from datasets import load_dataset import gradio as gr from gradio_client import Client import json, os, random, torch, spaces from diffusers import FluxPipeline, AutoencoderKL from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images # ───────────────────────────── 1. Device ──────────────────────────────────── device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # ─────────────────────── 2. Image / FLUX pipeline ─────────────────────────── pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16 ).to(device) good_vae = AutoencoderKL.from_pretrained( "black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16 ).to(device) pipe.flux_pipe_call_that_returns_an_iterable_of_images = ( flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) ) # ───────────────────────── 3. LLM client (robust) ─────────────────────────── def _first_working_client(candidates: list[str]) -> Client: """ Try a list of Space URLs / repo-ids, return the first that gives a JSON config. """ for src in candidates: try: print(f"[info] Trying LLM Space: {src}") c = Client(src, hf_token=os.getenv("HF_TOKEN")) # token optional # If this passes, the config was parsed as JSON c.view_api() print(f"[info] Selected LLM Space: {src}") return c except Exception as e: print(f"[warn] {src} not usable → {e}") raise RuntimeError("No usable LLM Space found!") LLM_CANDIDATES = [ "https://huggingfaceh4-zephyr-chat.hf.space", # direct URL "HuggingFaceH4/zephyr-chat", # repo slug "huggingface-projects/gemma-2-9b-it", # fallback Space ] llm_client = _first_working_client(LLM_CANDIDATES) CHAT_API = llm_client.view_api()[0]["api_name"] # safest way to get endpoint def call_llm( user_prompt: str, system_prompt: str = "You are a helpful creative assistant.", history: list | None = None, temperature: float = 0.7, top_p: float = 0.9, max_tokens: int = 1024, ) -> str: """ Unified chat wrapper – works for both Zephyr and Gemma Spaces. """ history = history or [] try: result = llm_client.predict( user_prompt, system_prompt, history, temperature, top_p, max_tokens, api_name=CHAT_API, ) # Some Spaces return string, some return (…, history) tuple if isinstance(result, str): return result.strip() return result[1][0][-1].strip() except Exception as e: print(f"[error] LLM call failed → {e}") return "…" # ───────────────────────── 4. Persona dataset ─────────────────────────────── ds = load_dataset("MohamedRashad/FinePersonas-Lite", split="train") def random_persona() -> str: return ds[random.randint(0, len(ds) - 1)]["persona"] # ─────────────────────────── 5. Prompt templates ─────────────────────────── PROMPT_TEMPLATE = """Generate a character with this persona description: {persona_description} In a world with this description: {world_description} Write the character in JSON with keys: name, background, appearance, personality, skills_and_abilities, goals, conflicts, backstory, current_situation, spoken_lines (list of strings). Respond with JSON only (no markdown).""" WORLD_PROMPT = ( "Invent a short, unique and vivid world description. " "Respond with the description only." ) # ─────────────────────── 6. Helper functions ─────────────────────────────── def random_world() -> str: return call_llm(WORLD_PROMPT) @spaces.GPU(duration=75) def infer_flux(character_json): for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=character_json["appearance"], guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil", good_vae=good_vae, ): yield img def generate_character(world_desc: str, persona_desc: str, progress=gr.Progress(track_tqdm=True)): raw = call_llm( PROMPT_TEMPLATE.format( persona_description=persona_desc, world_description=world_desc, ), max_tokens=1024, ) try: return json.loads(raw) except json.JSONDecodeError: # One retry raw = call_llm( PROMPT_TEMPLATE.format( persona_description=persona_desc, world_description=world_desc, ), max_tokens=1024, ) return json.loads(raw) # ───────────────────────────── 7. UI ──────────────────────────────────────── DESCRIPTION = """ * Generates a character sheet (JSON) from a world + persona. * Appearance images via **FLUX-dev**; narrative via **Zephyr-chat** (or Gemma fallback). * Personas come from **FinePersonas-Lite**. Tip → Spin the world, then shuffle personas to see very different heroes. """ with gr.Blocks(title="Character Generator", theme="Nymbo/Nymbo_Theme") as demo: gr.Markdown("

🧚‍♀️ Character Generator

") gr.Markdown(DESCRIPTION.strip()) with gr.Row(): world_tb = gr.Textbox(label="World Description", lines=10, scale=4) persona_tb = gr.Textbox( label="Persona Description", value=random_persona(), lines=10, scale=1 ) with gr.Row(): btn_world = gr.Button("🔄 Random World", variant="secondary") btn_generate = gr.Button("✨ Generate Character", variant="primary", scale=5) btn_persona = gr.Button("🔄 Random Persona", variant="secondary") with gr.Row(): img_out = gr.Image(label="Character Image") json_out = gr.JSON(label="Character Description") btn_generate.click( generate_character, [world_tb, persona_tb], [json_out] ).then( infer_flux, [json_out], [img_out] ) btn_world.click(random_world, outputs=[world_tb]) btn_persona.click(random_persona, outputs=[persona_tb]) demo.queue().launch(share=False)