break except Exception as e: if (attempt == 0) or (attempt == max_retries - 1): try: response = client.chat.completions.create( model="Meta-Llama-3.1-70B-Instruct", messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ], temperature=0.7 ) relevance_percentage = response.choices[0].message.content.strip() break except Exception as e2: relevance_percentage = "相關性:0%" break else: print(f"Retrying in {retry_delay} seconds...") time.sleep(retry_delay) retry_delay *= 2 try: percentage = int(relevance_percentage.split(":")[1].strip().rstrip('%')) except ValueError: print(f"Warning: Could not parse relevance percentage from '{relevance_percentage}'") percentage = 0 if percentage > 0: summary += f"""
{result['Title']} (相關性:{percentage} %)

{result['Content']}

""" return summary else: return "

未檢索到相關法令彙編函釋。

" def llm_openai_api(query, answer): client = OpenAI( api_key=os.environ.get("YOUR_API_TOKEN"), base_url="https://api.sambanova.ai/v1", ) user_prompt = f""" 「題目:{query} 答案:{answer}」 請詳細分析答案內容後,依據與題目相關性最高的稅目名稱及最多3個重點關鍵字回應我,提供的3個重點關鍵字不能與稅目名稱相同,問題與答案中的稅目名稱列入TaxName,關鍵字列入KeyWord,只須根據格式回應,不要寫其他的。 # 回應字典格式範例: {{"TaxName": "地價稅", "KeyWord": "宿舍用地,醫護人員"}} """ try: response = client.chat.completions.create( model='Meta-Llama-3.1-405B-Instruct', messages=[ {"role": "system", "content": "Must reply to user in Traditional Chinese."}, {"role": "user", "content": user_prompt} ], temperature=0.7, top_p=0.9 ) return response.choices[0].message.content.strip() except Exception as e: print(f"檢索法令彙編函釋 API Key!Error: {str(e)}") gr.Warning(f"檢索法令彙編函釋 API Key 額度不足!!") return '{"TaxName": "", "KeyWord": ""}' def handle_interaction(query, api_key, state): gr.Info("開始處理問題,請稍待片刻......") start_time = time.time() if state is None: state = {"history": []} if not api_key: resend.api_key = os.environ["YOUR_USE_API_KEY"] params: resend.Emails.SendParams = { "from": "Tax_KM ", "to": ["antivir7@gmail.com"], "subject": "地方稅知識庫 API KEY", "html": f"檢索內容:
{query}
", } try: email_response = resend.Emails.send(params) print(f"Email sent successfully. Response:{email_response}") except Exception as e: print(f"Failed to send email:{str(e)}") api_key = os.getenv("YOUR_API_KEY") query = convert_punctuation(query) answer, insight_questions = answer_multiple_questions(query, api_key) questions = split_questions(query) if len(questions) == 1: api_response = llm_openai_api(query, answer) tax_name = "" keywords = [] print(f"LLM剖析:{api_response}") try: response_dict = eval(api_response) tax_name = response_dict.get("TaxName", "") keywords = response_dict.get("KeyWord", "").split(",") except: print("剖析相關法令彙編函釋失敗!!") print(f"Tax Law: {tax_law}") print(f"Keywords: {keywords}") tax_law = get_tax_law(tax_name) law_summary_content = fetch_law_summary(query, tax_law, keywords) else: law_summary_content = "" gr.Info(f"多個問題不會提供法令彙編函釋檢索結果。") state["history"].append((query, answer)) while len(insight_questions) < 3: insight_questions.append("提供更多地方稅資訊") end_time = time.time() gr.Info(f"AI知識庫已答覆,執行時間: {(end_time - start_time):.2f} 秒。") return answer, insight_questions[0], insight_questions[1], insight_questions[2], state, query, law_summary_content def convert_punctuation(text): return text.replace('?', '?').replace(',', ',').replace('!', '!').replace(' ', ' ') def clear_outputs(): return "", "", gr.update(value="", visible=False) custom_css = """ .query-input { background-color: #B7E0FF !important; padding: 15px !important; border-radius: 10px !important; margin: 0 !important; } .query-input textarea { font-size: 18px !important; background-color: #ffffff; border: 1px solid #f0f8ff; border-radius: 8px; } .answer-box { background-color: #FFF5CD !important; padding: 10px !important; border-radius: 10px !important; margin: 0 !important; } .answer-box textarea { font-size: 18px !important; background-color: #ffffff; border: 1px solid #f0f8ff; border-radius: 8px; } .center-text { text-align: center !important; color: #ff4081; text-shadow: 2px 2px 4px rgba(0,0,0,0.1); margin-bottom: 0 !important; } #submit-btn { border-radius: 10px !important; border: none !important; background-color: #ff4081 !important; color: white !important; font-weight: bold !important; transition: all 0.3s ease !important; margin: 0 !important; } #submit-btn:hover { background-color: #f50057 !important; transform: scale(1.05); } .insight-btn { border-radius: 10px !important; border: none !important; background-color: #4dd8e2 !important; } .insight-btn:hover { background-color: #00bcd4 !important; } .gr-form { background-color: #e8f5e9 !important; padding: 15px !important; border-radius: 10px !important; } .api-key-input { background-color: #FFCFB3 !important; padding: 15px !important; border-radius: 10px !important; margin: 0 !important; } .text-background { font-size: 18px !important; padding: 5px !important; border-radius: 10px !important; border: 2px solid #B7E0FF !important; margin: 0 !important; } .clear-button { color: white !important; background-color: #000000 !important; padding: 5px !important; border-radius: 10px !important; margin: 0 !important; } .clear-button:hover { background-color: #000000 !important; transform: scale(1.05); } """ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as iface: gr.Markdown(""" # 地方稅知識庫系統 - 財政部財政資訊中心 > ### **※ RAG-based KM 以地方稅極少知識資料作示範,僅供參考,準確資訊請依地方稅稽徵機關回覆為準。系統部署:江信宗,LLM:Llama-3.1-70B。** """, elem_classes="center-text") with gr.Row(): query_input = gr.Textbox(label="輸入您的問題,系統將基於學習到的知識資料提供相關答案。", placeholder="支援同時輸入多個問題,例如:問題1?問題2?", autofocus=True, scale=3, max_lines=5, elem_classes="query-input") api_key_input = gr.Textbox(label="輸入您的 API Key", type="password", placeholder="API authentication key", scale=1, elem_classes="api-key-input") answer_output = gr.Textbox(label="知識庫答案", interactive=False, max_lines=40, elem_classes="answer-box") with gr.Row(): insight_q1 = gr.Button("洞察問題 1", visible=False, elem_classes=["insight-btn"]) insight_q2 = gr.Button("洞察問題 2", visible=False, elem_classes=["insight-btn"]) insight_q3 = gr.Button("洞察問題 3", visible=False, elem_classes=["insight-btn"]) state = gr.State() current_question = gr.Textbox(lines=2, label="當前問題", visible=False) law_summary = gr.HTML(label="法令彙編函釋檢索", elem_classes="text-background", visible=False) with gr.Row(): submit_btn = gr.Button("傳送", variant="primary", scale=3, elem_id="submit-btn") clear_button = gr.Button("清除", variant="secondary", scale=1, elem_classes="clear-button") gr.HTML( """ ※ 財政部各稅法令函釋檢索系統:https://ttc.mof.gov.tw/ """ ) def update_ui(answer, q1, q2, q3, state, current_q, law_summary): return [ answer, gr.update(value=q1, visible=bool(q1)), gr.update(value=q2, visible=bool(q2)), gr.update(value=q3, visible=bool(q3)), state, current_q, gr.update(value=law_summary, visible=bool(law_summary.strip())) ] submit_btn.click( fn=handle_interaction, inputs=[query_input, api_key_input, state], outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary] ).then( fn=update_ui, inputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary], outputs=[answer_output, insight_q1, insight_q2, insight_q3, state, current_question, law_summary] ) for btn in [insight_q1, insight_q2, insight_q3]: btn.click( lambda x: x, inputs=[btn], outputs=[query_input] ) def clear_outputs(): return "", "", gr.update(value="", visible=False) clear_button.click( fn=clear_outputs, inputs=[], outputs=[query_input, answer_output, law_summary] ) if __name__ == "__main__": if "SPACE_ID" in os.environ: iface.launch() else: iface.launch(share=True, show_api=False)